## CSCI 4560/6560 Computational Geometry

## Lecture 12: Voronoi Diagrams, <br> Part 3

## Outline for Today

- Homework 4 Posted!
- Friday Feb 25th: Quiz 1, Logistics
- Last Time: More Voronoi Diagrams
- Higher-Order vs Higher Dimension Voronoi Diagrams
- Centroidal Voronoi Diagram
- K-Means Clustering
- Application: Architectural Geometry
- More Spatial Query \& Search Problems / Applications
- Reducing Other Problems to the Voronoi Diagram
- Future Topic (after Quiz 1): Delaunay Triangulation


## Quiz 1

- In class, Friday Feb 25th, 2-3:50pm
- On paper, will involve simple sketching, you are welcome (but not required) to bring colored pencils/markers/crayons/etc.
- If you cannot attend class in person, contact me at least 24 hours in advance for alternate arrangements.
- Volunteer to pick up the quizzes from Shannon or Shianne Friday morning/early afternoon \& slide under my office door in Lally after the quiz?


## Outline for Today

- Homework 4 Posted!
- Friday Feb 25th: Quiz 1, Logistics
- Last Time: More Voronoi Diagrams
- Higher-Order vs Higher Dimension Voronoi Diagrams
- Centroidal Voronoi Diagram
- K-Means Clustering
- Application: Architectural Geometry
- More Spatial Query \& Search Problems / Applications
- Reducing Other Problems to the Voronoi Diagram
- Future Topic (after Quiz 1): Delaunay Triangulation


## Voronoi Diagram of Line Segments

- Points equidistant between two points form a line.
- Points equidistant between a point and a line form a parabola.
- Points equidistant between two lines form a line.


## Sweep Line: More Complicated Beach Front

- Fortunately, the complexity (\# of segments) is still $O(n)$ in the size of the input - now line segments instead of just points!



## Application: Robotics \& Motion Planning

- Step 1: Project robot center to closest Voronoi edge.
- Step 2: Remove Voronoi edges from diagram graph where smallest distance to segment < radius.
- Step 3: Search the remaining graph for a connected path from start to end.


## Voronoi Cell: Intersection of Half Spaces

- The intersection of these half-spaces is the Voronoi Cell for A - all points that choose A as their closest Voronoi site.



## Definition: Farthest Point Voronoi Cell

- The intersection of these half-spaces is the Voronoi Cell for A - all points that choose A as their closest Voronoi site.
- The intersection of the opposite half-space is the Farthest Point Voronoi Cell - all points that indicate that A is their furthest Voronoi site.



## Farthest-Point Voronoi Diagram

- Observation: Only sites on the convex hull will have a cell in the farthest point diagram.
- Observation: All farthest-point cells are unbounded.
- Observation: The diagram is a tree - no cycles!
If there were a cycle, that would mean we had a bounded cell.



## Finding the Smallest-Width Annulus

- Easy to compute once we know the center
(it is the center of both the inner \& outer circle)
- What points might be the center? Any point on the plane?


Computational Geometry Atgorithmsame Applieations,

## Finding the Smallest-Width Annulus

- Easy to compute once we know the center (it is the center of both the inner \& outer circle)
- What points might be the center? It must be:
- A vertex of the Voronoi Diagram (equally close to 3 sites) OR
- A vertex of the Farthest Point Voronoi Diagram (equally far from 3 sites) OR
- An intersection of the Voronoi Diagram and Farthest Point Voronoi Diagram (equally close to 2 sites AND equally far from 2 sites)



## Finding the Smallest-Width Annulus

- Easy to compute once we know the center (it is the center of both the inner \& outer circle)
- What points might be the center? It must be:
- A vertex of the Voronoi Diagram (equally close to 3 sites) OR
- A vertex of the Farthest Point Voronoi Diagram (equally far from 3 sites) OR
- An intersection of the Voronoi Diagram and Farthest Point Voronoi Diagram (equally close to 2 sites AND equally far from 2 sites)



## Finding the Smallest-Width Annulus

- Easy to compute once we know the center (it is the center of both the inner \& outer circle)
- What points might be the center? It must be:
- A vertex of the Voronoi Diagram (equally close to 3 sites) OR
- A vertex of the Farthest Point Voronoi Diagram (equally far from 3 sites) OR
- An intersection of the Voronoi Diagram and Farthest Point Voronoi Diagram (equally close to 2 sites AND equally far from 2 sites)


## Finding the Smallest-Width Annulus

- Easy to compute once we know the center (it is the center of both the inner \& outer circle)
- What points might be the center? It must be:
- A vertex of the Voronoi Diagram (equally close to 3 sites) OR
- A vertex of the Farthest Point Voronoi Diagram (equally far from 3 sites) OR
- An intersection of the Voronoi Diagram and Farthest Point Voronoi Diagram (equally close to 2 sites AND equally far from 2 sites)


## Finding the Smallest-Width Annulus

- Easy to compute once we know the center (it is the center of both the inner \& outer circle)
- What points might be the center? It must be:
- A vertex of the Voronoi Diagram (equally close to 3 sites) OR
- A vertex of the Farthest Point Voronoi Diagram (equally far from 3 sites) OR
- An intersection of the Voronoi Diagram and Farthest Point Voronoi Diagram (equally close to 2 sites AND equally far from 2 sites)


## Outline for Today

- Homework 4 Posted!
- Friday Feb 25th: Quiz 1, Logistics
- Last Time: More Voronoi Diagrams
- Higher-Order vs Higher Dimension Voronoi Diagrams
- Centroidal Voronoi Diagram
- K-Means Clustering
- Application: Architectural Geometry
- More Spatial Query \& Search Problems / Applications
- Reducing Other Problems to the Voronoi Diagram
- Future Topic (after Quiz 1): Delaunay Triangulation


## Higher-Order Voronoi / k-Closest Sites

- For example, $\mathrm{k}=2 \ldots$
- Subdivide the plane into regions that have the same closest and second closest sites



## Voronoi Diagram in 3D or Higher Dimension

- Not the same as "Higher-Order Voronoi Diagram"
- Well defined in higher dimensions, but hard to visualize \& debug!
- Each Voronoi cell is convex!



## Outline for Today

- Homework 4 Posted!
- Friday Feb 25th: Quiz 1, Logistics
- Last Time: More Voronoi Diagrams
- Higher-Order vs Higher Dimension Voronoi Diagrams
- Centroidal Voronoi Diagram
- K-Means Clustering
- Application: Architectural Geometry
- More Spatial Query \& Search Problems / Applications
- Reducing Other Problems to the Voronoi Diagram
- Future Topic (after Quiz 1): Delaunay Triangulation


## Centroidal Voronoi Diagram

- What if we could place all of the grocery stores?
- Where should we place the grocery stores so that
 they are centrally located for all of their customers?


## Centroidal Voronoi Diagram

- What if we could place all of the grocery stores?
- Where should we place the grocery stores so that
 they are centrally located for all of their customers?
- But if you change the position of the store, the closest store will change for some customers...
- Points are at the center of mass of their cell

- Constructed using k-means clustering / Lloyd's algorithm - an iterative relaxation algorithm
- Note: May be multiple solutions!



## Outline for Today

- Homework 4 Posted!
- Friday Feb 25th: Quiz 1, Logistics
- Last Time: More Voronoi Diagrams
- Higher-Order vs Higher Dimension Voronoi Diagrams
- Centroidal Voronoi Diagram
- K-Means Clustering
- Application: Architectural Geometry
- More Spatial Query \& Search Problems / Applications
- Reducing Other Problems to the Voronoi Diagram
- Future Topic (after Quiz 1): Delaunay Triangulation


## K-Means Clustering

- Works quite well, when the data can be meaningfully classified (and we know how many clusters to use).
- With dense data, output is visually similar to Voronoi diagram (k-Means chooses the data points that define the cells)


"Efficient K-Means Clustering using JIT" Yi Cao


## K-Means Clustering

## For a set of 2D/3D/nD points:

- Choose $k$, \# of clusters (maybe an "oracle" tells us...)
- Select $k$ points from your data at random as initial team representatives
- Every other point determines which team representative it is closest to and joins that team
- The team averages the positions of all members, this is the team's new representative
- Repeat $x$ times or until change < threshold


Wei Zhang
https://wei2624.github.io/MachineLearning/usv_kmeans/

## Outline for Today

- Homework 4 Posted!
- Friday Feb 25th: Quiz 1, Logistics
- Last Time: More Voronoi Diagrams
- Higher-Order vs Higher Dimension Voronoi Diagrams
- Centroidal Voronoi Diagram
- K-Means Clustering
- Application: Architectural Geometry
- More Spatial Query \& Search Problems / Applications
- Reducing Other Problems to the Voronoi Diagram
- Future Topic (after Quiz 1): Delaunay Triangulation

The Problem: Mesh this curved surface so that it can be constructed from glass for a rooftop greenhouse.


Great Court at the British Museum
London, England
Norman Foster and Partners, 2000.


Chadstone Shopping Center
Melbourne, Australia
RTKL Associates Inc, 1999.

## "Voronoi Surfaces"



Mike Powell, MIT
Studio Project Fall 2004


Unfortunately, the cell vertices are rarely planar!


## Voronoi Diagram on a 3D Surface

We're no longer using Euclidean Distance!



## Fabrication




Additional work necessary to meet constraints of glass construction
"Constrained Planar
Remeshing for Architecture",
Cutler \& Whiting, 2007

"Voronoi Grid-Shell Structures" Pietroni, Tonelli, Puppo, Froli,
Scopigno, \& Cignoni, 2014

"Geometric Modeling with Conical Meshes and Developable Surfaces"
Liu, Pottmann, Wallner, Yang \&Wang, SIGGRAPH 2006

## Voronoi Diagram in Nature


https://spring-of-mathematics.tumblr.com/ post/85519358219/the-beauty-of-voronoi-diagram-in-nature-how
https://blogs.scientificamerican.com/ observations/voronoi-tessellations-and-scutoids-are-everywhere/


"A Cellular Texture Basis Function", Worley, SIGGRAPH 1996



Image by Justin Legakis

## Outline for Today

- Homework 4 Posted!
- Friday Feb 25th: Quiz 1, Logistics
- Last Time: More Voronoi Diagrams
- Higher-Order vs Higher Dimension Voronoi Diagrams
- Centroidal Voronoi Diagram
- K-Means Clustering
- Application: Architectural Geometry
- More Spatial Query \& Search Problems / Applications
- Reducing Other Problems to the Voronoi Diagram
- Future Topic (after Quiz 1): Delaunay Triangulation


## Problems that Reduce to Voronoi Diagram

- We can compute the Voronoi Diagram of $n$ points in $O(n \log n)$ time and $O(n)$ space.
- These other problems can be computed in $O(n)$ additional


ORDERED CONVEXHULL
Computational Geometry: An Introduction,
Preparata \& Shamos, Figure 5.30 time if given the
Voronoi Diagram.

- Therefore they are also $O(n \log n)$ time and $O(n)$ space.


## Problem: All Nearest Neighbors

- Connect every point to its nearest point with a directed edge.
- Some points form a reciprocal pair.



## Problem: Closest Pair

- Which two points are the closest?
- Applications - Collision Detection \& Air Traffic Control
- Which two objects have soonest potential for collision?



## Problem: Closest Pair

- Which two points are the closest?
- Applications - Collision Detection \& Air Traffic Control
- Which two objects have soonest potential for collision?
- Linear loop over all edges in the All Nearest Neighbors solution to find the shortest edge
- Will be a reciprocal pair


Computational Geometry: An Introduction,

## Problem: Uniqueness

- Given $n$ numbers, decide if any two are unique.



## Problem: Uniqueness

- Given $n$ numbers, decide if any two are unique.
- Linear loop over all edges in the All Nearest Neighbors solution to if any edges are length zero.



## Problem: Euclidean Minimum Spanning Tree

- Given $n$ points
- Draw n-1 edges to create a tree, connecting all points without creating any cycles.
- Pick edges to minimize the sum of their lengths.
- Application: Minimize cost of physical telephone lines


Figure 5.2 A minimum spanning tree on a planar point set.

Computational Geometry: An Introduction,
Preparata \& Shamos, Figure 5.2

## Problem: Minimum Spanning Tree

- General (non-Euclidean) MST from Graph Theory
- Each edge has a weight, not necessarily the Euclidean distance between two points
- Worst case, may have $m=n^{2}$ edges to consider
- Runtime $O(m \log n)$ $O\left(n^{2} \log n\right)$ worst case


Figure 5.2 A minimum spanning tree on a planar point set.

Computational Geometry: An Introduction,
Preparata \& Shamos, Figure 5.2

## Problem: (Euclidean) Steiner Tree

- If allowed to add additional points - so-called Steiner Points
- Minimize sum of Euclidean distance edge lengths
- Computing the Steiner Tree is NP Complete / NP hard!

(a)

(b)

Figure 5.3 A Steiner Tree (b) may have smaller total length than the MST (a).

## Problems that Reduce to Voronoi Diagram

- We can compute the Voronoi Diagram of $n$ points in $O(n \log n)$ time and $O(n)$ space.
- These other problems can be computed in $O(n)$ additional


ORDERED CONVEXHULL
Computational Geometry: An Introduction,
Preparata \& Shamos, Figure 5.30 time if given the
Voronoi Diagram.

- Therefore they are also $O(n \log n)$ time and $O(n)$ space.


## Reduce Convex Hull to Voronoi Diagram

- Theorem: Voronoi polygon $V_{i}$ is unbounded if and only if Voronoi site $i$ is on the convex hull of all sites. (proved in Preparata \& Shamos)


Figure 5.31 Construction of the convex hull from the Voronoi diagram.

## Reduce Convex Hull to Voronoi Diagram

- Theorem: Voronoi polygon $V_{i}$ is unbounded if and only if Voronoi site $i$ is on the convex hull of all sites. (proved in Preparata \& Shamos)
- $\mathrm{O}(\mathrm{n})$ to convert Voronoi Diagram to Convex Hull:
- Start with any unbounded cell
- Walk edges clockwise to find adjacent unbounded cell
- Voronoi sites will trace convex hull in counter-clockwise order


Figure 5.31 Construction of the convex hull from the Voronoi diagram.

Computational Geometry: An Introduction,
Preparata \& Shamos, Figure 5.31

## Reduce All Nearest Neighbors to Voronoi Diagram

- For $n$ Voronoi Sites
- By Euler's formula: $F+V=E+2$
- \# of Voronoi edges $\leq 3 n-6$
- Theorem: Every nearest neighbor in the set of Voronoi sites defines an edge of a Voronoi polygon.
(proved in Preparata \& Shamos)
- O(n) to convert Voronoi Diagram to All Nearest Neighbors
- For every Voronoi polygon, loop over all Voronoi edges, \& select adjacent site that is closest
- Every Voronoi edge will be
 considered twice


## Reduce All Nearest Neighbors to Voronoi Diagram

- For $n$ Voronoi Sites
- By Euler's formula: $F+V=E+2$
- \# of Voronoi edges $\leq 3 n-6$
- Theorem: Every nearest neighbor in the set of Voronoi sites defines an edge of a Voronoi polygon.
(proved in Preparata \& Shamos)



## Problems that Reduce to Voronoi Diagram

- We can compute the Voronoi Diagram of $n$ points in $O(n \log n)$ time and $O(n)$ space.
- These other problems can be computed in $O(n)$ additional


ORDERED CONVEXHULL

Computational Geometry: An Introduction,
Preparata \& Shamos, Figure 5.30 time if given the
Voronoi Diagram.

- Therefore they are also $O(n \log n)$ time and $O(n)$ space.


## Reduce EMST to Voronoi Diagram

- All Nearest Neighbors will have one or more cycles reciprocal pair(s)
- Remove one edge from each cycle
- All Nearest Neighbors may be disconnected
- A forest of trees
- Core challenge: Find and add shortest edge between disconnected trees in the forest...



## Kruskal's and Prim's Algorithm for MST

## Did you cover this in Introduction to Algorithms and/or Graph Theory?

- Kruskal's - O(E log E)
- maintain a set of trees
- find the shortest edge that merges two trees
- repeat until there is only a single tree
- Prim's - $O(E+V \log V)$
- maintain one tree, and all unconnected vertices
- find the shortest edge from the tree to an unconnected vertex
- repeat until there are no unconnected vertices

For a general (non-Euclidean) MST, we may have to consider O( $\left.n^{2}\right)$ edges worst case. For the Euclidean MST, we only need to consider the O(n) Voronoi/Delaunay edges.

## Problems that Reduce to Voronoi Diagram

- We can compute the Voronoi Diagram of $n$ points in $O(n \log n)$ time and $O(n)$ space.
- These other problems can be computed in $O(n)$ additional


ORDERED CONVEXHULL

Computational Geometry: An Introduction,
Preparata \& Shamos, Figure 5.30 time if given the
Voronoi Diagram.

- Therefore they are also $O(n \log n)$ time and $O(n)$ space.


## Outline for Today

- Homework 4 Posted!
- Friday Feb 25th: Quiz 1, Logistics
- Last Time: More Voronoi Diagrams
- Higher-Order vs Higher Dimension Voronoi Diagrams
- Centroidal Voronoi Diagram
- K-Means Clustering
- Application: Architectural Geometry
- More Spatial Query \& Search Problems / Applications
- Reducing Other Problems to the Voronoi Diagram
- Future Topic (after Quiz 1): Delaunay Triangulation


## Next Time: Delaunay Triangulation!

- The Voronoi Diagram (VD) is the dual of the Delaunay Triangulation (DT)
- Every Voronoi Site is a face in Voronoi Diagram and a vertex in the DT
- Every Voronoi Edge is an edge in the DT
- Every Voronoi Vertex is a triangle in the DT

