Lecture 13: Arrangements & Duality
Administrative Note

This course has been officially approved as “Communication Intensive”, starting this term, Spring 2022. Yay!
Outline for Today

● Last Lecture: Problems that reduce to Voronoi Diagrams
● Duality: Points ↔ Lines
● Arrangement of Lines
● Complexity of an Arrangement of Lines
● Algorithm to Construct Arrangement of Lines
● Arrangement Application: Ray Tracing Supersampling
● Next Time: Arrangement Application: Architectural Sketching
● Next Time: Delaunay Triangulations
Centroidal Voronoi Diagram

- What if we could place all of the grocery stores?
- Where should we place the grocery stores so that they are centrally located for all of their customers?
- But if you change the position of the store, the closest store will change for some customers…

- Points are at the center of mass of their cell
- Constructed using k-means clustering / Lloyd’s algorithm - an iterative relaxation algorithm

- Note: May be multiple solutions!

https://en.wikipedia.org/wiki/Centroidal_Voronoi_tessellation
K-Means Clustering

- Works quite well, when the data can be meaningfully classified (and we know how many clusters to use).
- With dense data, output is visually similar to Voronoi diagram (k-Means chooses the data points that define the cells)

"Efficient K-Means Clustering using JIT" Yi Cao
Problem: Closest Pair

- Which two points are the closest?
- Applications - Collision Detection & Air Traffic Control
- Which two objects have soonest potential for collision?
- Linear loop over all edges in the All Nearest Neighbors solution to find the shortest edge
- Will be a reciprocal pair

Computational Geometry: An Introduction, Preparata & Shamos, Figure 5.1
Problem: Euclidean Minimum Spanning Tree

- Given n points
- Draw $n-1$ edges to create a tree, connecting all points without creating any cycles.
- Pick edges to minimize the sum of their lengths.

Application: Minimize cost of physical telephone lines

Figure 5.2 A minimum spanning tree on a planar point set.

 Computational Geometry: An Introduction, Preparata & Shamos, Figure 5.2
Reduce Convex Hull to Voronoi Diagram

- Theorem: Voronoi polygon V_i is unbounded if and only if Voronoi site i is on the convex hull of all sites. (proved in Preparata & Shamos)

- $O(n)$ to convert Voronoi Diagram to Convex Hull:
 - Start with any unbounded cell
 - Walk edges clockwise to find adjacent unbounded cell
 - Voronoi sites will trace convex hull in counter-clockwise order

Computational Geometry: An Introduction, Preparata & Shamos, Figure 5.31
Problems that Reduce to Voronoi Diagram

- We can compute the Voronoi Diagram of n points in $O(n \log n)$ time and $O(n)$ space.
- These other problems can be computed in $O(n)$ additional time if given the Voronoi Diagram.
- Therefore they are also $O(n \log n)$ time and $O(n)$ space.

Computational Geometry: An Introduction, Preparata & Shamos, Figure 5.30
Outline for Today

● Last Lecture: Problems that reduce to Voronoi Diagrams
● Duality: Points ↔ Lines
● Arrangement of Lines
● Complexity of an Arrangement of Lines
● Algorithm to Construct Arrangement of Lines
● Arrangement Application: Ray Tracing Supersampling
● Next Time: Arrangement Application: Architectural Sketching
● Next Time: Delaunay Triangulations
Duality: Points ↔ Lines

Point \(p: (p_x, p_y) \) in primal plane ↔ Line \(p^*: y = \frac{p_x}{p_y} x - \frac{p_y}{p_x} \) in dual plane

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 8
Duality: Points ↔ Lines

Line ℓ: $y = mx + b$ in primal plane ↔ Point ℓ^*: (m,b) in dual plane

primal plane

$dual plane$
Duality: Points ↔ Lines

Points p_1, p_2, p_3 on line ℓ in primal plane,
are lines p_1^*, p_2^*, p_3^* that pass through point ℓ^* in dual plane.
Duality: Points ↔ Lines

Point p_4 that lines above line ℓ in primal plane, is line p_4^* that lies beneath point ℓ^* in dual plane.
Duality: Line Segment ↔ Double Wedge

Line segment s between points p and q, which lies on line ℓ_{pq}, in primal plane.
Duality: Line Segment ↔ Double Wedge

Line segment s between points p and q, which lies on line ℓ_{pq}, in primal plane
Is a double wedge s^* of area between lines p^* and q^* in the dual plane
Duality: Line Segment ↔ Double Wedge

The intersection point p_{ts} of segment s and line ℓ in primal plane, is line p_{ts}^* that lies inside double wedge s^* and crosses ℓ^* and ℓ_{pq}^* in the dual plane.
A vertical line segment ℓ_{vert} in the primal plane has slope $m = \infty$, and $b = \text{undefined}$.

Where is the dual ℓ_{vert}^* ???

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 8
Duality: Assumptions / Special Cases

A vertical line segment ℓ_{vert} in the primal plane has slope $m = \infty$, and $b = \text{undefined}$. Where is the dual ℓ_{vert}^*?

Either assume no vertical lines OR rotate everything in the primal plane by a tiny angle so nothing is vertical.
Outline for Today

- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points ↔ Lines
- **Arrangement of Lines**
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Next Time: Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations
Arrangement of Lines

- A collection of n lines in the plane
- Creates a subdivision of the plane into vertices, edges, and faces

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 8
Arrangement of Lines

- A collection of \(n \) lines in the plane
- Creates a subdivision of the plane into vertices, edges, and faces

Definition:
A simple arrangement of lines
- No three lines pass through the same point
- No two lines are parallel

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 8
Outline for Today

- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points ↔ Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Next Time: Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations
Complexity of an Arrangement of Lines

- A collection of n lines in the plane
- How many vertices?
- How many edges?
- How many faces?
Complexity of an Arrangement of Lines

- A collection of n lines in the plane
- How many vertices?
 - $n \times (n-1) / 2$
- How many edges?
 - n^2
- How many faces?
 - $n^2/2 + n/2 + 1$

Or fewer if not a simple arrangement

- 3 or more lines intersect at a point, or
- 2 or more lines are parallel

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 8
Outline for Today

● Last Lecture: Problems that reduce to Voronoi Diagrams
● Duality: Points ↔ Lines
● Arrangement of Lines
● Complexity of an Arrangement of Lines
● **Algorithm to Construct Arrangement of Lines**
● Arrangement Application: Ray Tracing Supersampling
● Next Time: Arrangement Application: Architectural Sketching
● Next Time: Delaunay Triangulations
Map Overlay & Line Segment Intersection

- Line Sweep Algorithm covered in Lecture 3
- For n line segments
- With k overlay complexity (# of elements in output)
- Runtime Analysis: $O(n \log n + k \log n)$
Applied to (Unbounded) Lines…

- For n line segments \textbf{lines}
- With k overlay complexity
 (# of elements in output)

 $\rightarrow k = O(n^2)$

- Runtime Analysis:
 $O(n \log n + k \log n)$

 $\rightarrow O(n^2 \log n)$

Can we do better?
Construct an Arrangement

- Dealing with unbounded cells in a half-edge structure is impractical.
- Compute the bounding box for the arrangement.
- Find all $n \times (n-1)$ vertices (pairwise intersect all of the lines)
- Find the maximum and minimum x and y coordinates

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 8
Construct an Arrangement

- Insert the lines one at a time
- Intersect the line with the bounding box
- Cut edge into two new edges
- Cut face into two new faces
- Walk the edges of the face to find the next face
Construct an Arrangement

Runtime Analysis:

- linear cost to insert each line
 \[\rightarrow O(n) \]
- Overall:
 \[\rightarrow O(n^2) \]

Line arrangements (& their computation) are quadratic…
Outline for Today

● Last Lecture: Problems that reduce to Voronoi Diagrams
● Duality: Points ↔ Lines
● Arrangement of Lines
● Complexity of an Arrangement of Lines
● Algorithm to Construct Arrangement of Lines
● **Arrangement Application: Ray Tracing Supersampling**
● Next Time: Arrangement Application: Architectural Sketching
● Next Time: Delaunay Triangulations
Ray Tracing Antialiasing – Supersampling

- Trace multiple rays per pixel

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 8
Noise from Insufficient Sampling

Can be very noticeable and distracting!

Henrik Wann Jensen
Noise from Insufficient Sampling

5 Samples/Pixel
25 Samples/Pixel
75 Samples/Pixel
Noise also comes from Poor Sampling

- With uniform random sampling, we can get unlucky…
 e.g. all samples in a corner

- **Stratified Sampling** can prevent it
 - Subdivide domain Ω into non-overlapping regions Ω_i
 - Each region is called a stratum
 - Take one random samples per Ω_i
Compute the Discrepancy of a Specific Pixel Sampling

- Primarily we’ll be ray tracing / sampling straight-edged geometric objects

- So our primary concern:

 Is the number of samples in the half space above the line proportional to the area of the square pixel above the line?
Compute the Discrepancy of a Sampling

Arrangements allow us to compute in $O(n^2)$ the level, or number of line segments above any point.
Outline for Today

- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points ↔ Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Next Time: Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations
Next Time: Delaunay Triangulation!

- The Voronoi Diagram (VD) *is the dual of the* Delaunay Triangulation (DT)
- Every Voronoi Site is a face in Voronoi Diagram and a vertex in the DT
- Every Voronoi Edge is an edge in the DT
- Every Voronoi Vertex is a triangle in the DT

Computational Geometry: An Introduction, Preparata & Shamos, Figure 5.21