
CSCI 4560/6560 Computational Geometry
https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/S22/

Lecture 13:
Arrangements

& Duality

Administrative Note
This course has been officially approved as “Communication Intensive”,
starting this term, Spring 2022. Yay!

Outline for Today
● Last Lecture: Problems that reduce to Voronoi Diagrams
● Duality: Points ↔ Lines
● Arrangement of Lines
● Complexity of an Arrangement of Lines
● Algorithm to Construct Arrangement of Lines
● Arrangement Application: Ray Tracing Supersampling
● Next Time: Arrangement Application: Architectural Sketching
● Next Time: Delaunay Triangulations

Centroidal Voronoi Diagram
● What if we could place all of the grocery stores?
● Where should we place the grocery stores so that

they are centrally located for all of their customers?
● But if you change the position of the store, the closest

store will change for some customers…

● Points are at the center of mass of their cell
● Constructed using k-means clustering /

Lloyd’s algorithm - an iterative relaxation algorithm

● Note: May be multiple solutions!

https://en.wikipedia.org/wiki/Centroidal_Voronoi_tessellation

K-Means Clustering
● Works quite well, when the data can be meaningfully classified

(and we know how many clusters to use).
● With dense data, output is visually similar to Voronoi diagram

(k-Means chooses the data points that define the cells)

http://blog.mpacula.com/2011/04/27/k-means-clustering-example-python/ "Efficient K-Means Clustering using JIT" Yi Cao

Wei Zhang
https://wei2624.github.io/MachineLearning/usv_kmeans/

Problem: Closest Pair

Computational Geometry: An Introduction,
Preparata & Shamos, Figure 5.1

● Which two points are the
closest?

● Applications - Collision
Detection & Air Traffic Control

● Which two objects
have soonest potential
for collision?

● Linear loop over all
edges in the All Nearest
Neighbors solution to find
the shortest edge

● Will be a reciprocal pair

Problem: Euclidean Minimum Spanning Tree
● Given n points
● Draw n-1 edges to create

a tree, connecting all
points without creating
any cycles.

● Pick edges to minimize
the sum of their lengths.

● Application: Minimize
cost of physical
telephone lines

Computational Geometry: An Introduction,
Preparata & Shamos, Figure 5.2

Reduce Convex Hull to Voronoi Diagram
● Theorem: Voronoi polygon Vi

is unbounded if and only if
Voronoi site i is on the convex
hull of all sites. (proved in Preparata & Shamos)

● O(n) to convert Voronoi Diagram
to Convex Hull:
● Start with any unbounded cell
● Walk edges clockwise to find

adjacent unbounded cell
● Voronoi sites will

trace convex hull in
counter-clockwise order

Computational Geometry: An Introduction,
Preparata & Shamos, Figure 5.31

Problems that Reduce to Voronoi Diagram
● We can compute the

Voronoi Diagram of
n points in O(n log n)
time and O(n) space.

● These other
problems can be
computed in
O(n) additional
time if given the
Voronoi Diagram.

● Therefore they are also O(n log n) time and O(n) space.

Computational Geometry: An Introduction,
Preparata & Shamos, Figure 5.30

Outline for Today
● Last Lecture: Problems that reduce to Voronoi Diagrams
● Duality: Points ↔ Lines
● Arrangement of Lines
● Complexity of an Arrangement of Lines
● Algorithm to Construct Arrangement of Lines
● Arrangement Application: Ray Tracing Supersampling
● Next Time: Arrangement Application: Architectural Sketching
● Next Time: Delaunay Triangulations

Duality: Points ↔ Lines
Point p: (px,py) in primal plane ↔ Line p*: y = pxx - py in dual plane

slope y-intercept

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Duality: Points ↔ Lines
Line ℓ: y = mx + b in primal plane ↔ Point ℓ*: (m,b) in dual plane

slope y-intercept

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Duality: Points ↔ Lines
Points p1, p2, p3 on line ℓ in primal plane,
are lines p1*, p2*, p3* that pass through point ℓ* in dual plane.

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Duality: Points ↔ Lines
Point p4 that lines above line ℓ in primal plane,
Is line p4* that lies beneath point ℓ* in dual plane.

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Duality: Line Segment ↔ Double Wedge
Line segment s between points p and q, which lies on line ℓpq, in primal plane

ℓpq

ℓpq*

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Duality: Line Segment ↔ Double Wedge
Line segment s between points p and q, which lies on line ℓpq, in primal plane
Is a double wedge s* of area between lines p* and q* in the dual plane

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Duality: Line Segment ↔ Double Wedge
The intersection point pℓs of segment s and line ℓ in primal plane,
Is line pℓs* that lies inside double wedge s* and crosses ℓ* and ℓpq* in the dual plane

pℓs*

pℓs

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Duality: Assumptions / Special Cases
A vertical line segment ℓvert in the primal plane has slope m = ∞, and b = undefined

ℓvert

Where is the dual ℓvert* ???

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Duality: Assumptions / Special Cases
A vertical line segment ℓvert in the primal plane has slope m = ∞, and b = undefined

ℓvert

Where is the dual ℓvert* ???

Either assume no vertical lines
OR rotate everything in the primal plane
by a tiny angle so nothing is vertical

Outline for Today
● Last Lecture: Problems that reduce to Voronoi Diagrams
● Duality: Points ↔ Lines
● Arrangement of Lines
● Complexity of an Arrangement of Lines
● Algorithm to Construct Arrangement of Lines
● Arrangement Application: Ray Tracing Supersampling
● Next Time: Arrangement Application: Architectural Sketching
● Next Time: Delaunay Triangulations

Arrangement of Lines
● A collection of n lines in the plane
● Creates a subdivision of the plane

into vertices, edges, and faces

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Arrangement of Lines
● A collection of n lines in the plane
● Creates a subdivision of the plane

into vertices, edges, and faces

● Definition:
A simple arrangement of lines
● No three lines pass through

the same point
● No two lines are parallel

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Outline for Today
● Last Lecture: Problems that reduce to Voronoi Diagrams
● Duality: Points ↔ Lines
● Arrangement of Lines
● Complexity of an Arrangement of Lines
● Algorithm to Construct Arrangement of Lines
● Arrangement Application: Ray Tracing Supersampling
● Next Time: Arrangement Application: Architectural Sketching
● Next Time: Delaunay Triangulations

Complexity of an Arrangement of Lines
● A collection of n lines in the plane
● How many vertices?

●
● How many edges?

●
● How many faces?

●

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Complexity of an Arrangement of Lines
● A collection of n lines in the plane
● How many vertices?

● n * (n-1) / 2
● How many edges?

● n2

● How many faces?
● n2/2 + n/2 + 1

Or fewer if not a simple arrangement

● 3 or more lines intersect
at a point, or

● 2 or more lines are parallel
Computational Geometry Algorithms and Applications,

de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Outline for Today
● Last Lecture: Problems that reduce to Voronoi Diagrams
● Duality: Points ↔ Lines
● Arrangement of Lines
● Complexity of an Arrangement of Lines
● Algorithm to Construct Arrangement of Lines
● Arrangement Application: Ray Tracing Supersampling
● Next Time: Arrangement Application: Architectural Sketching
● Next Time: Delaunay Triangulations

Map Overlay & Line Segment Intersection
● Line Sweep Algorithm

covered in Lecture 3

● For n line segments
● With k overlay complexity

(# of elements in output)

● Runtime Analysis:
O(n log n + k log n)

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 2

Applied to (Unbounded) Lines…
● For n line segments lines
● With k overlay complexity

(# of elements in output)

→ k = O(n2)

● Runtime Analysis:
O(n log n + k log n)

→ O(n2 log n)

Can we do better?
Computational Geometry Algorithms and Applications,

de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Construct an Arrangement
● Dealing with unbounded cells in a half-edge structure is impractical.

● Compute the bounding box
for the arrangement.

● Find all n * (n-1) vertices
(pairwise intersect all of the lines)

● Find the maximum and minimum
x and y coordinates

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Construct an Arrangement
● Insert the lines

one at a time
● Intersect the line with

the bounding box
● Cut edge into

two new edges
● Cut face into

two new faces
● Walk the edges

of the face to find
the next face

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Construct an Arrangement
Runtime Analysis:

● linear cost to insert
each line

→ O(n)

● Overall:

→ O(n2)

Line arrangements
(& their computation)

are quadratic… Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Outline for Today
● Last Lecture: Problems that reduce to Voronoi Diagrams
● Duality: Points ↔ Lines
● Arrangement of Lines
● Complexity of an Arrangement of Lines
● Algorithm to Construct Arrangement of Lines
● Arrangement Application: Ray Tracing Supersampling
● Next Time: Arrangement Application: Architectural Sketching
● Next Time: Delaunay Triangulations

Ray Tracing Antialiasing – Supersampling

● Trace
multiple rays
per pixel

jaggies w/ antialiasing

Computational Geometry Algorithms
and Applications,

de Berg, Cheong, van Kreveld
and Overmars, Chapter 8

Noise from Insufficient Sampling

Henrik Wann Jensen

Can be very
noticeable

and distracting!

Noise from Insufficient Sampling

5 Samples/Pixel 75 Samples/Pixel25 Samples/Pixel

Noise also comes from Poor Sampling
● With uniform random sampling,

we can get unlucky…
e.g. all samples in a corner

● Stratified Sampling can prevent it
● Subdivide domain Ω into

non-overlapping regions Ωi
● Each region is called a stratum
● Take one random samples per Ωi

Compute the Discrepancy
of a Specific Pixel Sampling
● Primarily we’ll be ray tracing / sampling

straight-edged geometric objects

● So our primary concern:
Is the number of samples in the half space
above the line proportional to the area of
the square pixel above the line?

Compute the Discrepancy of a Sampling
Arrangements allow us to compute in O(n2) the level,
or number of line segments above any point

Outline for Today
● Last Lecture: Problems that reduce to Voronoi Diagrams
● Duality: Points ↔ Lines
● Arrangement of Lines
● Complexity of an Arrangement of Lines
● Algorithm to Construct Arrangement of Lines
● Arrangement Application: Ray Tracing Supersampling
● Next Time: Arrangement Application: Architectural Sketching
● Next Time: Delaunay Triangulations

Next Time: Delaunay Triangulation!
● The Voronoi Diagram (VD)

is the dual of the
Delaunay Triangulation (DT)

● Every Voronoi Site is
a face in Voronoi Diagram
and a vertex in the DT

● Every Voronoi Edge is
an edge in the DT

● Every Voronoi Vertex
is a triangle in the DT

Computational Geometry: An Introduction,
Preparata & Shamos, Figure 5.21

