
CSCI 4560/6560 Computational Geometry
https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/S22/

Lecture 13:  
Arrangements

& Duality



Administrative Note
This course has been officially approved as “Communication Intensive”,
starting this term, Spring 2022.  Yay!



Outline for Today
● Last Lecture: Problems that reduce to Voronoi Diagrams
● Duality: Points ↔ Lines
● Arrangement of Lines
● Complexity of an Arrangement of Lines
● Algorithm to Construct Arrangement of Lines
● Arrangement Application: Ray Tracing Supersampling
● Next Time: Arrangement Application: Architectural Sketching
● Next Time: Delaunay Triangulations



Centroidal Voronoi Diagram
● What if we could place all of the grocery stores?
● Where should we place the grocery stores so that 

they are centrally located for all of their customers?
● But if you change the position of the store, the closest 

store will change for some customers…

● Points are at the center of mass of their cell
● Constructed using k-means clustering / 

Lloyd’s algorithm - an iterative relaxation algorithm

● Note: May be multiple solutions!

https://en.wikipedia.org/wiki/Centroidal_Voronoi_tessellation



K-Means Clustering
● Works quite well, when the data can be meaningfully classified 

(and we know how many clusters to use).
● With dense data, output is visually similar to Voronoi diagram

(k-Means chooses the data points that define the cells)

http://blog.mpacula.com/2011/04/27/k-means-clustering-example-python/ "Efficient K-Means Clustering using JIT"  Yi Cao



Wei Zhang
https://wei2624.github.io/MachineLearning/usv_kmeans/



Problem: Closest Pair

Computational Geometry: An Introduction,
Preparata & Shamos, Figure 5.1

● Which two points are the 
closest?

● Applications - Collision 
Detection & Air Traffic Control  

● Which two objects 
have soonest potential 
for collision?

● Linear loop over all 
edges in the All Nearest 
Neighbors solution to find 
the shortest edge 

● Will be a reciprocal pair



Problem: Euclidean Minimum Spanning Tree
● Given n points
● Draw n-1 edges to create 

a tree, connecting all 
points without creating 
any cycles.

● Pick edges to minimize 
the sum of their lengths.

● Application: Minimize 
cost of physical 
telephone lines

Computational Geometry: An Introduction,
Preparata & Shamos, Figure 5.2



Reduce Convex Hull to Voronoi Diagram
● Theorem: Voronoi polygon Vi 

is unbounded if and only if 
Voronoi site i is on the convex 
hull of all sites. (proved in Preparata & Shamos)

● O(n) to convert Voronoi Diagram 
to Convex Hull:
● Start with any unbounded cell
● Walk edges clockwise to find 

adjacent unbounded cell
● Voronoi sites will 

trace convex hull in 
counter-clockwise order

Computational Geometry: An Introduction,
Preparata & Shamos, Figure 5.31



Problems that Reduce to Voronoi Diagram
● We can compute the 

Voronoi Diagram of 
n points in O(n log n) 
time and O(n) space.  

● These other 
problems can be 
computed in 
O(n) additional 
time if given the 
Voronoi Diagram.  

● Therefore they are also O(n log n) time and O(n) space.

Computational Geometry: An Introduction,
Preparata & Shamos, Figure 5.30
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Duality: Points ↔ Lines
Point p: (px,py) in primal plane  ↔  Line p*:  y = pxx - py  in dual plane

slope y-intercept

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 8



Duality: Points ↔ Lines
Line ℓ: y = mx + b  in primal plane  ↔  Point ℓ*:  (m,b)  in dual plane

slope y-intercept

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 8



Duality: Points ↔ Lines
Points p1, p2, p3 on line ℓ in primal plane, 
are lines p1*, p2*, p3* that pass through point ℓ* in dual plane.

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 8



Duality: Points ↔ Lines
Point p4 that lines above line ℓ in primal plane, 
Is line p4* that lies beneath point ℓ* in dual plane.

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 8



Duality: Line Segment ↔ Double Wedge
Line segment s between points p and q, which lies on line ℓpq, in primal plane

 

ℓpq

ℓpq*

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 8



Duality: Line Segment ↔ Double Wedge
Line segment s between points p and q, which lies on line ℓpq, in primal plane
Is a double wedge s* of area between lines p* and q* in the dual plane

 

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 8



Duality: Line Segment ↔ Double Wedge
The intersection point pℓs of segment s and line ℓ  in primal plane,
Is line pℓs* that lies inside double wedge s* and crosses ℓ* and ℓpq* in the dual plane

 
pℓs* 

pℓs 

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 8



Duality: Assumptions / Special Cases
A vertical line segment ℓvert in the primal plane has slope m = ∞, and b = undefined

 
ℓvert

Where is the dual ℓvert* ???

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 8



Duality: Assumptions / Special Cases
A vertical line segment ℓvert in the primal plane has slope m = ∞, and b = undefined

 
ℓvert

Where is the dual ℓvert* ???

Either assume no vertical lines 
OR rotate everything in the primal plane 
by a tiny angle so nothing is vertical
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Arrangement of Lines
● A collection of n lines in the plane
● Creates a subdivision of the plane 

into vertices, edges, and faces

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 8



Arrangement of Lines
● A collection of n lines in the plane
● Creates a subdivision of the plane 

into vertices, edges, and faces

● Definition: 
A simple arrangement of lines
● No three lines pass through 

the same point
● No two lines are parallel

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 8
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Complexity of an Arrangement of Lines
● A collection of n lines in the plane
● How many vertices?

●
● How many edges?

●
● How many faces?

●

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 8



Complexity of an Arrangement of Lines
● A collection of n lines in the plane
● How many vertices?

● n * (n-1) / 2
● How many edges?

● n2

● How many faces?
● n2/2 + n/2 + 1

Or fewer if not a simple arrangement

● 3 or more lines intersect 
at a point, or

● 2 or more lines are parallel
Computational Geometry Algorithms and Applications, 

de Berg, Cheong, van Kreveld and Overmars, Chapter 8
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Map Overlay & Line Segment Intersection
● Line Sweep Algorithm 

covered in Lecture 3

● For n line segments
● With k overlay complexity

(# of elements in output)

● Runtime Analysis:
O(n log n + k log n)

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 2



Applied to (Unbounded) Lines…
● For n line segments  lines
● With k overlay complexity

(# of elements in output)

→  k = O(n2)

● Runtime Analysis:
O(n log n + k log n)

→  O(n2 log n)

Can we do better?
Computational Geometry Algorithms and Applications, 

de Berg, Cheong, van Kreveld and Overmars, Chapter 8



Construct an Arrangement
● Dealing with unbounded cells in a half-edge structure is impractical.

● Compute the bounding box 
for the arrangement.

● Find all n * (n-1) vertices 
(pairwise intersect all of the lines)

● Find the maximum and minimum 
x and y coordinates

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 8



Construct an Arrangement
● Insert the lines 

one at a time
● Intersect the line with 

the bounding box
● Cut edge into 

two new edges
● Cut face into 

two new faces
● Walk the edges 

of the face to find 
the next face

Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 8



Construct an Arrangement
Runtime Analysis:

● linear cost to insert 
each line

→  O(n) 

● Overall:

→  O(n2)

Line arrangements 
(& their computation) 

are quadratic… Computational Geometry Algorithms and Applications, 
de Berg, Cheong, van Kreveld and Overmars, Chapter 8
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Ray Tracing Antialiasing – Supersampling

● Trace
multiple rays 
per pixel

jaggies w/ antialiasing

Computational Geometry Algorithms 
and Applications, 

de Berg, Cheong, van Kreveld 
and Overmars, Chapter 8



Noise from Insufficient Sampling

Henrik Wann Jensen

Can be very 
noticeable 

and distracting!



Noise from Insufficient Sampling

5 Samples/Pixel 75 Samples/Pixel25 Samples/Pixel



Noise also comes from Poor Sampling
● With uniform random sampling, 

we can get unlucky…  
e.g. all samples in a corner

● Stratified Sampling can prevent it
● Subdivide domain Ω into 

non-overlapping regions Ωi
● Each region is called a stratum
● Take one random samples per Ωi



Compute the Discrepancy 
of a Specific Pixel Sampling
● Primarily we’ll be ray tracing / sampling 

straight-edged geometric objects

● So our primary concern:  
Is the number of samples in the half space 
above the line proportional to the area of 
the square pixel above the line?



Compute the Discrepancy of a Sampling
Arrangements allow us to compute in O(n2) the level, 
or number of line segments above any point
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Next Time: Delaunay Triangulation!
● The Voronoi Diagram (VD) 

is the dual of the 
Delaunay Triangulation (DT)

● Every Voronoi Site is 
a face in Voronoi Diagram 
and a vertex in the DT

● Every Voronoi Edge is 
an edge in the DT

● Every Voronoi Vertex 
is a triangle in the DT

Computational Geometry: An Introduction,
Preparata & Shamos, Figure 5.21


