CSCI 4560/6560 Computational Geometry

https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/S22/

Lecture 13: Arrangements & Duality

Administrative Note

This course has been officially approved as "Communication Intensive", starting this term, Spring 2022. Yay!

Outline for Today

- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points ↔ Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Next Time: Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

Centroidal Voronoi Diagram

- What if we could place all of the grocery stores?
- Where should we place the grocery stores so that they are centrally located for all of their customers?
- But if you change the position of the store, the closest store will change for some customers...
- Points are at the center of mass of their cell
- Constructed using k-means clustering / Lloyd's algorithm - an iterative relaxation algorithm
- Note: May be multiple solutions!

https://en.wikipedia.org/wiki/Centroidal_Voronoi_tessellation

K-Means Clustering

- Works quite well, when the data can be meaningfully classified (and we know how many clusters to use).
- With dense data, output is visually similar to Voronoi diagram (k-Means chooses the data points that define the cells)

"Efficient K-Means Clustering using JIT" Yi Cao

Problem: Closest Pair

- Which two points are the closest?
- Applications Collision
 Detection & Air Traffic Control
- Which two objects have soonest potential for collision?
- Linear loop over all edges in the All Nearest Neighbors solution to find the shortest edge
- Will be a reciprocal pair

Computational Geometry: An Introduction, Preparata & Shamos, Figure 5.1

Problem: Euclidean Minimum Spanning Tree

- Given *n* points
- Draw *n*-1 edges to create a tree, connecting all points without creating any cycles.
- Pick edges to minimize the sum of their lengths.
- Application: Minimize cost of physical telephone lines

Figure 5.2 A minimum spanning tree on a planar point set.

Reduce Convex Hull to Voronoi Diagram

- Theorem: Voronoi polygon V_i is unbounded if and only if Voronoi site *i* is on the convex hull of all sites. (proved in Preparata & Shamos)
- O(n) to convert Voronoi Diagram to Convex Hull:
 - Start with any unbounded cell
 - Walk edges clockwise to find adjacent unbounded cell
 - Voronoi sites will trace convex hull in counter-clockwise order

Figure 5.31 Construction of the convex hull from the Voronoi diagram.

Computational Geometry: An Introduction, Preparata & Shamos, Figure 5.31

Problems that Reduce to Voronoi Diagram

- We can compute the Voronoi Diagram of *n* points in O(n log n) time and O(n) space.
- These other problems can be computed in O(n) additional time if given the Voronoi Diagram.

Therefore they are also O(n log n) time and O(n) space.

Outline for Today

- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points ↔ Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Next Time: Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

Duality: Points ↔ Lines

Points p_1 , p_2 , p_3 on line ℓ in primal plane, are lines p_1^* , p_2^* , p_3^* that pass through point ℓ^* in dual plane. primal plane dual

Duality: Points ↔ Lines

Point p_4 that lines above line ℓ in primal plane, Is line p_4^* that lies beneath point ℓ^* in dual plane.

 p_{2}^{*}

Duality: Line Segment ↔ Double Wedge

Line segment s between points p and q, which lies on line ℓ_{pq} , in primal plane

Duality: Line Segment ↔ Double Wedge

Line segment *s* between points *p* and *q*, which lies on line ℓ_{pq} , in primal plane Is a double wedge *s*^{*} of area between lines *p*^{*} and *q*^{*} in the dual plane

primal plane

dual plane

Duality: Line Segment ↔ Double Wedge

The intersection point $p_{\ell s}$ of segment *s* and line ℓ in primal plane, Is line $p_{\ell s}^*$ that lies inside double wedge *s*^{*} and crosses ℓ^* and ℓ_{pa}^* in the dual plane

Duality: Assumptions / Special Cases

A vertical line segment l_{vert} in the primal plane has slope $m = \infty$, and b = undefined

Duality: Assumptions / Special Cases

A vertical line segment l_{vert} in the primal plane has slope $m = \infty$, and b = undefined

Outline for Today

- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points ↔ Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Next Time: Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

Arrangement of Lines

- A collection of *n* lines in the plane
- Creates a subdivision of the plane into vertices, edges, and faces

Arrangement of Lines

- A collection of *n* lines in the plane
- Creates a subdivision of the plane into vertices, edges, and faces

- Definition:
 - A simple arrangement of lines
 - No three lines pass through the same point
 - No two lines are parallel

Outline for Today

- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points ↔ Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Next Time: Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

Complexity of an Arrangement of Lines

- A collection of *n* lines in the plane
- How many vertices?
- How many edges?
- How many faces?

Complexity of an Arrangement of Lines

- A collection of *n* lines in the plane
- How many vertices?
 - n * (n-1) / 2
- How many edges?
 - n^2
- How many faces?
 - $n^2/2 + n/2 + 1$

Or fewer if not a simple arrangement

- 3 or more lines intersect at a point, or
- 2 or more lines are parallel

Outline for Today

- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points ↔ Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Next Time: Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

Map Overlay & Line Segment Intersection

- Line Sweep Algorithm covered in Lecture 3
- For *n* line segments
- With k overlay complexity (# of elements in output)
- Runtime Analysis:
 O(n log n + k log n)

Applied to (Unbounded) Lines...

- For n line segments lines
- With *k* overlay complexity (# of elements in output)
 - $\rightarrow k = O(n^2)$
- Runtime Analysis:
 O(n log n + k log n)
 - \rightarrow **O**($n^2 \log n$)

Can we do better?

Construct an Arrangement

- Dealing with unbounded cells in a half-edge structure is impractical.
- Compute the bounding box for the arrangement.
- Find all n * (n-1) vertices
 (pairwise intersect all of the lines)
 - Find the maximum and minimum x and y coordinates

Construct an Arrangement

- Insert the lines one at a time
- Intersect the line with the bounding box
- Cut edge into two new edges
- Cut face into two new faces
- Walk the edges of the face to find the next face

Construct an Arrangement

Runtime Analysis:

• linear cost to insert each line

 \rightarrow O(n)

• Overall:

 $\rightarrow O(n^2)$

Line arrangements (& their computation) are quadratic...

Outline for Today

- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points ↔ Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Next Time: Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

Ray Tracing Antialiasing – Supersampling

de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Noise from Insufficient Sampling

Can be very noticeable and distracting!

Noise from Insufficient Sampling

5 Samples/Pixel

25 Samples/Pixel

75 Samples/Pixel

Noise also comes from Poor Sampling

 With uniform random sampling, we can get unlucky...
 e.g. all samples in a corner

- Stratified Sampling can prevent it
 - Subdivide domain Ω into non-overlapping regions Ω_i
 - Each region is called a stratum
 - Take one random samples per Ω_i

Compute the Discrepancy of a Specific Pixel Sampling

 Primarily we'll be ray tracing / sampling straight-edged geometric objects

 So our primary concern: Is the number of samples in the half space above the line proportional to the area of the square pixel above the line?

Compute the Discrepancy of a Sampling

Arrangements allow us to compute in $O(n^2)$ the level, or number of line segments above any point

Outline for Today

- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points ↔ Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Next Time: Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

Next Time: Delaunay Triangulation!

- The Voronoi Diagram (VD)
 is the dual of the Delaunay Triangulation (DT)
- Every Voronoi Site is a face in Voronoi Diagram and a vertex in the DT
- Every Voronoi Edge is an edge in the DT
 - Every Voronoi Vertex is a triangle in the DT