CSCI 4560/6560 Computational Geometry

Lecture 13: Arrangements
 \& Duality

Administrative Note

This course has been officially approved as "Communication Intensive", starting this term, Spring 2022. Yay!

Outline for Today

- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points \leftrightarrow Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Next Time: Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

Centroidal Voronoi Diagram

- What if we could place all of the grocery stores?
- Where should we place the grocery stores so that
 they are centrally located for all of their customers?
- But if you change the position of the store, the closest store will change for some customers...
- Points are at the center of mass of their cell

- Constructed using k-means clustering / Lloyd's algorithm - an iterative relaxation algorithm
- Note: May be multiple solutions!

K-Means Clustering

- Works quite well, when the data can be meaningfully classified (and we know how many clusters to use).
- With dense data, output is visually similar to Voronoi diagram (k-Means chooses the data points that define the cells)

"Efficient K-Means Clustering using JIT" Yi Cao

Wei Zhang
https://wei2624.github.io/MachineLearning/usv_kmeans/

Problem: Closest Pair

- Which two points are the closest?
- Applications - Collision Detection \& Air Traffic Control
- Which two objects have soonest potential for collision?
- Linear loop over all edges in the All Nearest Neighbors solution to find the shortest edge
- Will be a reciprocal pair

Computational Geometry: An Introduction,

Problem: Euclidean Minimum Spanning Tree

- Given n points
- Draw n-1 edges to create a tree, connecting all points without creating any cycles.
- Pick edges to minimize the sum of their lengths.
- Application: Minimize cost of physical telephone lines

Figure 5.2 A minimum spanning tree on a planar point set.

Computational Geometry: An Introduction,
Preparata \& Shamos, Figure 5.2

Reduce Convex Hull to Voronoi Diagram

- Theorem: Voronoi polygon V_{i} is unbounded if and only if Voronoi site i is on the convex hull of all sites. (proved in Preparata \& Shamos)
- $\mathrm{O}(\mathrm{n})$ to convert Voronoi Diagram to Convex Hull:
- Start with any unbounded cell
- Walk edges clockwise to find adjacent unbounded cell
- Voronoi sites will trace convex hull in counter-clockwise order

Figure 5.31 Construction of the convex hull from the Voronoi diagram.

Computational Geometry: An Introduction,
Preparata \& Shamos, Figure 5.31

Problems that Reduce to Voronoi Diagram

- We can compute the Voronoi Diagram of n points in $O(n \log n)$ time and $O(n)$ space.
- These other problems can be computed in $O(n)$ additional

ORDERED CONVEXHULL

Computational Geometry: An Introduction,
Preparata \& Shamos, Figure 5.30 time if given the
Voronoi Diagram.

- Therefore they are also $O(n \log n)$ time and $O(n)$ space.

Outline for Today

- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points \leftrightarrow Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Next Time: Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

Duality: Points \leftrightarrow Lines

Point $p:\left(p_{x}, p_{y}\right)$ in primal plane \leftrightarrow Line $p^{*}: y=p_{x} x-p_{y}$ in dual plane
primal plane


```
dual plane
```


Duality: Points \leftrightarrow Lines

Line $\ell: y=m x+b$ in primal plane \leftrightarrow Point $\ell^{*}:(m, b)$ in dual plane

slope y-intercept primal plane

Duality: Points \leftrightarrow Lines

Points p_{1}, p_{2}, p_{3} on line ℓ in primal plane, are lines $\mathrm{p}_{1}{ }^{*}, \mathrm{p}_{2}{ }^{*}, \mathrm{p}_{3}{ }^{*}$ that pass through point ℓ^{*} in dual plane. primal plane

Duality: Points \leftrightarrow Lines

Point p_{4} that lines above line ℓ in primal plane, Is line $p_{4}{ }^{*}$ that lies beneath point ℓ^{*} in dual plane. primal plane

dual plane

Duality: Line Segment \leftrightarrow Double Wedge

Line segment s between points p and q, which lies on line ℓ_{pq}, in primal plane

Duality: Line Segment \leftrightarrow Double Wedge

Line segment s between points p and q, which lies on line ℓ_{pq}, in primal plane Is a double wedge s^{*} of area between lines p^{*} and q^{*} in the dual plane

primal plane

dual plane

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Duality: Line Segment \leftrightarrow Double Wedge

The intersection point $p_{\ell s}$ of segment s and line ℓ in primal plane, Is line $p_{f s}{ }^{*}$ that lies inside double wedge s^{*} and crosses ℓ^{*} and $\ell_{p q}{ }^{*}$ in the dual plane

primal plane

dual plane

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Duality: Assumptions / Special Cases

A vertical line segment $\ell_{\text {vert }}$ in the primal plane has slope $m=\infty$, and $b=$ undefined

Duality: Assumptions / Special Cases

A vertical line segment $\ell_{\text {vert }}$ in the primal plane has slope $m=\infty$, and $b=$ undefined

Outline for Today

- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points \leftrightarrow Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Next Time: Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

Arrangement of Lines

- A collection of n lines in the plane
- Creates a subdivision of the plane into vertices, edges, and faces

Arrangement of Lines

- A collection of n lines in the plane
- Creates a subdivision of the plane into vertices, edges, and faces
- Definition:

A simple arrangement of lines

- No three lines pass through the same point
- No two lines are parallel

Outline for Today

- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points \leftrightarrow Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Next Time: Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

Complexity of an Arrangement of Lines

- A collection of n lines in the plane
- How many vertices?
- How many edges?
- How many faces?

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Complexity of an Arrangement of Lines

- A collection of n lines in the plane
- How many vertices?
- n * $(n-1) / 2$
- How many edges?
- n^{2}
- How many faces?
- $n^{2} / 2+n / 2+1$

Or fewer if not a simple arrangement

- 3 or more lines intersect at a point, or
- 2 or more lines are parallel

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Outline for Today

- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points \leftrightarrow Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Next Time: Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

Map Overlay \& Line Segment Intersection

- Line Sweep Algorithm covered in Lecture 3
- For n line segments
- With k overlay complexity (\# of elements in output)
- Runtime Analysis:
$O(n \log n+k \log n)$

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 2

Applied to (Unbounded) Lines...

- For n line-segments lines
- With k overlay complexity (\# of elements in output)

$$
\rightarrow k=O\left(n^{2}\right)
$$

- Runtime Analysis:
$O(n \log n+k \log n)$
$\rightarrow \mathbf{O}\left(n^{2} \log n\right)$
Can we do better?

Construct an Arrangement

- Dealing with unbounded cells in a half-edge structure is impractical.
- Compute the bounding box for the arrangement.
- Find all n * $(\mathrm{n}-1)$ vertices (pairwise intersect all of the lines)
- Find the maximum and minimum x and y coordinates

Construct an Arrangement

- Insert the lines one at a time
- Intersect the line with the bounding box
- Cut edge into two new edges
- Cut face into two new faces
- Walk the edges of the face to find the next face

Construct an Arrangement

Runtime Analysis:

- linear cost to insert each line

$$
\rightarrow O(n)
$$

- Overall:

$$
\rightarrow O\left(n^{2}\right)
$$

Line arrangements
(\& their computation) are quadratic...

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Outline for Today

- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points \leftrightarrow Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Next Time: Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

Ray Tracing Antialiasing - Supersampling

- Trace
multiple rays
jaggies
w/ antialiasing per pixel

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld
and Overmars, Chapter 8

Noise from Insufficient Sampling

Can be very
noticeable
and distracting!

Henrik Wann Jensen

Noise from Insufficient Sampling

5 Samples/Pixel

25 Samples/Pixel

75 Samples/Pixel

Noise also comes from Poor Sampling

- With uniform random sampling, we can get unlucky... e.g. all samples in a corner
- Stratified Sampling can prevent it
- Subdivide domain Ω into non-overlapping regions Ω_{i}
- Each region is called a stratum
- Take one random samples per Ω_{i}

Compute the Discrepancy of a Specific Pixel Sampling

- So our primary concern:

Is the number of samples in the half space above the line proportional to the area of the square pixel above the line?

Compute the Discrepancy of a Sampling

Arrangements allow us to compute in $\mathrm{O}\left(n^{2}\right)$ the level, or number of line segments above any point

Outline for Today

- Last Lecture: Problems that reduce to Voronoi Diagrams
- Duality: Points \leftrightarrow Lines
- Arrangement of Lines
- Complexity of an Arrangement of Lines
- Algorithm to Construct Arrangement of Lines
- Arrangement Application: Ray Tracing Supersampling
- Next Time: Arrangement Application: Architectural Sketching
- Next Time: Delaunay Triangulations

Next Time: Delaunay Triangulation!

- The Voronoi Diagram (VD) is the dual of the Delaunay Triangulation (DT)
- Every Voronoi Site is a face in Voronoi Diagram and a vertex in the DT
- Every Voronoi Edge is an edge in the DT
- Every Voronoi Vertex is a triangle in the DT

