CSCI 4560/6560 Computational Geometry

Lecture 14: Delaunay

Triangulations, part 1

Outline for Today

- Final Project: Brainstorming Ideas \& Partner Matching
- Last Time: Duality \& Arrangements
- Motivation: Interpolation \& Terrain Height Maps
- Graph vs. Planar Graph vs. Plane Graph
- Triangulation \& Angle-Optimal Triangulation
- Thale's Theorem \& Inscribed Angle Theorem
- Brute Force Construction of Angle-Optimal Triangulation
- Duality: Voronoi Diagram \& Delaunay Triangulation
- Next Time: More Delaunay Triangulations!

Outline for Today

- Final Project: Brainstorming Ideas \& Partner Matching
- Last Time: Duality \& Arrangements
- Motivation: Interpolation \& Terrain Height Maps
- Graph vs. Planar Graph vs. Plane Graph
- Triangulation \& Angle-Optimal Triangulation
- Thale's Theorem \& Inscribed Angle Theorem
- Brute Force Construction of Angle-Optimal Triangulation
- Duality: Voronoi Diagram \& Delaunay Triangulation
- Next Time: More Delaunay Triangulations!

Duality: Points \leftrightarrow Lines

Point $p:\left(p_{x}, p_{y}\right)$ in primal plane \leftrightarrow Line $p^{*}: y=p_{x} x-p_{y}$ in dual plane
primal plane


```
dual plane
```


Duality: Points \leftrightarrow Lines

Line $\ell: y=m x+b$ in primal plane \leftrightarrow Point $\ell^{*}:(m, b)$ in dual plane

slope y-intercept primal plane

Complexity of an Arrangement of Lines

- A collection of n lines in the plane
- How many vertices?
- n * $(n-1) / 2$
- How many edges?
- n^{2}
- How many faces?
- $n^{2} / 2+n / 2+1$

Or fewer if not a simple arrangement

- 3 or more lines intersect at a point, or
- 2 or more lines are parallel

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Construct an Arrangement

- Insert the lines one at a time
- Intersect the line with the bounding box
- Cut edge into two new edges
- Cut face into two new faces
- Walk the edges of the face to find the next face

Line arrangements (\& their computation) are quadratic...

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 8

Ray Tracing Antialiasing - Supersampling

- Trace
multiple rays
jaggies
w/ antialiasing per pixel

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld
and Overmars, Chapter 8

Noise also comes from Poor Sampling

- With uniform random sampling, we can get unlucky... e.g. all samples in a corner
- Stratified Sampling can prevent it
- Subdivide domain Ω into non-overlapping regions Ω_{i}
- Each region is called a stratum
- Take one random samples per Ω_{i}

Outline for Today

- Final Project: Brainstorming Ideas \& Partner Matching
- Last Time: Duality \& Arrangements
- Motivation: Interpolation \& Terrain Height Maps
- Graph vs. Planar Graph vs. Plane Graph
- Triangulation \& Angle-Optimal Triangulation
- Thale's Theorem \& Inscribed Angle Theorem
- Brute Force Construction of Angle-Optimal Triangulation
- Duality: Voronoi Diagram \& Delaunay Triangulation
- Next Time: More Delaunay Triangulations!

Nearest Neighbor vs. Bi-Linear Interpolation

Motivation: Terrain Height Map

Nearest Neighbor

Bi-Linear Interpolation

Not all Triangulations are the same!

this triangulation is better

height $=985$
this triangulation is worse

height $=23$

Motivation: Terrain Height Map

"Siting Observers on Terrain"
 W. Randolph Franklin, RPI ECSE, 2004

What other points on the terrain can we see from a tower of height h placed at a specific (x, y) location on the terrain?

Terrain Height Visualization

red $=$ higher elevations
blue = lower elevations

- Observers have a specified maximum straight line sight distance
- Some observer placements see more (black)
- Regions that are
 white are occluded or too far from observer

- Place k observers to maximize coverage
- Additional constraint: The observers must also be connected by line-of-sight

Incorrect Interpolation

Regular grid of height samples
Query for occlusions along sight line

Hue indicates elevation

Outline for Today

- Final Project: Brainstorming Ideas \& Partner Matching
- Last Time: Duality \& Arrangements
- Motivation: Interpolation \& Terrain Height Maps
- Graph vs. Planar Graph vs. Plane Graph
- Triangulation \& Angle-Optimal Triangulation
- Thale's Theorem \& Inscribed Angle Theorem
- Brute Force Construction of Angle-Optimal Triangulation
- Duality: Voronoi Diagram \& Delaunay Triangulation
- Next Time: More Delaunay Triangulations!

Definition: Planar Graph vs. Plane Graph

Planar Graph: A graph that can be arranged/drawn in 2D without edge crossings Plane Graph: An embedding, a 2D drawing of a graph without edge crossings

Outline for Today

- Final Project: Brainstorming Ideas \& Partner Matching
- Last Time: Duality \& Arrangements
- Motivation: Interpolation \& Terrain Height Maps
- Graph vs. Planar Graph vs. Plane Graph
- Triangulation \& Angle-Optimal Triangulation
- Thale's Theorem \& Inscribed Angle Theorem
- Brute Force Construction of Angle-Optimal Triangulation
- Duality: Voronoi Diagram \& Delaunay Triangulation
- Next Time: More Delaunay Triangulations!

Definition: Point Set Triangulation

- A triangulation is a

Maximal Planar Subdivision of a vertex set

- No edge connecting two vertices can be added without destroying planarity
- Every face will have 3 vertices

Face/Edge/Vertex Count of a Triangulation

- For $n=18$ vertices
- With $k=9$ vertices on the convex hull boundary
- The unbounded face has all of the vertices on the convex hull boundary
- Euler's formula: $n-n_{e}+n_{f}=2$
- Every bounded face has 3 edges (each shared with another face)
- 2 * $n_{e}=3$ * $\left(n_{f}-1\right)+k$
- \# edges: $n_{e}=3 n-k-3=42$

- \# triangles: $n_{f}-1=2 n-2-k=25$

Definition: Angle-Optimal Triangulation

- We want to maximize the smallest angle
- Consider replacing each edge between two triangles with the edge connecting the other vertices of those two triangles (only possible if the combined area of the two triangles is convex)

- Edge $\mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}}$ is said to be illegal if: $\min _{1 \leqslant i \leqslant 6} \alpha_{i}<\min _{1 \leqslant i \leqslant 6} \alpha_{i}^{\prime}$

Outline for Today

- Final Project: Brainstorming Ideas \& Partner Matching
- Last Time: Duality \& Arrangements
- Motivation: Interpolation \& Terrain Height Maps
- Graph vs. Planar Graph vs. Plane Graph
- Triangulation \& Angle-Optimal Triangulation
- Thale's Theorem \& Inscribed Angle Theorem
- Brute Force Construction of Angle-Optimal Triangulation
- Duality: Voronoi Diagram \& Delaunay Triangulation
- Next Time: More Delaunay Triangulations!

Relationship: Angles \& Circumscribed Circle

Thales Theorem: Let C be a circle, ℓ a line intersecting C in points a and b, and p, q, r, and s points lying on the same side of ℓ. Suppose that p and q lie on C, that r lies inside C, and that s lies outside C. Then

$$
\measuredangle a r b>\measuredangle a p b=\measuredangle a q b>\measuredangle a s b
$$

$\measuredangle p q r$ is the smaller angle defined by
 three points p, q, r

Thale's Theorem

If A, B, and C lie on a circle, and $A B$ is a diameter, then the angle at B (the angle $A B C$) is a right angle.

Dissection proof: The sum of the angles of a triangle is 180°

https://en.wikipedia.org/wiki/Thales\'s_theorem

Inscribed Angle Theorem

The inscribed angle θ is half of the central angle 2θ that subtends the same arc on the circle. The angle θ does not change as its vertex is moved around on the circle.

https://en.wikipedia.org/wiki/Inscribed_angle\#Theorem

Inscribed Angle Theorem

Proof:

Where 1 chord is a diameter

Proof:
General Case

https://en.wikipedia.org/wiki/Inscribed_angle\#Theorem

Definition: Angle-Optimal Triangulation

- We want to maximize the smallest angle.
- An edge is illegal only if the other vertex of the neighboring triangle is inside the circumscribed circle.

Outline for Today

- Final Project: Brainstorming Ideas \& Partner Matching
- Last Time: Duality \& Arrangements
- Motivation: Interpolation \& Terrain Height Maps
- Graph vs. Planar Graph vs. Plane Graph
- Triangulation \& Angle-Optimal Triangulation
- Thale's Theorem \& Inscribed Angle Theorem
- Brute Force Construction of Angle-Optimal Triangulation
- Duality: Voronoi Diagram \& Delaunay Triangulation
- Next Time: More Delaunay Triangulations!

Constructing an Angle-Optimal Triangulation

- Brute Force
- Try all combinations of 3 vertices
- Construct the circumscribed circle
- If no other vertex is inside of that circle, keep it
- Only works if no more than 3 vertices are on the circle

- Analysis?

Constructing an Angle-Optimal Triangulation

- Start with any triangulation = a maximal planar subdivision
- Check to see if any edge is illegal, if so flip it
- Repeat until every edge is legal

Constructing an Angle-Optimal Triangulation

- Start with any triangulation = a maximal planar subdivision
- Check to see if any edge is illegal, if so flip it
- Repeat until every edge is legal

Constructing an Angle-Optimal Triangulation

- Start with any triangulation = a maximal planar subdivision
- Check to see if any edge is illegal, if so flip it
- Repeat until every edge is legal

Guaranteed to Terminate? Yes!

- Create a sorted vector of all of the angles of every triangle vector length = 3 * \# of triangles
- Each edge flip replaces one of the smaller angles
- New sorted vector representation is the same up to that angle.. (it comes lexicographically after the previous vector representation)

$[5,5,20,30,30,40,70,50,50,50,90,90,100,100,170]$

Converge to Optimal \& Unique Solution?

- Yes!

If the vertices are in general position
... if no 4 vertices lie on the same circumscribed circle

Analysis of Incremental Flipping Algorithm

- Slow
- Can we do better? Yes!

Outline for Today

- Final Project: Brainstorming Ideas \& Partner Matching
- Last Time: Duality \& Arrangements
- Motivation: Interpolation \& Terrain Height Maps
- Graph vs. Planar Graph vs. Plane Graph
- Triangulation \& Angle-Optimal Triangulation
- Thale's Theorem \& Inscribed Angle Theorem
- Brute Force Construction of Angle-Optimal Triangulation
- Duality: Voronoi Diagram \& Delaunay Triangulation
- Next Time: More Delaunay Triangulations!

Dual: Voronoi Diagram \& Delaunay Triangulation

- The Voronoi Diagram (VD) is the dual of the Delaunay Triangulation (DT)
- Every Voronoi Site is a face in Voronoi Diagram and a vertex in the DT
- Every Voronoi Edge is an edge in the DT
- Every Voronoi Vertex is a triangle in the DT

Dual Graph of the Voronoi Diagram

Dual Graph: Has an arc connecting two Voronoi Sites for every edge between neighboring cells in the Voronoi Diagram.

Delaunay Graph: Straight line embedding of the Dual Graph of the Voronoi Diagram.

Delaunay Graph

- NOTE: Straight line edges of the embedding may not cross their corresponding Voronoi edge.
- But the Delaunay Graph is planar straight line edge of the embedding do not cross (proof in textbook).

Delaunay Graph vs. Delaunay Triangulation

- If 4 (or more) vertices do lie on the same circumscribed circle
- Voronoi Site, v, will have degree ≥ 4
- The corresponding face in the Delaunay Graph will have ≥ 4 edges
- This face is guaranteed to be convex
- This face can be trivially triangulated
- Once all of these faces are triangulated, we have a Delaunay Triangulation
- The Delaunay Triangulation is unique and equivalent to the Delaunay Graph only if the
 vertices are in general position

Delaunay Triangulation

- A Delaunay Triangulation is an Angle-Optimal Trianulation!

Previous Lecture: Sweep Line Algorithm

- For n Voronoi sites
- New Arc Events: Sort Voronoi sites vertically $\rightarrow O(n \log n)$
- Keep a horizontal sorted ordering of the parabolic arcs on the current beachline. $2 n$ arcs maximum
- (Potential) Arc Absorption Events: For each triple of neighboring arcs a, $\alpha^{\prime}, a^{\prime \prime}$ on the beachline, compute the circle, and tangent sweep line \rightarrow O(n) Voronoi vertices

- Move sweep line to the next event...
- Overall: $\rightarrow O(n \log n)$

Outline for Today

- Final Project: Brainstorming Ideas \& Partner Matching
- Last Time: Duality \& Arrangements
- Motivation: Interpolation \& Terrain Height Maps
- Graph vs. Planar Graph vs. Plane Graph
- Triangulation \& Angle-Optimal Triangulation
- Thale's Theorem \& Inscribed Angle Theorem
- Brute Force Construction of Angle-Optimal Triangulation
- Duality: Voronoi Diagram \& Delaunay Triangulation
- Next Time: More Delaunay Triangulations!

