CSCI 4560/6560 Computational Geometry

Lecture 16: Windowing, Interval \& Segment Trees

Outline for Today

- Review from Last Time: Delaunay Triangulations
- Motivation: Cartography Windowing \& Data Selection
- Lecture 8 Review: Points in k-D trees
- 1D Interval Tree
- 1D Interval Tree Analysis
- 2D Interval Tree + Range Tree
- 2D Interval Tree + Range Tree Analysis
- 2D Axis Aligned Segment Query
- Segment Tree for general 2D Segment Query
- Segment Tree Analysis

Construction by Point Insertion

- Start with convex hull
- Triangulate it
- $k-2$ triangles
- For some ordering of the other points
- Determine which triangle the point lies inside of
- Replace that triangle with 3 triangles
- $(n-k) * 2$ additional triangles
- $2^{*} n-k-2$ total triangles!

Construction by Line Sweep

- Sort the input points by x
- Form a triangle with the 3 leftmost points
- Add every other point from left to right

- Determine which points on the current hull are visible from the new point
- Add a fan of triangles connecting the new point to the visible hull points

The Flip Graph

- If we did generate every triangulation...
- Let's organize the triangulations as nodes in a graph
- We'll put an edge between two nodes if flipping a single edge converts one triangulation into the other triangulation

"Discrete and Computational Geometry", Devadoss \& O'Rourke,
Princeton University Press 2011, Chapter 3

Delaunay Construction Analysis Summary

- Brute force (enumerate all triangles, construct circles, reject...)

$$
\rightarrow O\left(n^{3 *} n\right)=O\left(n^{4}\right)
$$

- Construct any triangulation \& Flip until all edges are legal $\rightarrow \mathrm{O}\left(n^{2}\right)$
- Randomized Incremental Construction

$$
\rightarrow \mathrm{O}(n \log n)
$$

- By duality, reduce to problem of Constructing the Voronoi Diagram

$$
\rightarrow \mathrm{O}(n \log n)
$$

Outline for Today

- Review from Last Time: Delaunay Triangulations
- Motivation: Cartography Windowing \& Data Selection
- Lecture 8 Review: Points in k-D trees
- 1D Interval Tree
- 1D Interval Tree Analysis
- 2D Interval Tree + Range Tree
- 2D Interval Tree + Range Tree Analysis
- 2D Axis Aligned Segment Query
- Segment Tree for general 2D Segment Query
- Segment Tree Analysis

Motivation: Cartography (Map-Making)

- Select a small rectangular region to display in a window at larger scale

Motivation: Visibility

Seth Teller, PhD thesis, 1992, Berkeley Soda Hall walkthrough

Graphics: 3D Clipping

- Eliminate portions of objects outside the viewing frustum
- View Frustum
- boundaries of the image plane projected in 3D
- a near \& far clipping plane

Graphics: 2D Clipping

Why do it?

- Reduce amount of geometry going through graphics pipeline
- Prevent rendering bugs from overflow, wraparound, things behind the camera,

Before Clipping

After Clipping

Outline for Today

- Review from Last Time: Delaunay Triangulations
- Motivation: Cartography Windowing \& Data Selection
- Lecture 8 Review: Points in k-D trees
- 1D Interval Tree
- 1D Interval Tree Analysis
- 2D Interval Tree + Range Tree
- 2D Interval Tree + Range Tree Analysis
- 2D Axis Aligned Segment Query
- Segment Tree for general 2D Segment Query
- Segment Tree Analysis

Review from Lecture 8: 2D k-d Tree

- Used to store points
- Alternate splitting horizontally \& vertically
- If data is available for preprocess, the structure is easy to balance
- Point data is only stored at the leaves

Outline for Today

- Review from Last Time: Delaunay Triangulations
- Motivation: Cartography Windowing \& Data Selection
- Lecture 8 Review: Points in k-D trees
- 1D Interval Tree
- 1D Interval Tree Analysis
- 2D Interval Tree + Range Tree
- 2D Interval Tree + Range Tree Analysis
- 2D Axis Aligned Segment Query
- Segment Tree for general 2D Segment Query
- Segment Tree Analysis

What about Segments? Let's Tackle 1D First...

- Input: A collection of n line segments on the x-axis
- For a query interval, return all line segments that overlap the query interval

Traditional Binary Search Tree

- Select split point near middle of data
- What about segments that overlap the split?

3

Traditional Binary Search Tree

- Select split point near middle of data
- What about segments that overlap the split?
- Should we store them on both sides?
- Uses extra memory
- We may lose our $O(\log n)$ performance!

Interval Tree

- Chose a split point and make 3 groups:
- $I_{\text {mid }}=$ Segments that overlap the split
- $I_{\text {left }}=$ Segments completely to the left
- $I_{\text {right }}=$ Segments completely to the right

Interval Tree

- Recurse down the tree only with items that DO NOT overlap the split point.

Interval Tree

- Items in $I_{\text {mid }}$ group will stay at the current node
- Each node stores two two sorted lists:
- $L_{\text {leff }}=I_{\text {mid }}$ sorted by left endpoint (increasing)
- $L_{\text {right }}=I_{\text {mid }}$ sorted by right endpoint (decreasing)

Interval Tree

- For a specific query

Interval Tree

- For a specific query
- Determine if the query is to the right (or left) of the current node
- Binary search within the $L_{\text {right }}$ list (or $\mathrm{L}_{\text {left }}$ list) by right (or left) endpoint
- Return all segments with endpoint further away from the query
- And recurse down the right (or left)

Outline for Today

- Review from Last Time: Delaunay Triangulations
- Motivation: Cartography Windowing \& Data Selection
- Lecture 8 Review: Points in k-D trees
- 1D Interval Tree
- 1D Interval Tree Analysis
- 2D Interval Tree + Range Tree
- 2D Interval Tree + Range Tree Analysis
- 2D Axis Aligned Segment Query
- Segment Tree for general 2D Segment Query
- Segment Tree Analysis

1D Interval Tree Analysis

- For n input segments and a query that will return k items
- Memory Usage:

- Query Time:

1D Interval Tree Analysis

- For n input segments and a query that will return k items
- Memory Usage:
$\rightarrow \mathrm{O}(n)$

- Query Time:
$\rightarrow \mathrm{O}(\log n+k)$

Outline for Today

- Review from Last Time: Delaunay Triangulations
- Motivation: Cartography Windowing \& Data Selection
- Lecture 8 Review: Points in k-D trees
- 1D Interval Tree
- 1D Interval Tree Analysis
- 2D Interval Tree + Range Tree
- 2D Interval Tree + Range Tree Analysis
- 2D Axis Aligned Segment Query
- Segment Tree for general 2D Segment Query
- Segment Tree Analysis

How do we Extend to 2D?

- First consider only horizontal input line segments
- And instead of a query line, we'll have a query line segment

How do we Extend to 2D?

- We'll replace the sorted lists of the interval tree with a 2 D range query (Lecture 8)
- This will require $\mathrm{O}(\log \mathrm{n})$ additional memory...

Outline for Today

- Review from Last Time: Delaunay Triangulations
- Motivation: Cartography Windowing \& Data Selection
- Lecture 8 Review: Points in k-D trees
- 1D Interval Tree
- 1D Interval Tree Analysis
- 2D Interval Tree + Range Tree
- 2D Interval Tree + Range Tree Analysis
- 2D Axis Aligned Segment Query
- Segment Tree for general 2D Segment Query
- Segment Tree Analysis

2D Interval Tree + Range Tree Analysis

- For n horizontal input segments
and a query segment that will
return k items
- Memory Usage:
- Construction Time:
- Query Time:

2D Interval Tree + Range Tree Analysis

- For n horizontal input segments and a query segment that will return k items
- Memory Usage:
$\rightarrow \mathrm{O}(n \log n)$
- Construction Time:
$\rightarrow \mathrm{O}(n \log n)$
- Query Time:
$\rightarrow \mathrm{O}(\log n+k)$

Outline for Today

- Review from Last Time: Delaunay Triangulations
- Motivation: Cartography Windowing \& Data Selection
- Lecture 8 Review: Points in k-D trees
- 1D Interval Tree
- 1D Interval Tree Analysis
- 2D Interval Tree + Range Tree
- 2D Interval Tree + Range Tree Analysis
- 2D Axis Aligned Segment Query
- Segment Tree for general 2D Segment Query
- Segment Tree Analysis

How to handle a 2D Axis-Aligned Query Box?

- Initially, let's restrict to horizontal \& vertical segments

How to handle a 2D Axis-Aligned Query Box?

- Initially, let's restrict to horizontal \& vertical segments
- Case Analysis:

Segments that touch the query box will:

- Have one endpoint inside the box, OR
- Will have both endpoints outside the box

AND

- Will be a horizontal segment that overlaps the left edge of the box OR
- Will be a vertical segment that overlaps the bottom edge of the box

How to handle a 2D Axis-Aligned Query Box?

- Initially, let's restrict to horizontal \& vertical segments
- Case Analysis:

Segments that touch the query bo x will:

- Have one endpoint inside the box, OR
- Will have both endpoints outside the box AND
- Will be a horizontal segment that overlaps the left edge of the box OR
- Will be a vertical segment that overlaps the bottom edge of the box

Handled with a Lecture 8 2D Range Query

Handled with an Interval

How to handle a 2D Axis-Aligned Query Box?

- Initially, let's restrict to horizontal \& vertical segments
- Case Analysis:

Segments that touch the query box will:

- Have one endpoint inside the box, OR
- Will have both endpoints outside the box

AND

- Will be a horizontal segment that overlaps the left edge of the box OR
- Will be a vertical segment that overlaps the bottom edge of the box

Outline for Today

- Review from Last Time: Delaunay Triangulations
- Motivation: Cartography Windowing \& Data Selection
- Lecture 8 Review: Points in k-D trees
- 1D Interval Tree
- 1D Interval Tree Analysis
- 2D Interval Tree + Range Tree
- 2D Interval Tree + Range Tree Analysis
- 2D Axis Aligned Segment Query
- Segment Tree for General 2D Segment Query
- Segment Tree Analysis

How do we handle General 2D Segments?

- Not restricted to horizontal \& vertical segments!
- (Note: We will later insist that the segments do not cross...)

How do we handle General 2D Segments?

- Do the (sloppy?) Computer Graphics thing...

Output the segment if its bounding overlaps the axis-aligned query box

Computational Geometry Algorithms and Applications, de Berg, Cheong, van Kreveld and Overmars, Chapter 10

How do we handle General 2D Segments?

- Do the (sloppy?) Computer Graphics thing...

Output the segment if its bounding overlaps the axis-aligned query box

- We might have LOTS of false positives!

How do we handle General 2D Segments?

- Do the (sloppy?) Computer Graphics thing...

Output the segment if its bounding overlaps the axis-aligned query box

- We might have LOTS of false positives!
- Can we do better?
- Ensure good (output sensitive) Performance

AND

- Avoid false positives?

Segment Tree - First Dimension (x)

- First, sort the x coordinates of the start and end points of every segment.
- Construct a balanced binary search tree with these x values.
- Insert every segment into the structure
- If a segment

overlaps both the left and right subranges of the node store it at the node (do not recurse)

Segment Tree - First Dimension (x)

- For a vertical query slab
$\left(\mathrm{x}_{\min }, \mathrm{x}_{\max }\right)$
- Walk down the tree
- If the node is in range, return all items at that node
- Recurse left and/or right as appropriate
- \& filter duplicates...

Segment Tree - Second Dimension (y)

- To efficiently query a vertical range in addition to the horizontal range:
- Sort the segments

$$
S\left(v_{2}\right)=\left\{s_{1}, s_{2}\right\}
$$

Segment Tree - Second Dimension (y)

- To efficiently query a vertical range in addition to the horizontal range:
- Sort the segments stored at each node by y
- Remember: this is only the segments that completely overlaps the node's range
- Note: this is why we require no crossings in the input segments

Outline for Today

- Review from Last Time: Delaunay Triangulations
- Motivation: Cartography Windowing \& Data Selection
- Lecture 8 Review: Points in k-D trees
- 1D Interval Tree
- 1D Interval Tree Analysis
- 2D Interval Tree + Range Tree
- 2D Interval Tree + Range Tree Analysis
- 2D Axis Aligned Segment Query
- Segment Tree for General 2D Segment Query
- Segment Tree Analysis

Segment Tree - Analysis

- For n input segments, for a query that will return k segments
- Memory:

Each segment is stored in at most 2 nodes per level

- Construction Time:

Presort all endpoints by $\mathrm{x} \& \mathrm{y} O(n \log n)$

- Query Time:

Segment Tree - Analysis

- For n input segments, for a query that will return k segments
- Memory:

Each segment is stored in at most 2 nodes per level $\rightarrow O(n \log n)$

- Construction Time:

Presort all endpoints by $\mathrm{x} \& \mathrm{y} O(n \log n)$
$\rightarrow O(n \log n)$

- Query Time:
$\rightarrow \mathrm{O}(\log n * \log n+k)$
$\rightarrow \mathrm{O}\left(\log ^{2} n+k\right)$

