## CSCI 4560/6560 Computational Geometry

## Lecture 19: Polyominoes \& Tiling

## Outline for Today

- Homework 5 Questions?
- Last Time: Signed Distance \& Level Sets
- Polyominoes Terminology
- Counting Polyominoes
- Tiling / Packing Polyominoes
- Polyomino Themed Puzzles
- Next Time: More Tiling!

Homework 5 Questions?



## Outline for Today

- Homework 5 Questions?
- Last Time: Signed Distance \& Level Sets
- Polyominoes Terminology
- Counting Polyominoes
- Tiling / Packing Polyominoes
- Polyomino Themed Puzzles
- Next Time: More Tiling!


## Motivation: Collision Detection

- Detect the intersection
- Depth of intersection penetration
- Gradient \& normal of closest surface -
"An Implicit Finite Element Method for Elastic Solids in Contact",
Hirota, Fisher, State, Lee, \& Fuchs, SCA 2001

Determine penalty force to resolve collision


## Explicit vs. Implicit Surface Representations

- We may not be able to construct a compact mathematical function...
- But can we convert the bunny mesh into a signed distance field?



## Computing a Signed Distance Field

- Given a shape/surface
- Cost to compute shortest distance to original shape for each point (on a grid) in the volume?

Naive: $O$ (\# of volume grid samples * \# of surface elements) $=O\left(w^{2} h^{2}\right)$


## Marching Cubes

- Each point in the 3D grid is labeled "inside" (red dots) or "outside" (blue dots) the unknown surface.
- Any cell in the grid that has at least one red vertex and at least one blue vertex, must be crossed by the unknown surface.
- We can piecewise construct an approximation of the surface.

http://www.cs.carleton.edu/cs_comps/0405 /shape/marching_cubes.html


## Marching Cubes



- 256 possible inside/outside labelings of each grid cube.
- Merging rotations...

15 unique cases to implement
"Marching Cubes: A High Resolution 3D Surface Construction Algorithm", Lorensen and Cline, SIGGRAPH '87.


"Marching Cubes: A High Resolution 3D Surface Construction Algorithm", Lorensen and Cline, SIGGRAPH '87.


## Outline for Today

- Homework 5 Questions?
- Last Time: Signed Distance \& Level Sets
- Polyominoes Terminology
- Counting Polyominoes
- Tiling / Packing Polyominoes
- Polyomino Themed Puzzles
- Next Time: More Tiling!


## What is a Polyomino?

- An n-omino is a set of $n$ cells on a square graph that is connected
is a polyomino

is NOT a polyomino

"Ch 14: Polyominoes", Barequet, Golomb, \& Klarner, Handbook of Discrete and Computational Geometry, 2018


## Translation-Equivalent / Fixed Polyomino

- Only left/right/up/down translation is allowed

- There are 6 unique Fixed 3-ominoes (a.k.a. trominoes):

"Ch 14: Polyominoes", Barequet, Golomb, \& Klarner,
Handbook of Discrete and Computational Geometry, 2018


## Translation-Equivalent / Fixed Polyomino

- Only left/right/up/down translation is allowed
- How many fixed

2-ominoes
(a.k.a. dominoes)
are there?

- Draw them!


## Rotation-Equivalent / Chiral Polyomino

- left/right/up/down
translation allowed
- $90^{\circ} / 180^{\circ} / 270^{\circ}$ rotation allowed

- There are 7 unique chiral 4-ominoes (a.k.a. tetrominoes):



## Rotation-Equivalent / Chiral Polyomino

- left/right/up/down translation allowed
- $90^{\circ} / 180^{\circ} / 270^{\circ}$ rotation allowed
- How many chiral 3 -ominoes are there?
- Which of these
shapes are
rotationally-equivalent?

"Ch 14: Polyominoes", Barequet, Golomb, \& Klarner, Handbook of Discrete and Computational Geometry, 2018


## Translation-Equivalent / Fixed Polyomino

- Only left/right/up/down translation is allowed
- How many
fixed 4-ominoes
 are there?
- Which of these
shapes are unique
when rotated?



## Free Polyomino

- Translation allowed
- Rotation allowed
- Reflection allowed
- There are 12 unique free 5 -ominoes
(a.k.a. pentominoes):

"Ch 14: Polyominoes", Barequet, Golomb, \& Klarner,
Handbook of Discrete and Computational Geometry, 2018


## Congruent / Free Polyomino

- How many
free 4-ominoes
are there?
- Which of these shapes are congruent?
(duplicates
when reflected)

"Ch 14: Polyominoes", Barequet, Golomb, \& Klarner,
Handbook of Discrete and Computational Geometry, 2018


## Rotation-Equivalent / Chiral Polyomino

- left/right/up/down translation allowed
- $90^{\circ} / 180^{\circ} / 270^{\circ}$ rotation allowed
- How many chiral


5 -ominoes are there?

- Which of these
shapes are unique when reflected?

"Ch 14: Polyominoes", Barequet, Golomb, \& Klarner, Handbook of Discrete and Computational Geometry, 2018


## Translation-Equivalent / Fixed Polyomino

- Only left/right/up/down translation is allowed
- How many fixed

5 -ominoes are there?

- Which of these
shapes are unique
when rotated
and/or reflected?

"Ch 14: Polyominoes", Barequet, Golomb, \& Klarner, Handbook of Discrete and Computational Geometry, 2018


## Outline for Today

- Homework 5 Questions?
- Last Time: Signed Distance \& Level Sets
- Polyominoes Terminology
- Counting Polyominoes
- Tiling / Packing Polyominoes
- Polyomino Themed Puzzles
- Next Time: More Tiling!


## Counting Fixed, Chiral, and Free Polyominoes

| $c$ <br> fixed <br> translation-only |  | $c$ <br> translation \& rotation <br> (no reflection) | chiral <br>  <br> reflection |
| :---: | ---: | ---: | ---: |
| $n$ | $t(n)$ | $r(n)$ | $s(n)$ |
| 1 | 1 | 1 | 1 |
| 2 | 2 | 1 | 1 |
| 3 | 6 | 2 | 2 |
| 4 | 19 | 7 | 5 |
| 5 | 63 | 18 | 12 |

"Ch 14: Polyominoes", Barequet, Golomb, \& Klarner,
Handbook of Discrete and Computational Geometry, 2018

## Counting Polyominoes

- $n$-omino Standard Position: Translate to place the leftmost cell in the bottom row at the origin.
- Enumerate all combinations of all possible cells
- Eliminate disconnected \& duplicate ominoes
- At most

$$
\binom{3(n-1)}{n-1}
$$





"Ch 14: Polyominoes", Barequet, Golomb, \& Klarner,

## Counting Polyominoes

- What is the relationship (e.g., inequalities $<>=\leq \geq$ ) between $t(n), r(n)$, and $s(n)$ ?

| $n$ | $t(n)$ | $r(n)$ | $s(n)$ |
| ---: | ---: | ---: | ---: |
| 1 | 1 | 1 | 1 |
| 2 | 2 | 1 | 1 |
| 3 | 6 | 2 | 2 |
| 4 | 19 | 7 | 5 |
| 5 | 63 | 18 | 12 |
| 6 |  |  |  |
| 7 |  |  |  |
| 8 |  |  |  |
| 9 |  |  |  |
| 10 |  |  |  |
| 11 |  |  |  |
| 12 |  |  |  |
| 13 |  |  |  |
| 14 |  |  |  |
| 15 |  |  |  |
| 16 |  |  |  |
| 17 |  |  |  |
| 24 |  |  |  |
| 24 |  |  |  |
| 24 |  |  |  |

## Counting Polyominoes

- What is the relationship
(e.g., inequalities $<>=\leq \geq$ ) between $t(n), r(n)$, and $s(n)$ ?

$$
\leq s(n) \leq r(n) \leq t(n)
$$

"Ch 14: Polyominoes", Barequet, Golomb, \& Klarner, Handbook of Discrete and Computational Geometry, 2018

| $n$ | $t(n)$ | $r(n)$ | $s(n)$ |
| ---: | ---: | ---: | ---: |
| 1 | 1 | 1 | 1 |
| 2 | 2 | 1 | 1 |
| 3 | 6 | 2 | 2 |
| 4 | 19 | 7 | 5 |
| 5 | 63 | 18 | 12 |
| 6 | 216 | 60 | 35 |
| 7 | 760 | 196 | 108 |
| 8 | 2725 | 704 | 369 |
| 9 | 9910 | 2500 | 1285 |
| 10 | 36446 | 9189 | 4655 |
| 11 | 135268 | 33896 | 17073 |
| 12 | 505861 | 126759 | 63600 |
| 13 | 1903890 | 476270 | 238591 |
| 14 | 7204874 | 1802312 | 901971 |
| 15 | 27394666 | 6849777 | 3426576 |
| 16 | 104592937 | 26152418 | 13079255 |
| 17 | 400795844 | 100203194 | 50107909 |
| 18 | 1540820542 | 385221143 | 192622052 |
| 19 | 5940738676 | 1485200848 | 742624232 |
| 20 | 22964779660 | 5741256764 | 2870671950 |
| 21 | 88983512783 | 22245940545 | 11123060678 |
| 22 | 345532572678 | 86383382827 | 43191857688 |
| 23 | 1344372335524 | 336093325058 | 168047007728 |
| 24 | 5239988770268 | 1309998125640 | 654999700403 |

## Counting Polyominoes

- The number of polyominoes, $t(n)$ is exponential in $n$.

Current unproved estimate $\approx 4.06^{n}$

- The running time of the current best algorithm to count $t(n)$ is also exponential (but smaller)

$$
O\left(3^{n / 2}\right) \approx O\left(1.73^{n}\right)
$$

- Can $\mathrm{t}(\mathrm{n})$ be computed in poly time? Open problem!!
"Ch 14: Polyominoes", Barequet, Golomb, \& Klarner, Handbook of Discrete and Computational Geometry, 2018

| $n$ | $t(n)$ | $r(n)$ | $s(n)$ |
| ---: | ---: | ---: | ---: |
| 1 | 1 | 1 | 1 |
| 2 | 2 | 1 | 1 |
| 3 | 6 | 2 | 2 |
| 4 | 19 | 7 | 5 |
| 5 | 63 | 18 | 12 |
| 6 | 216 | 60 | 35 |
| 7 | 760 | 196 | 108 |
| 8 | 2725 | 704 | 369 |
| 9 | 9910 | 2500 | 1285 |
| 10 | 36446 | 9189 | 4655 |
| 11 | 135268 | 33896 | 17073 |
| 12 | 505861 | 126759 | 63600 |
| 13 | 1903890 | 476270 | 238591 |
| 14 | 7204874 | 1802312 | 901971 |
| 15 | 27394666 | 6849777 | 3426576 |
| 16 | 104592937 | 26152418 | 13079255 |
| 17 | 400795844 | 100203194 | 50107909 |
| 18 | 1540820542 | 385221143 | 192622052 |
| 19 | 5940738676 | 1485200848 | 742624232 |
| 20 | 22964779660 | 5741256764 | 2870671950 |
| 21 | 88983512783 | 22245940545 | 11123060678 |
| 22 | 345532572678 | 86383382827 | 43191857688 |
| 23 | 1344372335524 | 336093325058 | 168047007728 |
| 24 | 5239988770268 | 1309998125640 | 654999700403 |

## Outline for Today

- Homework 5 Questions?
- Last Time: Signed Distance \& Level Sets
- Polyominoes Terminology
- Counting Polyominoes
- Tiling / Packing Polyominoes
- Polyomino Themed Puzzles
- Next Time: More Tiling!


## Packing Polyominoes

- Can we use $2 \times 2$ square 4 -ominoes and $3 \times 3$ square 9 -ominoes to cover (without overlaps) a $13 \times 17$ rectangle?



## Packing Polyominoes

- Can we use $2 \times 2$ square 4 -ominoes and $3 \times 3$ square 9 -ominoes to cover (without overlaps) a $13 \times 17$ rectangle?

Maybe .... counting cells: $\left(17^{*} 4\right)+\left(17^{*} 9\right)=17 *(9+4)=17 * 13=221$


## Packing Polyominoes


type $(2,2)$

type (6,3)

- Actually, this packing is not possible, and can be proven by contradiction using this coloring scheme


"Ch 14: Polyominoes", Barequet, Golomb, \& Klarner


## Packing Polyominoes


type $(6,3)$

- Actually, this packing is not possible, and can be proven by contradiction using this coloring scheme

type $(3,6)$
$x_{a}{ }^{*} 2+x_{b}{ }^{*} 2+y_{a}{ }^{*} 6+y_{b}{ }^{*} 3=117$ grey cells $x_{a}^{*} 2+x_{b}{ }^{*} 2+y_{a}{ }^{*} 3+y_{b}{ }^{*} 6=104$ white cells in the ominoes
$117-\mathrm{y}_{\mathrm{a}}^{*} 6-\mathrm{y}_{\mathrm{b}}{ }^{*} 3=104-\mathrm{y}_{\mathrm{a}}{ }^{*} 3-\mathrm{y}_{\mathrm{b}}{ }^{*} 6$
$13=y_{a} * 3-y_{b} * 3$
$13=3$ * $\left(y_{a}-y_{b}\right)$ no integer solutions!

"Ch 14: Polyominoes", Barequet, Golomb, \& Klarner,


## Packing Polyominoes


type $(6,3)$

- Actually, this packing is not possible, and can be proven by contradiction using this coloring scheme

type $(3,6)$
$x_{a}{ }^{*} 2+x_{b}{ }^{*} 2+y_{a}{ }^{*} 6+y_{b}{ }^{*} 3=117$ grey cells $x_{a}^{*} 2+x_{b}{ }^{*} 2+y_{a}{ }^{*} 3+y_{b}{ }^{*} 6=104$ white cells in the ominoes
$117-\mathrm{y}_{\mathrm{a}}^{*} 6-\mathrm{y}_{\mathrm{b}}{ }^{*} 3=104-\mathrm{y}_{\mathrm{a}}{ }^{*} 3-\mathrm{y}_{\mathrm{b}}{ }^{*} 6$
$13=y_{a} * 3-y_{b} * 3$
$13=3$ * $\left(y_{a}-y_{b}\right)$ no integer solutions!

"Ch 14: Polyominoes", Barequet, Golomb, \& Klarner,


## Packing Polyominoes

- Can we use the L-tetronimo, and all of its rotations and reflections to pack tile and infinite rectangle of height 3 ?



## Packing Polyominoes

- Can we use the L-tetronimo, and all of its rotations and reflections to pack tile and infinite rectangle of height 3?
- Yes, we can
build the following automaton of all of states:


## Outline for Today

- Homework 5 Questions?
- Last Time: Signed Distance \& Level Sets
- Polyominoes Terminology
- Counting Polyominoes
- Tiling / Packing Polyominoes
- Polyomino Themed Puzzles
- Next Time: More Tiling!


## Pentomino Problems

## Puzzle from <br> Games <br> Magazine January 2022

The pentominoes are the 12 different shapes that you can make with 5 unit squares. They are often identified by the letters they resemble, as shown below.
In these problems, your goal is to cover the white portion of each grid with copies of the same pentomino. Pentominoes may be rotated or reflected as needed. At right is an example of a $4 \times 4$ puzzle.

ANSWERS, PAGE 77


EXAMPLE



2


## 3D Packing Puzzle: Soma Cube

all possible combinations of three or four unit cubes joined at their
faces, such
that at least one inside
corner is
formed.


## Pack into a $3 \times 3 \times 3$ box

## 3D Packing Puzzle: Soma Cube

- Let's count corners...
- For each piece, for each possible placement,

How many of the 8 box corners
can it cover?


## 3D Packing Puzzle: Soma Cube

- Let's count corners...
- For each piece, for each possible placement,

How many of the 8 box corners
can it cover?


## 3D Packing Puzzle: Soma Cube

- Let's count corners...
- For each piece, for each possible placement,

How many of the 8 box corners can it cover?


3D Packing Puzzle: Soma Cube

3D Packing Puzzle: Snake Cube


3D Packing Puzzle: Snake Cube

## 3D Packing Puzzle: Splitting Headache


http://billcutlerpuzzles.com/stock/splittingheadache.html

## 3D Packing Puzzle: Splitting Headache

http://billcutlerpuzzles.com/stock/splittingheadache.html

## Outline for Today

- Homework 5 Questions?
- Last Time: Signed Distance \& Level Sets
- Polyominoes Terminology
- Counting Polyominoes
- Tiling / Packing Polyominoes
- Polyomino Themed Puzzles
- Next Time: More Tiling!

