CSCI 4560/6560 Computational Geometry

Lecture 20: Periodic \& Non-Periodic Tiling

Outline for Today

- Last Time: Polyominoes \& Tiling
- Zellij - Moroccan/Islamic Mosaic Tilework
- Mashrabiya / Brise Soleil / Kinetic Architecture
- Crystals \& Quasi Crystals
- Irrational Numbers
- Periodic vs. Non-Periodic Tiling
- More Tiling Terminology
- Penrose Non-Periodic Tiling
- Art: M.C. Escher, Crochet, etc.
- Next Time: ?

What is a Polyomino?

- An n-omino is a set of n cells on a square graph that is connected
is a polyomino

is NOT a polyomino

"Ch 14: Polyominoes", Barequet, Golomb, \& Klarner, Handbook of Discrete and Computational Geometry, 2018

Translation-Equivalent / Fixed Polyomino

- Only left/right/up/down translation is allowed

- There are 6 unique Fixed 3-ominoes (a.k.a. trominoes):

"Ch 14: Polyominoes", Barequet, Golomb, \& Klarner,
Handbook of Discrete and Computational Geometry, 2018

Rotation-Equivalent / Chiral Polyomino

- left/right/up/down
translation allowed
- $90^{\circ} / 180^{\circ} / 270^{\circ}$ rotation allowed

- There are 7 unique chiral 4-ominoes (a.k.a. tetrominoes):

Free Polyomino

- Translation allowed
- Rotation allowed
- Reflection allowed
- There are 12 unique free 5 -ominoes
(a.k.a. pentominoes):

"Ch 14: Polyominoes", Barequet, Golomb, \& Klarner,
Handbook of Discrete and Computational Geometry, 2018

Counting Fixed, Chiral, and Free Polyominoes

c fixed translation-only		c translation \& rotation (no reflection)	chiral reflection
n	$t(n)$	$r(n)$	$s(n)$
1	1	1	1
2	2	1	1
3	6	2	2
4	19	7	5
5	63	18	12

"Ch 14: Polyominoes", Barequet, Golomb, \& Klarner,
Handbook of Discrete and Computational Geometry, 2018

Packing Polyominoes

- Can we use the L-tetronimo, and all of its rotations and reflections to pack tile and infinite rectangle of height 3?
- Yes, we can
build the following automaton of all of states:

Outline for Today

- Last Time: Polyominoes \& Tiling
- Zellij - Moroccan/Islamic Mosaic Tilework
- Mashrabiya / Brise Soleil / Kinetic Architecture
- Crystals \& Quasi Crystals
- Irrational Numbers
- Periodic vs. Non-Periodic Tiling
- More Tiling Terminology
- Penrose Non-Periodic Tiling
- Art: M.C. Escher, Crochet, etc.
- Next Time: ?

Zellij - Mosaic Tilework

- Traditional Islamic Art, Moroccan architecture, Moorish architecture
- Smooth, colorful, glazed/enamel tiles in a plaster base
- Colors:
- Initially: white, green
- then: yellow, blue, brown,
- later: red
- Geometric motifs
- Avoid depictions of living things

Zellij - Mosaic Tilework

Moroccan Zellij - Tiles - Marrakesh Tour Guide https://www.youtube.com/watch?v=wrQsc5c-w98

Outline for Today

- Last Time: Polyominoes \& Tiling
- Zellij - Moroccan/Islamic Mosaic Tilework
- Mashrabiya / Brise Soleil / Kinetic Architecture
- Crystals \& Quasi Crystals
- Irrational Numbers
- Periodic vs. Non-Periodic Tiling
- More Tiling Terminology
- Penrose Non-Periodic Tiling
- Art: M.C. Escher, Crochet, etc.
- Next Time: ?

Mashrabiya

"Modern Mashrabiyas with High-tech Daylight Responsive Systems", El Semary, Attalla, Gawad, 2017

- Similar to a bay window, but enclosed with wooden latticework
- For hot \& dry climates - Blocks direct sun, provides privacy
- Allows ventilation, and basins of water facilitate evaporative cooling

Modern Commercial Mashrabiya

Now worvisurn

https://urbanalyse.com/research/brise-soleil-study-2/

Brise Soleil

reduce heat gain by deflecting sunlight

Le Corbusier, 1951-1956

Court Chandigarh, India

Louvre Abu Dhabi, UAE

Jean Nouvel

2017

Kinetic Architecture

Al Bahar Towers, Abu Dhabi, UAE Aedas UK, Diar Consult, Arup, 2012

Outline for Today

- Last Time: Polyominoes \& Tiling
- Zellij - Moroccan/Islamic Mosaic Tilework
- Mashrabiya / Brise Soleil / Kinetic Architecture
- Crystals \& Quasi Crystals
- Irrational Numbers
- Periodic vs. Non-Periodic Tiling
- More Tiling Terminology
- Penrose Non-Periodic Tiling
- Art: M.C. Escher, Crochet, etc.
- Next Time: ?

Crystal Structure

Originally assumed:

- Must have periodic, translational symmetry

- And that 5-fold, 8-fold symmetry was not allowed
https://en.wikipedia.org/wiki/Translational_symmetry

Quasi-Crystal

- A nuclear bomb test in 1945 made quasi-crystal, but this was not noticed and confirmed until 2021.
- Unexpected (8-fold \& 10-fold) diffraction patterns
- First investigated \& published in 1980's by Dan Shechtman - eventually won Nobel prize
- Structure is ordered but not periodic
- Fills space (without gaps or overlaps), but lacks translational symmetry
- Properties: non-stick, heat insulating, strong
- Possible Applications: cookware, razor blades, gears, medical prosthesis, solar absorbers, ...

Outline for Today

- Last Time: Polyominoes \& Tiling
- Zellij - Moroccan/Islamic Mosaic Tilework
- Mashrabiya / Brise Soleil / Kinetic Architecture
- Crystals \& Quasi Crystals
- Irrational Numbers
- Periodic vs. Non-Periodic Tiling
- More Tiling Terminology
- Penrose Non-Periodic Tiling
- Art: M.C. Escher, Crochet, etc.
- Next Time: ?

Irrational Numbers

- All real numbers that are not rational
- Rational numbers can be expressed as a ratio of 2 integers, e.g. "a/b"
- Examples: pi, sqrt(2), etc.
- Decimal representation does not terminate, and does not end with a repeating sequence

¢	decimal expansion	ℓ_{10}	binary expansion	ℓ_{2}	\%	decimal expansion	ℓ_{10}	\%	decimal expansion	ℓ_{10}
$\frac{1}{2}$	0.5	0	0.1	0	$\frac{1}{17}$	$0 . \overline{0588235294117647}$	16	$\frac{1}{32}$	0.03125	0
$\frac{1}{3}$	$0 . \overline{3}$	1	0.01	2	$\frac{1}{18}$	0.05	1	$\frac{1}{33}$	0.03	2
$\frac{1}{4}$	0.25	0	0.01	0	$\frac{1}{19}$	$0 . \overline{052631578947368421}$	18	$\frac{1}{34}$	$0.0 \overline{2941176470588235}$	16
$\frac{1}{5}$	0.2	0	$0 . \overline{0011}$	4	$\frac{1}{20}$	0.05	0	$\frac{1}{35}$	0.0285714	6
$\frac{1}{6}$	$0.1 \overline{6}$	1	0.001	2	$\frac{1}{21}$	$0 . \overline{047619}$	6	$\frac{1}{36}$	$0.02 \overline{7}$	1
$\frac{1}{7}$	$0 . \overline{142857}$	6	0.001	3	$\frac{1}{22}$	$0.0 \overline{45}$	2	$\frac{1}{37}$	$0 . \overline{027}$	3
$\frac{1}{8}$	0.125	0	0.001	0	$\frac{1}{23}$	$0 . \overline{0434782608695652173913}$	22	$\frac{1}{38}$	$0.02 \overline{263157894736842105}$	18
$\frac{1}{9}$	$0 . \overline{1}$	1	$0 . \overline{000111}$	6	$\frac{1}{24}$	$0.041 \overline{6}$	1	$\frac{1}{39}$	$0 . \overline{025641}$	6
$\frac{1}{10}$	0.1	0	0.00011	4	$\frac{1}{25}$	0.04	0	$\frac{1}{40}$	0.025	0
$\frac{1}{11}$	$0 . \overline{09}$	2	$0 . \overline{0001011101}$	10	$\frac{1}{26}$	0.0384615	6	$\frac{1}{41}$	$0 . \overline{02439}$	5
$\frac{1}{12}$	$0.08 \overline{3}$	1	$0.00 \overline{01}$	2	$\frac{1}{27}$	$0 . \overline{037}$	3	$\frac{1}{42}$	0.0238095	6
$\frac{1}{13}$	0.076923	6	$0 . \overline{000100111011}$	12	$\frac{1}{28}$	$0.03 \overline{571428}$	6	$\frac{1}{43}$	0.0023255813953488372093	21
$\frac{1}{14}$	0.0714285	6	$0.0 \overline{001}$	3	$\frac{1}{29}$	$0 . \overline{0344827586206896551724137931 ~}$	28	$\frac{1}{44}$	$0.02 \overline{27}$	2
$\frac{1}{15}$	$0.0 \overline{6}$	1	$0 . \overline{0001}$	4	$\frac{1}{30}$	$0.0 \overline{3}$	1	$\frac{1}{45}$	0.02	1
$\frac{1}{16}$	0.0625	0	0.0001	0	$\frac{1}{31}$	$0 . \overline{032258064516129}$	15	$\frac{1}{46}$	$0.02 \overline{173913043478260869565}$	22

https://en.wikipedia.org/wiki/Repeating_decimal
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899 86280348253421170679821480865132823066470938446095505822317253594081284811174502 84102701938521105559644622948954930381964428810975665933446128475648233786783165 27120190914564856692346034861045432664821339360726024914127372458700660631558817 48815209209628292540917153643678925903600113305305488204665213841469519415116094 33057270365759591953092186117381932611793105118548074462379962749567351885752724 89122793818301194912983367336244065664308602139494639522473719070217986094370277 05392171762931767523846748184676694051320005681271452635608277857713427577896091 73637178721468440901224953430146549585371050792279689258923542019956112129021960 86403441815981362977477130996051870721134999999837297804995105973173281609631859 50244594553469083026425223082533446850352619311881710100031378387528865875332083 81420617177669147303598253490428755468731159562863882353787593751957781857780532

Outline for Today

- Last Time: Polyominoes \& Tiling
- Zellij - Moroccan/Islamic Mosaic Tilework
- Mashrabiya / Brise Soleil / Kinetic Architecture
- Crystals \& Quasi Crystals
- Irrational Numbers
- Periodic vs. Non-Periodic Tiling
- More Tiling Terminology
- Penrose Non-Periodic Tiling
- Art: M.C. Escher, Crochet, etc.
- Next Time: ?

Wang Tiles / Wang Dominoes

- Square tiles, edges labeled with colors, must be placed without rotation, with matching edges
- In 1961, Hao Wang conjectured that any finite set of tiles that could tile a plane infinitely,
 could be tiled periodically
- In 1966, Robert Berger proved that non-periodic Wang tile sets existed
- In 2015, Emmanuel Jeandel and Michael Rao proved that the smallest non-periodic Wang tile set was 11 tiles w/ 4 colors
- Applications: natural-looking, aperiodic synthesized texture, heightfields, \& more

Align tiles to match edge color to create non-periodic tilings

Wang Tile Texture Synthesis

- As a precomputation, fill the tiles with texture
- Then create infinite amounts of non-periodic texture!

Outline for Today

- Last Time: Polyominoes \& Tiling
- Zellij - Moroccan/Islamic Mosaic Tilework
- Mashrabiya / Brise Soleil / Kinetic Architecture
- Crystals \& Quasi Crystals
- Irrational Numbers
- Periodic vs. Non-Periodic Tiling
- More Tiling Terminology
- Penrose Non-Periodic Tiling
- Art: M.C. Escher, Crochet, etc.
- Next Time: ?

Misc. Mesh/Surface Vocabulary

- Extraordinary Vertex
- Quad mesh: vertices w/ valence $\neq 4$
- Hex mesh: vertices w/ valence $\neq 3$
- Tri mesh: vertices w/ valence $\neq 6$

Misc. Mesh/Surface Vocabulary

- Extraordinary Vertex
- Quad mesh: vertices w/ valence $\neq 4$
- Hex mesh: vertices w/ valence $\neq 3$
- Tri mesh: vertices w/ valence $\neq 6$

Extraordinary vertices
persist through subdivision!

Non-Periodic vs. Aperiodic

- Non-Periodic: A tiling which is not translationally symmetric
- A-Periodic: A set of tiles which cannot be tiled periodically

"Ch 3: Tiling", Harriss, Schattschneider, \& Senechal, Handbook of Discrete and Computational Geometry, 2018

Cluster: set of tiles that intersect a shape.

Patch: a cluster for a convex shape.

Example: Image shows 3 clusters, 2 of the clusters are patches.
"Ch 3: Tiling", Harriss, Schattschneider, \& Senechal, Handbook of Discrete and Computational Geometry, 2018

- Monohedral Tiling: Using a single shape to tile the plane
- r-Morphic Tile: Can be arranged in r different monohedral tilings

Example: a 3-morphic (trimorphic) tile

"Ch 3: Tiling", Harriss, Schattschneider, \& Senechal,

- Isohedral (tiling): A tiling whose symmetry group acts transitively on its tiles.
- Anisohedral tile: A prototile that admits monohedral tilings but no isohedral tilings.

Example:

- The prototile admits a unique non-isohedral tiling; the black tiles are each surrounded differently.
- This tiling is periodic.

k-corona of a tile:

The set of all tiles that touch the ($k-1$)-corona of the tile

Example: A 3-corona tile (It cannot be surrounded by a fourth corona.)

Outline for Today

- Last Time: Polyominoes \& Tiling
- Zellij - Moroccan/Islamic Mosaic Tilework
- Mashrabiya / Brise Soleil / Kinetic Architecture
- Crystals \& Quasi Crystals
- Irrational Numbers
- Periodic vs. Non-Periodic Tiling
- More Tiling Terminology
- Penrose Non-Periodic Tiling
- Art: M.C. Escher, Crochet, etc.
- Next Time: ?

Penrose Tilings are Non-Periodic

- Discovered in 1974 by Roger Penrose
- Simple rules for which edges are allowed to match other edges
- Multiple variations of a tile sets that can fill a plane, but are non-repeating!

2 Rhomboids

- A labeling or marking of the tiles may be necessary for a specific tileset to be aperiodic.
"Ch 3: Tiling", Harriss, Schattschneider, \& Senechal, Handbook of Discrete and Computational Geometry, 2018
- E.g., Penrose Kite \& Rhombus:

Penrose Tilings Can be Subdivided

- And conversely, this is how they are proved to be aperiodic!

tL

tR

Penrose Tilings Can be Subdivided

- And conversely, this is how they are proved to be aperiodic!

https://en.wikipedia.org/wiki/Penrose_tiling\#/media/File:Penrose_Tiling_(P1_over_P3).svg

Original Penrose Tile set

Pentagons cannot tile a plane on their own!

Outline for Today

- Last Time: Polyominoes \& Tiling
- Zellij - Moroccan/Islamic Mosaic Tilework
- Mashrabiya / Brise Soleil / Kinetic Architecture
- Crystals \& Quasi Crystals
- Irrational Numbers
- Periodic vs. Non-Periodic Tiling
- More Tiling Terminology
- Penrose Non-Periodic Tiling
- Art: M.C. Escher, Crochet, etc.
- Next Time: ?

Pentagonal Penrose Crochet Project

- Develop patterns for the 4 different shapes
- Crochet is not normally 5 -fold symmetric!
- Crochet does not normally use $108^{\circ} / 72^{\circ}$ angles!

https://www.ravelry.com/patterns/library/pentagonal-penrose-throw-blanket

M.C.Escher https://mcescher.com/

M.C.Escher

https://mcescher.com/

M.C.Escher https://mcescher.com/

Outline for Today

- Last Time: Polyominoes \& Tiling
- Zellij - Moroccan/Islamic Mosaic Tilework
- Mashrabiya / Brise Soleil / Kinetic Architecture
- Crystals \& Quasi Crystals
- Irrational Numbers
- Periodic vs. Non-Periodic Tiling
- More Tiling Terminology
- Penrose Non-Periodic Tiling
- Art: M.C. Escher, Crochet, etc.
- Next Time: ?

