
CSCI 4560/6560 Computational Geometry
https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/S22/

Lecture 21:
Binary Space

Partitions

Outline for Today
● Homework 6 Posted
● Last Time: Periodic & Non-Periodic Tiling
● Line Drawings & Early Computer Vision / AI
● Hidden Line Drawing: z-Buffer
● Hidden Line Drawing: Painter’s Algorithm
● Binary Space Partition
● Binary Space Partition Analysis
● Discussion & Comparison to Quad Tree & kD Tree
● Next Time: ?

Outline for Today
● Homework 6 Posted
● Last Time: Periodic & Non-Periodic Tiling
● Line Drawings & Early Computer Vision / AI
● Hidden Line Drawing: z-Buffer
● Hidden Line Drawing: Painter’s Algorithm
● Binary Space Partition
● Binary Space Partition Analysis
● Discussion & Comparison to Quad Tree & kD Tree
● Next Time: ?

https://en.wikipedia.org/wiki/Zellij

Zellij -
Mosaic
Tilework

Kinetic Architecture
Al Bahar Towers, Abu Dhabi, UAE
Aedas UK, Diar Consult, Arup, 2012

Wang Tiles / Wang Dominoes
● Square tiles, edges labeled with colors, must be

placed without rotation, with matching edges
● In 1961, Hao Wang conjectured that any

finite set of tiles that could tile a plane infinitely,
could be tiled periodically

● In 1966, Robert Berger proved that
non-periodic Wang tile sets existed

● In 2015, Emmanuel Jeandel and Michael Rao
proved that the smallest non-periodic
Wang tile set was 11 tiles w/ 4 colors

● Applications: natural-looking, aperiodic
synthesized texture, heightfields, & more

Penrose Tilings Can be Subdivided

https://personal.math.ubc.ca/~cass/courses/m308-02b/projects/schweber/penrose.html

● And conversely, this is how they are proved to be aperiodic!

Outline for Today
● Homework 6 Posted
● Last Time: Periodic & Non-Periodic Tiling
● Line Drawings & Early Computer Vision / AI
● Hidden Line Drawing: z-Buffer
● Hidden Line Drawing: Painter’s Algorithm
● Binary Space Partition
● Binary Space Partition Analysis
● Discussion & Comparison to Quad Tree & kD Tree
● Next Time: ?

Motivation: Summer Vision Project
● “Summer Vision Project”

1966
10 undergraduate students
at MIT were tasked with
solving computer vision

It was a “BHAG”:
Big Hairy Audacious Goal

Did they (professor/students)
realize it at the time?)

Motivation: Early AI & Early Computer Vision

http://www-g.eng.cam.ac.uk/mmg/teaching/artificialintelligence/nonflash/constraint2.htm

Line Labeling
Constraint
Propagation
“Interpretation of
opaque, trihedral solids
with no surface marks”,
Huffman & Clowes,
1971

“Compute Labeling
through Local
Propagation”
Waltz, 1972

Motivation: Early AI & Early Computer Vision

MIT 6.034 Artificial Intelligence, Fall 2010
Open CourseWare
https://www.youtube.com/watch?v=l-tzjenXrvI

Necker Cube
● A two dimensional

representation of
a three dimensional
wire frame cube

● Viewer’s perception
can flips back and
forth between
equally possible
perspectives

https://commons.wikimedia.org/wiki/File:Necker%27s_cube.svg

https://www.newworldencyclopedia.org/entry/necker_cube

Impossible Objects

● Penrose triangle

● Devil's tuning fork

https://simple.wikipedia.org/wiki/Impossible_object

Belvedere
M.C. Escher

1958

“Combining Deep Learning and Active Contours
Opens The Way to Robust, Automated Analysis of
Brain Cytoarchitectonics”, Thierbach et al, 2018

Outline for Today
● Homework 6 Posted
● Last Time: Periodic & Non-Periodic Tiling
● Line Drawings & Early Computer Vision / AI
● Hidden Line Drawing: z-Buffer
● Hidden Line Drawing: Painter’s Algorithm
● Binary Space Partition
● Binary Space Partition Analysis
● Discussion & Comparison to Quad Tree & kD Tree
● Next Time: ?

Hidden Line Drawing / Depth Buffer (z-Buffer)
● Given a primitive's vertices

& the color / illumination
at each vertex:

● Figure out which pixels
to "turn on" to render
the primitive

● Interpolate the color /
illumination values to
"fill in" the primitive

● At each pixel,
keep track of the
closest primitive
(depth buffer / z-buffer)

glBegin(GL_TRIANGLES)
glNormal3f(...)
glVertex3f(...)
glVertex3f(...)
glVertex3f(...)
glEnd();

frame buffer

depth buffer

Triangles can be in any order!
A.k.a. “Polygon soup”

Scan Conversion / Rendering Pipeline

frame buffer

depth buffernear

far

camera/eye

● Running time of depth buffer / z-buffer?

● Extra memory use for depth buffer / z-buffer?

● Flaws with depth buffer / z-buffer?

Scan Conversion / Rendering Pipeline

frame buffer

depth buffernear

far

camera/eye

● Running time of depth buffer / z-buffer?
→ O(n * w * h) worst case large triangles
→ O(n) in practice

● Extra memory use for depth buffer / z-buffer?
→ O(w*h) * 8 bits or 24 bits or 32 bits
In early graphics, this was
too expensive to consider!

● Flaws with depth buffer / z-buffer?
● Limited precision
● Need to choose near &

far plane carefully

Outline for Today
● Homework 6 Posted
● Last Time: Periodic & Non-Periodic Tiling
● Line Drawings & Early Computer Vision / AI
● Hidden Line Drawing: z-Buffer
● Hidden Line Drawing: Painter’s Algorithm
● Binary Space Partition
● Binary Space Partition Analysis
● Discussion & Comparison to Quad Tree & kD Tree
● Next Time: ?

Hidden Line Drawing: Painter’s Algorithm
● Let’s order the primitives by how close they are to the camera
● Draw the primitives from back to front
● Then we don’t need to keep track of the depth!

Save memory!

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Bob Ross -
Peaceful Waters
Season 3
Episode 13

https://www.twoinchbrush.com/
painting/peaceful-waters

Hidden Line Drawing: Painter’s Algorithm
● Let’s order the primitives by how

close they are to the camera
● Draw the primitives from back to front

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Hidden Line Drawing: Painter’s Algorithm
● Let’s order the primitives by how

close they are to the camera
● Draw the primitives from back to front

● Warning: Object layering may
be complex and have cycles
E.g., a > b, b > c, c > a

● Solution: Split primitives as
necessary to break cycles

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Outline for Today
● Homework 6 Posted
● Last Time: Periodic & Non-Periodic Tiling
● Line Drawings & Early Computer Vision / AI
● Hidden Line Drawing: z-Buffer
● Hidden Line Drawing: Painter’s Algorithm
● Binary Space Partition
● Binary Space Partition Analysis
● Discussion & Comparison to Quad Tree & kD Tree
● Next Time: ?

Definition: Binary Space Partition
● Place items in a binary tree, each node stores a half plane
● Primitives that are collinear with the half plane are stored in the node
● Items overlapping a half plane are copied/split into two primitives
● We recurse until exactly one item is left, it is stored in the leaf

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Auto-Partition
● In practice, it is common to use

the primitives as half-planes
● If a BSP only uses half-planes

derived from the input data,
it is called an auto-partition

● Primitive is stored at the node
(rather than pushed
 down to a leaf)
● So it will probably be

smaller…
● But the optimal partitioning

(minimal # of nodes) may
require hyperplanes that are
not derived from the input!

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Using a BSP to Render via Painter’s Algorithm
● If we’re at a leaf,

● Render items in current node
● Else if camera to left of current node hyperplane

● Recurse to right of current node
● Render items in current node
● Recurse to left of current node

● Else if camera is to right of current node hyperplane
● Recurse to left of current node
● Render items in current node
● Recurse to right of current node

● Else we’re on the split plane
(we can ignore items in current node)
● Recurse to left of current node
● Recurse to right of current node Computational Geometry Algorithms and Applications,

de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Outline for Today
● Homework 6 Posted
● Last Time: Periodic & Non-Periodic Tiling
● Line Drawings & Early Computer Vision / AI
● Hidden Line Drawing: z-Buffer
● Hidden Line Drawing: Painter’s Algorithm
● Binary Space Partition
● Binary Space Partition Analysis
● Discussion & Comparison to Quad Tree & kD Tree
● Next Time: ?

Analysis: Using BSP for Painter’s Algorithm
● For n non-intersecting primitives
● Best case:

● Worst case:

● Overall: Painter’s algorithm

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Analysis: Using BSP for Painter’s Algorithm
● For n non-intersecting primitives
● Best case:

● No primitives are split
● O(n) nodes in the tree
● Tree is perfectly balanced, height = O(log n)

● Worst case:
● Every primitive is split by every plane
● O(n2) nodes in the tree
● Tree is unbalanced, height = O(n)

● Overall: Painter’s algorithm
● O(# of nodes in the tree)
● (height is irrelevant!)

● Can we do better than worst case??
Computational Geometry Algorithms and Applications,

de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Small Optimization: “Free Split”
● Our input primitives

do not intersect

● If we can determine
that both primitive endpoints
are on the half plane
boundaries of the current
subtree

● Choosing that primitive
as the next half plane node
is guaranteed not to split
any primitives

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Randomized Incremental Construction
● Note: Some orderings are better than others:

(result in fewer split primitives)

● Let’s randomize the order!

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Randomized Incremental Construction
● Let’s randomize the order!

s0, s1, s2, …. si …. sk …

● What’s the chance that a
primitive sk will be split by
the half plane derived from si ?

● If there are many other
segments between si and sk
there is a good chance
one of them will shield sk
from being split by si

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Randomized Incremental Construction
● Let’s randomize the order!

s0, s1, s2, …. si …. sk …

● Randomized BSP
can be shown to be
have O(n log n) nodes

● And can be constructed
in O(n2 log n)

● Which is better than our worst case
But still doesn’t seem great…

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Outline for Today
● Homework 6 Posted
● Last Time: Periodic & Non-Periodic Tiling
● Line Drawings & Early Computer Vision / AI
● Hidden Line Drawing: z-Buffer
● Hidden Line Drawing: Painter’s Algorithm
● Binary Space Partition
● Binary Space Partition Analysis
● Discussion & Comparison to Quad Tree & kD Tree
● Next Time: ?

Discussion - Quad Tree, kD Tree, BSP
● k-D trees are a special case of BSP (where splits are always axis aligned)
● Quad trees are a special case of k-D trees

(where splits are always at the midpoints)

k-D TreeQuad Tree BSP

Discussion - BSP & Low Density Scenes
● BSP are harder to visualize, and therefore perhaps harder to intuitively

understand, debug, and analyze
● Usually the performance of a BSP is much

better than the conclusion reached by
randomized analysis.

● Why?
● In practice most objects are relatively small
● In practice density of objects in a scene is sparse
● Therefore it is likely the objects can be

separated by planes without requiring the
expected worst case number of splits

● For more details, see analysis in the book… Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Outline for Today
● Homework 6 Posted
● Last Time: Periodic & Non-Periodic Tiling
● Line Drawings & Early Computer Vision / AI
● Hidden Line Drawing: z-Buffer
● Hidden Line Drawing: Painter’s Algorithm
● Binary Space Partition
● Binary Space Partition Analysis
● Discussion & Comparison to Quad Tree & kD Tree
● Next Time: ?

