
CSCI 4560/6560 Computational Geometry
https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/S22/

Lecture 22:
General Position, Robustness

& Exact Computation

Outline for Today
● Homework 6 Posted
● Last Time: Hidden Line Drawing, Painter’s Algorithm, & BSP
● General Position, Floating Point Equality
● Numerical Computing, Divide by Zero, & Gaussian Elimination
● Floating Point Bugs in Computational Geometry
● Floating Point Bugs in Computer Graphics
● Real RAM vs. IEEE Floating Point
● Arbitrary Arithmetic with Rational and Algebraic Numbers
● Symbolic Computation, Floating Point Filters, Interval Computation
● Next Time: ?

Outline for Today
● Homework 6 Posted
● Last Time: Hidden Line Drawing, Painter’s Algorithm, & BSP
● General Position, Floating Point Equality
● Numerical Computing, Divide by Zero, & Gaussian Elimination
● Floating Point Bugs in Computational Geometry
● Floating Point Bugs in Computer Graphics
● Real RAM vs. IEEE Floating Point
● Arbitrary Arithmetic with Rational and Algebraic Numbers
● Symbolic Computation, Floating Point Filters, Interval Computation
● Next Time: ?

Necker Cube
● A two dimensional

representation of
a three dimensional
wire frame cube

● Viewer’s perception
can flips back and
forth between
equally possible
perspectives

https://commons.wikimedia.org/wiki/File:Necker%27s_cube.svg

https://www.newworldencyclopedia.org/entry/necker_cube

Hidden Line Drawing / Depth Buffer (z-Buffer)
● Given a primitive's vertices

& the color / illumination
at each vertex:

● Figure out which pixels
to "turn on" to render
the primitive

● Interpolate the color /
illumination values to
"fill in" the primitive

● At each pixel,
keep track of the
closest primitive
(depth buffer / z-buffer)

glBegin(GL_TRIANGLES)
glNormal3f(...)
glVertex3f(...)
glVertex3f(...)
glVertex3f(...)
glEnd();

frame buffer

depth buffer

Triangles can be in any order!
A.k.a. “Polygon soup”

Hidden Line Drawing: Painter’s Algorithm
● Let’s order the primitives by how close they are to the camera
● Draw the primitives from back to front
● Then we don’t need to keep track of the depth!

Save memory!

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Definition: Binary Space Partition
● Place items in a binary tree, each node stores a half plane
● Primitives that are collinear with the half plane are stored in the node
● Items overlapping a half plane are copied/split into two primitives
● We recurse until exactly one item is left, it is stored in the leaf

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 12

Discussion - Quad Tree, kD Tree, BSP
● k-D trees are a special case of BSP (where splits are always axis aligned)
● Quad trees are a special case of k-D trees

(where splits are always at the midpoints)

k-D TreeQuad Tree BSP

Outline for Today
● Homework 6 Posted
● Last Time: Hidden Line Drawing, Painter’s Algorithm, & BSP
● General Position, Floating Point Equality
● Numerical Computing, Divide by Zero, & Gaussian Elimination
● Floating Point Bugs in Computational Geometry
● Floating Point Bugs in Computer Graphics
● Real RAM vs. IEEE Floating Point
● Arbitrary Arithmetic with Rational and Algebraic Numbers
● Symbolic Computation, Floating Point Filters, Interval Computation
● Next Time: ?

“Assuming General Position… ”
● Degeneracies in the input data cause problems

● To avoid problems in developing algorithms and
to prove the correctness and performance of those algorithms,

We will often make assumptions, e.g.:

● No 2 points have the same x and same y coordinates
● No 3 points are collinear
● No 2 points lie on the same vertical line
● No 4 points lie on the same circle

Robustness: Floating Point Equality
● Programming Mantra: Never compare two floats or doubles with ==
● Why not?

double a = 2/float(3);
double b = (5/3.0) * (7.0/5.0f) * (2/double(7));
assert (a == b);

Robustness: Floating Point Equality
● Programming Mantra: Never compare two floats or doubles with ==
● Why not?

double a = 2/float(3);
double b = (5/3.0) * (7.0/5.0f) * (2/double(7));
assert (a == b); ← this will probably fail!

● Even if we’re more careful and use float & double consistently,
the compiler is still free to use extra precision for the values of
intermediate expressions.

● Optimized code might use registers for intermediate expressions
(which often have higher precision than required by the type).

Common Robustness Workaround
● Instead compare to a tolerance or epsilon value, e.g.,

double a = 2/float(3);
double b = (5/3.0) * (7.0/5.0f) * (2/double(7));
assert (fabs(a-b) < 0.00001);

● But what is the right value for epsilon?

Common Robustness Workaround
● Instead compare to a tolerance or epsilon value, e.g.,

double a = 2/float(3);
double b = (5/3.0) * (7.0/5.0f) * (2/double(7));
assert (fabs(a-b) < 0.00001);

● But what is the right value for epsilon?
It depends on the application, data type, & overall scale of the data!

● epsilon way too big → we risk computing the wrong answer
● epsilon too small → the original equality rounding error issue
● What if roundoff error will accumulate or compound over time?

It will likely be impossible to appropriately set an epsilon!

Outline for Today
● Homework 6 Posted
● Last Time: Hidden Line Drawing, Painter’s Algorithm, & BSP
● General Position, Floating Point Equality
● Numerical Computing, Divide by Zero, & Gaussian Elimination
● Floating Point Bugs in Computational Geometry
● Floating Point Bugs in Computer Graphics
● Real RAM vs. IEEE Floating Point
● Arbitrary Arithmetic with Rational and Algebraic Numbers
● Symbolic Computation, Floating Point Filters, Interval Computation
● Next Time: ?

Numerical Computing & Divide by Zero
● For numerical computing,

divide by zero is the most common (is the only?)
precision / rounding error that may cause a program to crash

● Otherwise, the program will always return a result
● The result will be a good answer
● It may be slightly off due to rounding error

(the error is proportional to the types – e.g., float/double),
but it is generally acceptable

Factorization by Gaussian Elimination
● A pivot or row swap is necessary

if the value in the target position
is zero and would lead to a
divide-by-zero when we try to
compute the row multiplier
necessary to produce zeros
in that column in the lower rows.

Fundamentals of Numerical Computation,
Driscoll & Braun, 2017

https://fncbook.github.io/v1.0/linsys/pivoting.html

Factorization by Gaussian Elimination
● Divide by zero is not the only concern…
● We should also avoid division by very small values, e.g., epsilon:

Fundamentals of Numerical Computation,
Driscoll & Braun, 2017

https://fncbook.github.io/v1.0/linsys/pivoting.html

Correct answer: x1=1
But we will have

robustness problems
if ε is very small!

Factorization by Gaussian Elimination
● Divide by zero is not the only concern…
● We should also avoid division by very small values, e.g., epsilon:

Fundamentals of Numerical Computation,
Driscoll & Braun, 2017

https://fncbook.github.io/v1.0/linsys/pivoting.html

Correct answer: x1=1
But we will have

robustness problems
if ε is very small!

It’s better to pivot / swap
rows for the row with the

largest value in this column

Numerical vs. Combinatorial
● Use of a tolerance or epsilon is an appropriate approach for

numerical computing (e.g. solving linear systems),
where answers being slightly off is acceptable.

● However in geometry, the goal is not to compute numbers
but rather structures (convex hull, Delaunay triangulation, etc).

● It is a combinatorial problem, not a numerical problem.

https://www.cgal.org/exact.html

Outline for Today
● Homework 6 Posted
● Last Time: Hidden Line Drawing, Painter’s Algorithm, & BSP
● General Position, Floating Point Equality
● Numerical Computing, Divide by Zero, & Gaussian Elimination
● Floating Point Bugs in Computational Geometry
● Floating Point Bugs in Computer Graphics
● Real RAM vs. IEEE Floating Point
● Arbitrary Arithmetic with Rational and Algebraic Numbers
● Symbolic Computation, Floating Point Filters, Interval Computation
● Next Time: ?

Ramshaw’s Braided Lines
● Consider 2 lines,

l1 : y = 9833x/9454
l2 : y = 9366x/9005

both pass through the origin,
slope of l1 is slightly larger than l2

● This program computes and
compares the y-value for each line at
multiples of 0.001 between 0 and 1

● The program outputs that l1 and l2
intersect 24 times !?!?!

● If we switch float → double, it still
prints 1 false intersection (not the origin)

http://www.algorithmic-solutions.info/leda_guide/geometry/dangerfloat.html

Lyle Ramshaw

1.0400888512798816
vs.

1.0400888395335925

● Using floating point arithmetic:
● Take two random lines l1 and l2
● Compute intersection point p12
● assert (point p12 lies on line l1)
● assert (point p12 lies on line l2)

● Orange dots = 1 assertion fails
● Red dots = both assertion fails

Invited Lecture: “Real Numbers and
Robustness in Computational Geometry”,

Real Numbers and Computers 2004,
Stefan Schirra

● Make a triangle with the first 3 points

● For each additional point r
● Find an outside edge

that is “visible” from r
● Expand to a sequence of

connected edges
vi → vi+1 → vi+2 (→ …) → vj

● Remove middle points
(e.g., vi+1 & vi+2) from hull,
add point r to hull

vi+1

Incremental Convex Hull Construction

vi+2

● Make a triangle with the first 3 points

● For each additional point r
● Find an outside edge

that is “visible” from r
● Expand to a sequence of

connected edges
vi → vi+1 → vi+2 (→ …) → vj

● Remove middle points
(e.g., vi+1 & vi+2) from hull,
add point r to hull “Geometric Computing: The Science of Making

Geometric Algorithms Work”, Kurt Mehlhorn
https://people.mpi-inf.mpg.de/~mehlhorn/ftp/SoCG09.pdf

Incremental Convex Hull Construction

Algorithm looks great!
So how could this be
a program output????

“Geometric Computing: The Science of Making Geometric Algorithms Work”, Kurt Mehlhorn

“Geometric Computing: The Science of Making Geometric Algorithms Work”, Kurt Mehlhorn

This concave angle is a small,
“acceptable” numerical error

“Geometric Computing: The Science of Making Geometric Algorithms Work”, Kurt Mehlhorn

This concave angle is a small,
“acceptable” numerical error

But it causes a large, unacceptable
logical error later!

Outline for Today
● Homework 6 Posted
● Last Time: Hidden Line Drawing, Painter’s Algorithm, & BSP
● General Position, Floating Point Equality
● Numerical Computing, Divide by Zero, & Gaussian Elimination
● Floating Point Bugs in Computational Geometry
● Floating Point Bugs in Computer Graphics
● Real RAM vs. IEEE Floating Point
● Arbitrary Arithmetic with Rational and Algebraic Numbers
● Symbolic Computation, Floating Point Filters, Interval Computation
● Next Time: ?

Possibly Hidden /
Probably Hidden:

If height is changed
by epsilon, the
visibility flips!

The visibility
of one half

of the points
is uncertain!

● To correctly simulate
light as it bends/refracts
through a medium denser
than air (e.g., glass),
we must know when a
ray enters and when a
ray exits an object.

● ra intersects f1
● rb must intersect f1 or f2

but NOT both or neither!
● We cannot miss or

double count intersections!

Rounding Errors in Graphics Ray Tracing

f2

f1

ra

rb Jietong Chen
https://cjt-jackton.github.io/RayTracing/

Epsilon in Ray Tracing

intersects sphere
@ t = 0.01

intersects sphere
@ t = -0.01

Image from
Zachary Lynn

intersects sphere
@ t = 10.6

intersects sphere
@ t = 14.3

intersects light
@ t = 25.2

intersects light
@ t = 26.9

eye

Epsilon a.k.a. Bias for Shadow Maps

Correct image Not enough bias Way too much bias

Outline for Today
● Homework 6 Posted
● Last Time: Hidden Line Drawing, Painter’s Algorithm, & BSP
● General Position, Floating Point Equality
● Numerical Computing, Divide by Zero, & Gaussian Elimination
● Floating Point Bugs in Computational Geometry
● Floating Point Bugs in Computer Graphics
● Real RAM vs. IEEE Floating Point
● Arbitrary Arithmetic with Rational and Algebraic Numbers
● Symbolic Computation, Floating Point Filters, Interval Computation
● Next Time: ?

Real RAM
● “A real RAM (random-access machine) is a mathematical model of a

computer that can compute with exact real numbers instead of the binary
fixed point or floating point numbers used by most actual computers.”

● Computers can only approximate a real RAM using floating point types.

● CGAL (The Computational Geometry Algorithms Library) and
LEDA (A Library of Efficient Data Types and Algorithms)
provide tools that allow us to write programs that work like they were
running on a real RAM.

https://en.wikipedia.org/wiki/Real_RAM

● IEEE binary32 = C/C++ float

● IEEE binary64 = C/C++ double

● IEEE binary128 = [not (yet?) support by most hardware]

The IEEE Floating Point Standard

https://en.wikipedia.org/wiki/Single-precision_floating-point_format

Avoid Creating Irrational Numbers
● Problem: Given 5 points with integer coordinates,

find the nearest neighbor to point a
● Compute the length of lines ab, ac, ad, ae

● length(ab) = sqrt ((xa-xb)*(xa-xb) + (ya-yb)*(ya-yb))
● Note: the sqrt, will likely create irrational numbers!

● Sort the lengths, return endpoint for shortest line length

● Instead… compute & sort the squares of the line lengths
● squared_length(ab) = (xa-xb)*(xa-xb) + (ya-yb)*(ya-yb)
● This is an integer!

● This will always return the correct answer to the original question.
WITHOUT creating irrational numbers!

a

b

c

d

e

Outline for Today
● Homework 6 Posted
● Last Time: Hidden Line Drawing, Painter’s Algorithm, & BSP
● General Position, Floating Point Equality
● Numerical Computing, Divide by Zero, & Gaussian Elimination
● Floating Point Bugs in Computational Geometry
● Floating Point Bugs in Computer Graphics
● Real RAM vs. IEEE Floating Point
● Arbitrary Arithmetic with Rational and Algebraic Numbers
● Symbolic Computation, Floating Point Filters, Interval Computation
● Next Time: ?

Arbitrary Precision Arithmetic
● If we do not have irrational numbers in our program…
● We can store integers using a “BigNum” infinite precision integer type

https://patshaughnessy.net/2014/1/9/how-big-is-a-bignum

● 64 bit binary integer =
~19 bit base 10 integer

● RSA Security requires at least
100 binary digits, but
recommends 1000+ binary digits

Arbitrary Precision Arithmetic
● If we do not have irrational numbers in our program…
● We can store rational numbers as a ratio of two BigNums
● Reduce fractions whenever possible to minimize storage:

https://algorist.com/problems/Arbitrary-Precision_Arithmetic.html

What if we cannot avoid Irrational Numbers?
● Hippasos used a geometric

analog of Euclid's algorithm
to show that the ratio d0 / s0
is an irrational number.

http://www.hellenicaworld.com/Greece/Science/en/Pentagon.html

Algebraic Number
● A number that is a root of a non-zero

polynomial in one variable with integer
(or, equivalently, rational) coefficients.

● √2 is an algebraic number
● The golden ratio, φ = (1 + √5) / 2 ≃ 1.61803

is an algebraic number, it is a root of x2 − x − 1
● All rational numbers are algebraic
● Some irrational numbers (e.g., √2 & φ) are algebraic
● Some irrational numbers are NOT algebraic

● π ≃ 3.14159 is not algebraic

● e ≃ 2.71828 is not algebraic

https://en.wikipedia.org/wiki/Algebraic_number

Outline for Today
● Homework 6 Posted
● Last Time: Hidden Line Drawing, Painter’s Algorithm, & BSP
● General Position, Floating Point Equality
● Numerical Computing, Divide by Zero, & Gaussian Elimination
● Floating Point Bugs in Computational Geometry
● Floating Point Bugs in Computer Graphics
● Real RAM vs. IEEE Floating Point
● Arbitrary Arithmetic with Rational and Algebraic Numbers
● Symbolic Computation, Floating Point Filters, Interval Computation
● Next Time: ?

So, What’s done in Practice?
● Input point coordinates are rational
● If we can limit to linear primitives – straight lines, not curves…

then the computations for most geometric problems will be rational,
or at least algebraic.

● We can write software to implement & use basic arithmetic operations
with all of the necessary types:
integers, big-nums, rational numbers, and even algebraic numbers

● And this is exactly what CGAL is doing with all of those C++ templates & typedefs!
● Much of this can also be made to work with nonlinear primitives too!

● Avoid creating irrational numbers by working symbolically until output

Improving Performance
● The challenge is efficiency.

● CGAL: overhead for exact computation = 25% - 80% (depending on algorithm)
● See also https://www.cgal.org/exact.html

● User is responsible for understanding exact vs. inexact computation
● Writing good CGAL code (non-buggy, robust, accurate, and fast) takes skill
● Leverage both non-exact and exact kernels in different places in same program

● Implementation of CGAL (& other libraries) is clever…
● Don’t use exact computation unless necessary
● Work with floating point approximations most of the time
● “Floating point filters”: Automatically switch from a floating point representation to

exact computation when the numbers are close to a floating point tolerance.
● Use symbolic / lazy adaptive evaluation to delay exact computation until

and only if it is actually necessary

Alternative for Real Number Computation?
● Take imprecision into account when designing and proving the algorithms
● “Topology oriented implementation”

● Program will always return an answer, even if all computations are
replaced by random numbers

● Never crashes because of inconsistencies
● Has been done for some problems & algorithms in Computational

Geometry

● However, because most proofs rely on “assume general position” or
small tricks like “rotate everything a tiny amount” to break ties
Most work in Computational Geometry would need to be redone!

Outline for Today
● Homework 6 Posted
● Last Time: Hidden Line Drawing, Painter’s Algorithm, & BSP
● General Position, Floating Point Equality
● Numerical Computing, Divide by Zero, & Gaussian Elimination
● Floating Point Bugs in Computational Geometry
● Floating Point Bugs in Computer Graphics
● Real RAM vs. IEEE Floating Point
● Arbitrary Arithmetic with Rational and Algebraic Numbers
● Symbolic Computation, Floating Point Filters, Interval Computation
● Next Time: ?

