CSCI 4560/6560 Computational Geometry

https://www.cs.rpi.edu/~cutler/classes/computationalgeometry/S22/

Lecture 25: Sprouts & Brussel Sprouts

- Homework Questions
- Quiz on Friday
- Final Project Presentation Schedule
- Last Time: Bezier Curves, Polyline Simplification, Clothoid Sketches
- Paper & Pencil Game of Sprouts
- Computer Analysis of Sprouts
- Brussel Sprouts
- Hybrid Sprouts & Brussel Sprouts

- Homework Questions
- Quiz on Friday
- Final Project Presentation Schedule
- Last Time: Bezier Curves, Polyline Simplification, Clothoid Sketches
- Paper & Pencil Game of Sprouts
- Computer Analysis of Sprouts
- Brussel Sprouts
- Hybrid Sprouts & Brussel Sprouts

- Homework Questions
- Quiz on Friday
- Final Project Presentation Schedule
- Last Time: Bezier Curves, Polyline Simplification, Clothoid Sketches
- Paper & Pencil Game of Sprouts
- Computer Analysis of Sprouts
- Brussel Sprouts
- Hybrid Sprouts & Brussel Sprouts

Cubic Bézier Curve

 P_4

• P₃

• P2

Asymmetric: Curve goes through some control points but misses others

Parametric equation: Function of tt varies $0 \rightarrow 1$

Ρ

= 0

weights sum to 1

control points

 $Q(t) = (1-t)^{3} P_{1} + 3t(1-t)^{2} P_{2} + 3t^{2}(1-t) P_{3}$

Connecting Cubic Bézier Curves

- How can we guarantee C⁰ continuity?
- How can we guarantee G¹ continuity?
- How can we guarantee C¹ continuity?
- Can't guarantee higher C² or higher continuity

Asymmetric: Curve goes through some control points but misses others

Noisy GPS Running Data

Can overestimate distance by ~10% !!

iPhone app

Polyline Simplification: Ramer–Douglas–Peucker

- Originally developed for cartography
- Reduce number of points necessary to represent a polyline
- Identify most important points
- Discards points that are < ε from the simplified shape

Long Tiny Loops by Dan Aminzade

- Extract GPS data from Strava API
- Ramer-Douglas-Peucker: Simplify input (remove false positive intersections due to noise)
- Verify closed loop
- Check for segment intersections
- Compute convex hull
- Rotating calipers maximum diameter
 - \rightarrow Compute final score
 - = distance / max diameter

https://longtinyloop.com/faq

Piecewise Clothoid + Circular Arc + Line

- Aesthetically pleasing
- Fairness
- Can ensure G2 or G3 continuity
- Also model sharp discontinuities as appropriate

- Homework Questions
- Quiz on Friday
- Final Project Presentation Schedule
- Last Time: Bezier Curves, Polyline Simplification, Clothoid Sketches
- Paper & Pencil Game of Sprouts
- Computer Analysis of Sprouts
- Brussel Sprouts
- Hybrid Sprouts & Brussel Sprouts

Sprouts Game Rules

- Draw *n* spots
- Players take turns:
 - Draw a line joining two spots, or a
 - single spot to itself.
 - The line must not cross another line or pass through another spot.

Paper and Pencil Games http://www.papg.com/show?1TMQ

- Draw a spot on the new line.
- No more than three lines can emerge from any spot.
- Normal Winning Condition: Winner is last person to make a move
- Misère Winning Condition: Winner is first person who cannot make a move

Sprouts Analysis

- Starting with *n* dots
- What's the maximum number of turns?
 What's the maximum number of lines drawn?
 What's the maximum number of new points added?

Sprouts Analysis

- Starting with *n* dots
- What's the minimum number of turns?

Definition: Planar Graph

• Can be drawn in 2D without any edges crossing

- Homework Questions
- Quiz on Friday
- Final Project Presentation Schedule
- Last Time: Bezier Curves, Polyline Simplification, Clothoid Sketches
- Paper & Pencil Game of Sprouts
- Computer Analysis of Sprouts
- Brussel Sprouts
- Hybrid Sprouts & Brussel Sprouts

Sprouts Computer Analysis

"Computer Analysis of Sprouts", Applegate, Jacobson, & Sleator, In The Mathemagician and the Pied Puzzler: A Collection in Tribute to Martin Gardner (1999)

Number of Spots	1	2	3	4	5	6	7	8	9	10	11
normal play	2	2	1	1	1	2	2^*	2^*	1*	1*	1*
misère play	1	2	2	2	1*	1* .	2^*	2^*	2^*		

A "1" means the first player to move has a winning strategy, a "2" means the second player has a winning strategy, and an asterisk indicates a new result obtained by our program.

The *n*-spot Sprouts positions evaluated so far fall into a remarkably simple pattern, characterized by the following conjecture:

Sprouts conjecture. The first player has a winning strategy in n-spot Sprouts if and only if n is 3, 4, or 5 modulo 6. STILL HOLDS!

The data for misère Sprouts fit a similar pattern.

Misère sprouts conjecture. The first player has a winning strategy in *n-spot misère Sprouts if and only if n is 0 or 1 modulo 5.* LATER DISPROVEN

Definition: Graph Isomorphism

Two graphs are isomorphic if there is a bijection between the labels of the graphs, and an edge exists between a pair of vertices in one graph if and only if an edge exists between the corresponding vertices in the other graph.

https://en.wikipedia.org/wiki/Graph_isomorphism

Sprouts Analysis Definitions

- Each spot is given a unique name.
- The curves of the sprout graph divide the plane into regions.

- The loop of spots and curves surrounding a region is called a *boundary*.
- The sprout graph can be encoded in set representation: { { (abcdhfcb) (ijkj) (l) } { (cfed) } { (degh) } { (efhg) } }

star of boundary

end of boundary

start of region

end of region

Sprouts Analysis Move Definitions

A two-boundary move joins spot x on boundary B_1 to spot y on boundary B_2 and adds spot z. Boundaries B_1 and B_2 are now joined. No new regions are formed.

A one-boundary move connects spots on the same boundary of region R. Region R is split into two subregions R_{1} and R_{2} . All boundaries of and within R must be designated for R_1 , or R_2 .

> Note: 2^{k-1} ways to group k boundaries

Sprouts Analysis Implementation

end of region

The String representation can be simplified/compressed: abcdhfcbeijkjele∎cfede∎deghe∎efhge∎

- Spots of degree 3 can be thrown away
- Regions with fewer than 2 lives can be throw away
- Boundaries with no live spots can be thrown away
- Spots of degree zero or one do not appear on more than one boundary, so they don't need unique names, label them 0 and 1.
- If a degree two spot has no live spots between its two occurrences on one boundary, it only needs to be listed once.

abb•ijkj•l•∎•∎g•∎g•∎

end of boundary

abb•ijkj•l•∎

1bb•1j1j•0•∎

1b•1j1j•0•∎

Sprouts Analysis Pseudocode

Input sprout graph

Enumerate all legal one-boundary function eval(P)and two-boundary moves $S \leftarrow \text{successors}(P)$ if S is empty then return "L" for each position $P' \in S$ do if P' is in the hash table return "W" for each position $P' \in S$ do if eval(P') is "L" then return "W" put P into the hash table; return "L" end eval

Sprouts Analysis Implementation

- Lexicographically sort the boundaries & regions to remove (significantly reduce) duplicate/isomorphic graphs.
- Use a hash table to store compressed set representation of all sprout graphs that we have previously examined & labeled "W" or "L".
- Implementation notes with 1990 hardware: *may be different now*
 - Memory was a more significant resource limitation than CPU/time.
 - There are 10X more "W" configurations than "L" configurations.
 - Therefore, only store "L" configurations in the hash table & recompute successors when needed.

Sprouts Perfect Play Winner - Normal Play

Number	Value of	Cpu seconds	# of positions	size of hash	
of spots	game	(on a DEC 5000)	in hash table	table (in bytes)	
1	L	< 0.1	1	101	
2	L	< 0.1	4	606	
3	W	< 0.1	7	606	
4	W	0.2	33	1515	
5	W	1.1	114	2828	
6	L	5.9	338	4070	
7	L	75.8	1843	16794	
8	L	<i>Almost</i> 3 1813.7	24842	264756	
9	W	hours 8.9	24897	264756	
10	W	842.8	33252	354721	
11	W	10107.6	116299	1467576	

"Computer Analysis of Sprouts", Applegate, Jacobson, & Sleator, 1991

Analysis now complete through n = 44 (2011)

—— 1.5 MB, max memory for DEC was 8-480MB (after 1991?)

Conjecture: Player 1 wins if # spots % 6 == 3, 4, or 5

Sprouts Perfect Play Winner - Misère Play

Number	Value of	Cpu seconds	# of positions	size of hash	"Computer Analysis of Sprouts"
of spots	game	(on a DEC 5000)	in hash table	table (in bytes)	Applegate, Jacobson, & Sleator
1	W	< 0.1	1	202	1991
2	L	< 0.1	5	303	KHIX CHAN
3	L	< 0.1	11	606	XXXXXXX
4	L	0.1	37	1010	MARTAMAT
5	W	1.1	219	2307	
6	W	8.5 18.9	1805	15403	
7	L	hours 44.0	4970	43618	-13 MB
8	L	343.7	23728	202364	max memory
9	L	30579.5	1024629	13417664	for DEC was

Analysis now complete through n = 20 (2011)

8-480MB (after 1991?)

Original Conjecture was later disproven

Current Conjecture: Player 1 wins when # spots % 6 == 0, 4, or 5 EXCEPTIONS: Player 1 wins if # spots == 1 and Player 1 loses if # spots == 4

Discussion: Interactive Sprouts Implementation

- I couldn't find a good interactive, sketch-based digital Sprouts game Many versions seem to require Flash, so I don't know if they were any good
- What is hard about making a computer/phone implementation of Sprouts?

- Homework Questions
- Quiz on Friday
- Final Project Presentation Schedule
- Last Time: Bezier Curves, Polyline Simplification, Clothoid Sketches
- Paper & Pencil Game of Sprouts
- Computer Analysis of Sprouts
- Brussel Sprouts
- Hybrid Sprouts & Brussel Sprouts

Brussel Sprouts Variant Game Rules

- Draw *n* crosses
- Players take turns:
 - Draw a line joining two cross "legs".
 - Draw a hash mark across the new line
 (a new "cross" position).
 - No more than four lines can emerge from any cross.

https://en.wikipedia.org/wiki/Sprouts_(game)#/media/File:Brussel_Sprouts_Game.png

Brussel Sprouts Analysis

- We start with *n* crosses and 4**n* live 'leg's
- Each move adds a line, uses up two legs, and adds two legs
- Does it ever end?

Brussel Sprouts Analysis

- Yes, in fact it does end!
 - Every face contains at least one live leg
 - We are done when no face has more than one live leg
- It must follow Euler's Characteristic for Planar Graphs:
 - Let m = # of moves
 - # of edges = e = 2m
 - # of vertices = v = n + m (we start with n, and we add one each move)
 - # of faces = 4n, there is exactly 1 free end inside of each face at the end
 - 2 = f e + v
 - 2 = 4n 2m + n + m
 - # of moves = m = 5n 2

- Homework Questions
- Quiz on Friday
- Final Project Presentation Schedule
- Last Time: Bezier Curves, Polyline Simplification, Clothoid Sketches
- Paper & Pencil Game of Sprouts
- Computer Analysis of Sprouts
- Brussel Sprouts
- Hybrid Sprouts & Brussel Sprouts

Hybrid Sprouts & Brussel Sprouts Game Rules

- Start with a mix of dots and/or crosses
- Draw a line connecting a dot or cross to itself or another dot or cross

Hybrid Sprouts & Brussel Sprouts Analysis

For n = 1

For n > 1: Analysis is not completed!!!