CSCI 4560/6560 Computational Geometry

Lecture 25: Sprouts \&
 Brussel Sprouts

Outline for Today

- Homework Questions
- Quiz on Friday
- Final Project Presentation Schedule
- Last Time: Bezier Curves, Polyline Simplification, Clothoid Sketches
- Paper \& Pencil Game of Sprouts
- Computer Analysis of Sprouts
- Brussel Sprouts
- Hybrid Sprouts \& Brussel Sprouts

Outline for Today

- Homework Questions
- Quiz on Friday
- Final Project Presentation Schedule
- Last Time: Bezier Curves, Polyline Simplification, Clothoid Sketches
- Paper \& Pencil Game of Sprouts
- Computer Analysis of Sprouts
- Brussel Sprouts
- Hybrid Sprouts \& Brussel Sprouts

Outline for Today

- Homework Questions
- Quiz on Friday
- Final Project Presentation Schedule
- Last Time: Bezier Curves, Polyline Simplification, Clothoid Sketches
- Paper \& Pencil Game of Sprouts
- Computer Analysis of Sprouts
- Brussel Sprouts
- Hybrid Sprouts \& Brussel Sprouts

Cubic Bézier Curve

- P_{2}

Asymmetric:
Curve goes through some control points but misses others

Connecting Cubic Bézier Curves

- How can we guarantee C^{0} continuity?

Asymmetric: Curve

- How can we guarantee G^{1} continuity?
- How can we guarantee C^{1} continuity? goes through some control points but misses others
- Can't guarantee higher C^{2} or higher continuity

Noisy GPS Running Data

- Can overestimate distance by $\sim 10 \%$!!

running watch

Polyline Simplification: Ramer-Douglas-Peucker

- Originally developed for cartography
- Reduce number of points necessary to represent a polyline
- Identify most important points
- Discards points that are $<\varepsilon$ from the simplified shape

Long Tiny Loops by Dan Aminzade

- Extract GPS data from Strava API
- Ramer-Douglas-Peucker: Simplify input (remove false positive intersections due to noise)
- Verify closed loop
- Check for segment intersections
- Compute convex hull
- Rotating calipers maximum diameter
\rightarrow Compute final score
= distance / max diameter

https://longtinyloop.com/faq

Piecewise Clothoid + Circular Arc + Line

- Aesthetically pleasing
- Fairness
- Can ensure G2 or G3 continuity
- Also model sharp discontinuities as appropriate McCrae \& Singh, 2008

Outline for Today

- Homework Questions
- Quiz on Friday
- Final Project Presentation Schedule
- Last Time: Bezier Curves, Polyline Simplification, Clothoid Sketches
- Paper \& Pencil Game of Sprouts
- Computer Analysis of Sprouts
- Brussel Sprouts
- Hybrid Sprouts \& Brussel Sprouts

Sprouts Game Rules

- Draw n spots
- Players take turns:
- Draw a line joining two spots, or a
 single spot to itself.
- The line must not cross another line or pass through another spot.
- Draw a spot on the new line.
- No more than three lines can emerge from any spot.
- Normal Winning Condition: Winner is last person to make a move
- Misère Winning Condition: Winner is first person who cannot make a move

Sprouts Analysis

- Starting with n dots
- What's the maximum number of turns?

What's the maximum number of lines drawn?
What's the maximum number of new points added?

Sprouts Analysis

- Starting with n dots
- What's the minimum number of turns?

Definition: Planar Graph

- Can be drawn in 2D without any edges crossing

Sprout Game Tree

Even for just

2 starting spots,
the full tree
of moves
is very large!

Sprout Game Tree Normal Play

Maximum \# moves $=5$
If the game ends in 5 moves,
Player 1 makes the last move

Player 2
and wins
Player 2 Wins

Sprout Game Tree Normal Play

If Player 2 can separate and isolate the
2 final dots,
ending in
4 moves,
they win!
Player 2
Player 2

Player 2 Wins

Player 1 Wins

Sprout Game Tree Misère Play

Flip the condition:
Player who makes last move loses

Does this mean Player 1 can guarantee
a win?
Player 2

Player 1 Wins

Sprout Game Tree Misère Play

Nope! Player 2 is still the winner with perfect play

Player 2
"Computer Analysis of Sprouts", Applegate, Jacobson, \& Sleator,

Player 1 Wins

Outline for Today

- Homework Questions
- Quiz on Friday
- Final Project Presentation Schedule
- Last Time: Bezier Curves, Polyline Simplification, Clothoid Sketches
- Paper \& Pencil Game of Sprouts
- Computer Analysis of Sprouts
- Brussel Sprouts
- Hybrid Sprouts \& Brussel Sprouts

Sprouts Computer Analysis

Number of Spots	1	2	3	4	5	6	7	8	9	10	11
normal play	2	2	1	1	1	2	2^{*}	2^{*}	1^{*}	1^{*}	1^{*}
misère play	1	2	2	2	1^{*}	1^{*}	2^{*}	2^{*}	2^{*}		

A"1" means the first player to move has a winning strategy, a "2" means the second player has a winning strategy, and an asterisk indicates a new result obtained by our program.

The n-spot Sprouts positions evaluated so far fall into a remarkably simple pattern, characterized by the following conjecture:

Sprouts conjecture. The first player has a winning strategy in n-spot Sprouts if and only if n is 3 , 4 , or 5 modulo 6 . STILL HOLDS!

The data for misère Sprouts fit a similar pattern.
Misère sprouts conjecture. The first player has a winning strategy in n-spot misère Sprouts if and only if n is 0 or 1 modulo 5. LATER DISPROVEN

Definition: Graph Isomorphism

Two graphs are isomorphic if there is a bijection between the labels of the graphs, and an edge exists between a pair of vertices in one graph if and only if an edge exists between the corresponding vertices in the other graph.

Graph G Graph H \quad| An isomorphism |
| :--- |
| between \mathbf{G} and \mathbf{H} |
| $f(a)=1$ |
| $f(b)=6$ |
| $f(c)=8$ |
| $f(c)=3$ |
| $f(g)=5$ |
| $f(h)=2$ |

Sprouts Analysis Definitions

- Each spot is given a unique name.
- The curves of the sprout graph divide the plane into regions.

- The loop of spots and curves surrounding a region is called a boundary.
- The sprout graph can be encoded in set representation: \{ \{ (abcdhfcb) (ijkj) (I) $\}$ \{ (cfed) $\}$ \{ (degh) $\}$ \{ (efhg) $\}$ \}

Sprouts Analysis Move Definitions

A two-boundary move joins spot x on boundary B_{1} to spot y on boundary B_{2} and adds spot z. Boundaries B_{1} and B_{2} are now joined. No new regions are formed.

A one-boundary move connects spots on the same boundary of region R.
Region R is split into two subregions R_{1} and R_{2}. All boundaries of and within R must be designated for R_{1}, or R_{2}.

Note: 2^{k-1} ways to
-
 group k boundaries

Sprouts Analysis Implementation

The String representation can be simplified/compressed:

- Spots of degree 3 can be thrown away
- Regions with fewer than 2 lives

abb•ijkj•l•ா•■g•Ig•■ can be throw away

- Boundaries with no live spots can be thrown away

abb•ijkj•l•■

- Spots of degree zero or one do not appear on more than one boundary, so they don't need unique names, label them 0 and 1.
- If a degree two spot has no live spots between its two occurrences on one boundary, it only needs to be listed once.

Sprouts Analysis Pseudocode

Input sprout graph
function eval (P)
$S \leftarrow \operatorname{successors}(P)$
if S is empty then return "L"
for each position $P^{\prime} \in S$ do
if P^{\prime} is in the hash table legal one-boundary moves

Sprouts Analysis Implementation

- Lexicographically sort the boundaries \& regions to remove (significantly reduce) duplicate/isomorphic graphs.
- Use a hash table to store compressed set representation of all sprout graphs that we have previously examined \& labeled "W" or "L".
- Implementation notes with 1990 hardware: may be different now
- Memory was a more significant resource limitation than CPU/time.
- There are 10X more "W" configurations than "L" configurations.
- Therefore, only store "L" configurations in the hash table \& recompute successors when needed.

Sprouts Perfect Play Winner - Normal Play

Number of spots	Value of game	Cpu seconds (on a DEC 5000)	\# of positions in hash table	size of hash table (in bytes)
1	L	<0.1	1	101
2	L	<0.1	4	606
3	W	<0.1	7	606
4	W	0.2	33	1515
5	W	1.1	114	2828
6	L	5.9	338	4070
7	L		75.8	1843

$$
\text { Analysis now complete through } n=44 \text { (2011) }
$$

Conjecture: Player 1 wins if \# spots $\% 6==3,4$, or 5
"Computer Analysis of Sprouts", Applegate, Jacobson, \& Sleator, 1991

Sprouts Perfect Play Winner - Misère Play

Number of spots	Value of game	Cpu seconds (on a DEC 5000)	\# of positions in hash table	size of hash table (in bytes)
1	W	<0.1	1	202
2	L	<0.1	5	303
3	L	<0.1	0.1	11

Analysis now complete through $n=20$ (2011)
"Computer Analysis of Sprouts", Applegate, Jacobson, \& Sleator, 1991
$-13 M B$,
max memory
for DEC was
8-480MB (after 1991?)

Original Conjecture was later disproven
Current Conjecture: Player 1 wins when \# spots $\% 6==0$, 4 , or 5
EXCEPTIONS: Player 1 wins if \# spots == 1 and Player 1 loses if \# spots == 4

Discussion: Interactive Sprouts Implementation

- I couldn't find a good interactive, sketch-based digital Sprouts game Many versions seem to require Flash, so I don't know if they were any good
- What is hard about making a computer/phone implementation of Sprouts?

Outline for Today

- Homework Questions
- Quiz on Friday
- Final Project Presentation Schedule
- Last Time: Bezier Curves, Polyline Simplification, Clothoid Sketches
- Paper \& Pencil Game of Sprouts
- Computer Analysis of Sprouts
- Brussel Sprouts
- Hybrid Sprouts \& Brussel Sprouts

Brussel Sprouts Variant Game Rules

- Draw n crosses
- Players take turns:
- Draw a line
joining two
cross "legs".
- Draw a hash mark
across the new line
(a new "cross" position).
- No more than four lines
can emerge from any cross.

3

6

1

4

7

2

5

θ

Brussel Sprouts Analysis

- We start with n crosses and 4* n live 'leg's
- Each move adds a line, uses up two legs, and adds two legs
- Does it ever end?

Brussel Sprouts Analysis

- Yes, in fact it does end!
- Every face contains at least one live leg
- We are done when no face has more than one live leg
- It must follow Euler's Characteristic for Planar Graphs:
- Let $m=$ \# of moves
- $\#$ of edges $=e=2 m$
- \# of vertices $=v=n+m$ (we start with n, and we add one each move)
- \# of faces $=4 n$, there is exactly 1 free end inside of each face at the end
- $2=f-e+v$
- $2=4 n-2 m+n+m$
- \# of moves $=m=5 n-2$

Outline for Today

- Homework Questions
- Quiz on Friday
- Final Project Presentation Schedule
- Last Time: Bezier Curves, Polyline Simplification, Clothoid Sketches
- Paper \& Pencil Game of Sprouts
- Computer Analysis of Sprouts
- Brussel Sprouts
- Hybrid Sprouts \& Brussel Sprouts

Hybrid Sprouts \& Brussel Sprouts Game Rules

- Start with a mix of dots and/or crosses
- Draw a line connecting a dot or cross to itself or another dot or cross

Hybrid Sprouts \& Brussel Sprouts Analysis

For $\mathrm{n}=1$

For $\mathrm{n}>1$: Analysis is not completed!!!

