Visual Debugging

Today’s Class

• Highlights from the HW7
• This Week’s Readings
• Next Week’s Readings
• Examples of Visualization for Debugging
• Info on Visual Debugging in VTK
• Your Debugging Challenges
• HW8: Final Project Progress Report

Figure 2: Chart showing Cortlandt St Station, closed after September 11, 2001

Figure 2: Multiple-bioccular tensor for AFRI strains using parallel coordinates

“Mozart”, Tyler

“Trends in MIRU”, Amina
Today's Class

- Highlights from the HW7
- This Week's Readings
- Next Week's Readings
- Examples of Visualization for Debugging
- Info on Visual Debugging in VTK
- Your Debugging Challenges
- HW8: Final Project Progress Report

Readings for This Week:

- Ben Schneiderman, "The eyes have it: A task by data type taxonomy for information visualization", Visual Languages, 1996

- Visual Information-Seeking Mantra:
 - overview first
 - zoom and filter
 - then details on demand
Readings for This Week:

Today’s Class
- Highlights from the HW7
- This Week’s Readings
- Next Week’s Readings
- Examples of Visualization for Debugging
- Info on Visual Debugging in VTK
- Your Debugging Challenges
- HW8: Final Project Progress Report

Readings for Next Week:

Readings for Next Week:
- Cynthia A. Brewer and Barbara P. Buttenfield, "Mastering map scale: balancing workloads using display and geometry change in multi-scale mapping", Geoinformatica 2009

Today’s Class
- Highlights from the HW7
- This Week’s Readings
- Next Week’s Readings
- Examples of Visualization for Debugging
- Info on Visual Debugging in VTK
- Your Debugging Challenges
- HW8: Final Project Progress Report

“Advanced” Debugging
- Debugging Level 1:
 - Remove syntax errors in compilation
- Debugging Level 2:
 - Produces an answer
- Debugging Level 3:
 - Matches the output provided by the instructor
- Debugging Level 4:
 - Hypothesize system behavior
 - Develop & run experiments
 - Collect data & analyze results
 - Validate (or repeat process)
Ray Tracing
• Debug angle & direction of reflection, shadow, & refraction rays
• Solution: Draw the rays traced for a single pixel, use color for different ray types

Traversing Spatial Data Structures
• Solution: Draw solid box for each visited cell
• Solution: Draw solid quad for each cross cell face

Mesh Connectivity
• Maintain consistent orientation of triangles
• Visualize surface self-intersections
• Solution: Color the “back” side blue
• Maintain connectivity through local simplification and subdivision operations
• Solution: Color edges with only 1 triangle neighbor red

“Watertight” Model Construction
• Red = edge with only 1 triangle neighbor
• Yellow = edge with > 2 triangle neighbors (non manifold)
• Green = triangle with zero area
• Blue = triangle that is neighbor to a zero area triangle

Mesh Topology
• Neighborhood & local editing
• Lots of print statements:
 Triangle 206: 31 32 42
 Triangle 207: 31 42 28
 Triangle 208: 41 19 17
 Triangle 209: 42 41 63
 Triangle 210: 28 42 27
 ...
• Solution: Draw by hand
• Could use VTK graphs instead!

Visibility & Smooth Projection
• Occlusions & Projector Visibility
• Fade in/fade out for transitions
• Make sure the sum of all projectors = 1
• Solution: Visualization the number of projectors each patch can see
• Solution: Visualize blending weights for each projector
How Tetrahedra Fill Volumetric Space

• Drawing on (in 2D) didn’t work
• Creating an OpenGL visualization didn’t work (even with transparency)
• Solution: build lots of paper & tape models

4x4 Calibration Projection Matrices

• Sanity check position & direction of camera & each projector
• Understand distribution of calibration error
• Solution: Render all point samples in a common coordinate system

Projection

• Validate the projector world coordinate calibration
• Solution: Project the mesh from each projector, verify that the images closely align
• Surprisingly, this became one of our more popular “demo”s & this image made the RPI 2010 Research calendar

Today’s Class

• Highlights from the HW7
• This Week’s Readings
• Next Week’s Readings
• Examples of Visualization for Debugging
 • Info on Visual Debugging in VTK
• Your Debugging Challenges
• HW8: Final Project Progress Report

Introduction to VTK: Visual Debugging

• Look at the state of an algorithm...
• Without inserting messy rendering code into the algorithm itself

Visual Debugging
Primer: Writing a VTK class

- vtkInformation and vtkInformationVector
- RequestData()

Header

```c++
#ifndef __vtkTestFilter_h
#define __vtkTestFilter_h
#include "vtkPolyDataAlgorithm.h"
#include "vtkSmartPointer.h"

class vtkTestFilter : public vtkPolyDataAlgorithm {
    public:
        vtkTypeMacro(vtkTestFilter,vtkPolyDataAlgorithm);
        static vtkTestFilter *New();
    
    protected:
        int RequestData(vtkInformation *, vtkInformationVector **, vtkInformationVector *);

    private:
        vtkTestFilter(const vtkTestFilter&); // Not implemented.
        void operator=(const vtkTestFilter&); // Not implemented.
    };
#endif
```

Visual Debugging

- Need to store the state of the algorithm
  ```c++
  // ... Do something...
  appendFilter->Update();
  
  // Store the state:
  this->Output->DeepCopy(appendFilter->GetOutput());
  ```

- Need to give access to the "state" of the algorithm
  ```c++
  vtkPolyData* GetIntermediateOutput() {
      return this->Output;
  }
  ```

Use events/observers

- Inside the algorithm:
  ```c++
  this->InvokeEvent(this->RefreshEvent, NULL);
  ```

- Outside the algorithm:
  ```c++
  this->Filter->AddObserver(this->Filter->RefreshEvent, this,
                                &CustomStyle::CallbackFunction);
  ```

- You can define multiple events by indexing from `vtkCommand::UserEvent`
  ```c++
  this->RegisterEvent = vtkCommand::UserEvent + 1;
  ```

Example

Today’s Class

- Highlights from the HW7
- This Week’s Readings
- Next Week’s Readings
- Examples of Visualization for Debugging
- Info on Visual Debugging in VTK
- Your Debugging Challenges
- HW8: Final Project Progress Report
Your Debugging Challenges

- Describe a challenging coding or logic bug from your coursework/research/internship/summer job
 - Ultimately, what was the bug (if known)?
- What tool(s) did you use in trying to fix the bug?
 - Did you use any form of visualization in debugging?
 - What tools from VTK (if any) could you use to create a quick visualization to aid in debugging?
 - What infrastructure could you create to solve general debugging problems of this type?

Today’s Class

- Highlights from the HW7
- This Week’s Readings
- Next Week’s Readings
- Examples of Visualization for Debugging
- Info on Visual Debugging in VTK
- Your Debugging Challenges
- HW8: Final Project Progress Report

Final Project Guidelines

- Read & summarize 2-3 papers related to your project & incorporate/extend components of this work
- Save early iterations of the visualization (and any “bloopers”), to show the progression of your visualization design and data exploration
- Tues Nov 16th or Fri Nov 19th 10-11:50am? pre-review of final projects in Visual Design class

Final Project Progress Report #1

- Assignment #8 (due next week!)
- Read & summarize of 2-3 relevant papers (or equiv. quantity of books/reference webpages), not just papers we have read for class!
- Some progress to report… Ideally something visual that we can critique as a group and give you feedback