High Dimensional Data & Dimensionality Reduction

Today’s Class
- Readings for this Week
- Examples of High Dimensional Data
- Parallel Coordinates
- Data Clustering
- Principle Components Analysis (PCA)
- General Massive Data Visualization Tips
- Next Week’s Readings
- Assignment 5 & Mid-Term Presentation

Readings for This Week:

Scientific Data
- For many 3D spatial locations during an experiment or simulation
- Time-varying temperature, velocity, pressure, humidity, etc.

Misc. Personal Data
- Height, weight, eye color, phone number, address, IQ, age, cholesterol score, grade in Data Structures, etc.
- Example Hypotheses:
 - There is no correlation between height & phone number
 - There is a positive correlation between the ages of spouses
- Scatter plot: Look at 2 dimensions at a time
- Units on each axis are different!

http://www.ncror.at/dave/screenshots.html
http://www.mzandee.net/~zandee/statistiek/stat-online/chapter4/pearson.html
Gene Expression

• Expression level for hundreds of genes
• For many trials (different individuals/conditions)
• Discover correlations: genes that commonly work together or in opposition

>3 Dimensions vs. “Really High Dimensions”

• Obvious/intuitive dimensions
 — Position, Orientation, Time, Temperature, Color, etc.

• Hundreds or thousands of attributes
 — May be floating point values or binary values
 — Stored as a “feature vectors” for each data point
 — Nearest Neighbor calculations become very expensive
 — Visualization seems impossible

Today’s Class

• Readings for this Week
• Examples of High Dimensional Data
• Parallel Coordinates
• Data Clustering
• Principle Components Analysis (PCA)
• General Massive Data Visualization Tips
• Next Week’s Readings
• Assignment 5 & Mid-Term Presentation

Parallel Coordinates

Designing Visualizations using Parallel Coordinates

• How many dimensions (vertical axes)?
• In what order should the axes appear?
• Which direction should each axis run (up or down?)
• How many data points (lines)?
• How could color, line thickness, etc. be used to highlight patterns in the data?
• Data exploration or debugging tool? (Iterate)
• Or final visualization?
• Interaction: e.g., selection or filtering
Radar Chart (a.k.a. web chart spider chart, star chart, star plot, cobweb chart, irregular polygon, polar chart, kiviat diagram)

Today’s Class
- Readings for this Week
- Examples of High Dimensional Data
- Parallel Coordinates
- Data Clustering
- Principle Components Analysis (PCA)
- General Massive Data Visualization Tips
- Next Week’s Readings
- Assignment 5 & Mid-Term Presentation

K-Means Clustering

For a set of 2D/3D/nD points:
1. Choose k, how many clusters you want (oracle)
2. Select k points from your data at random as initial team representative
3. Every other point determines which team representative it is closest to and joins that team
4. The team averages the positions of all members, this is the team’s new representative
5. Repeat 3-5 until change < threshold

Clustering & Parallel Coordinates

How to do (K-means) Clustering

- Determine your distance function
 - In spatial datasets, often just be Euclidean distance
 - Maybe also add in surface normal, etc.
 - Relative weighting of different dimensions
 - Especially tricky when units are unrelated
 - Also problematic when values are binary
- Finding nearest neighbors can be expensive
 - Use a spatial data structure

Today’s Class
- Readings for this Week
- Examples of High Dimensional Data
- Parallel Coordinates
- Data Clustering
- Principle Components Analysis (PCA)
- General Massive Data Visualization Tips
- Next Week’s Readings
- Assignment 5 & Mid-Term Presentation
Principle Components Analysis (PCA)

- Takes high dimensional data, where some/many axes are correlated
- Reduce to a smaller set of dimensions that are not correlated
- Dimensions/axes form a new basis/coordinate system
 - Each example from the original data can be defined as a linear combination of the new axes
- Essentially we want to find the internal structure that best explains the variance in the data

PCA Example: Material Reflectance Model

http://cnx.org/content/m11461/latest/

PCA Example: Face Modeling & Transfer

“Face Transfer with Multilinear Models”, Vlasic, Brand, Pfister, & Popovic, SIGGRAPH 2005

Today’s Class

- Readings for this Week
- Examples of High Dimensional Data
- Parallel Coordinates
- Data Clustering
- Principle Components Analysis (PCA)
- General Massive Data Visualization Tips
- Next Week’s Readings
- Assignment 5 & Mid-Term Presentation

General Massive Data Visualization Tips

- Use your spatial real estate effectively
 - sort, organize
 - cluster, separation
 - layout, relative distances
- Color, Contrast, Intensity
 - layering, overlapping

Today’s Class

- Readings for this Week
- Examples of High Dimensional Data
- Parallel Coordinates
- Data Clustering
- Principle Components Analysis (PCA)
- General Massive Data Visualization Tips
- Next Week’s Readings
- Assignment 5 & Mid-Term Presentation
Readings for Next Week: *(pick one)*

Homework Assignment 5: *due Tuesday @ 11:59pm*

Wrangling High Dimensional Data

- Identify a high dimensional dataset
 - *may be the same data you or your teammate used for Assignment #4*
- Hypothesize a pattern/correlation in the data
- Experiment with:
 - different styles of high-dimensional visualization and/or
 - different pre-processing (e.g., k-means, pca, etc.)
- Analyze the results
- Focus: Analysis & Validation & Visualization Execution

Readings for Next Week: *(pick one)*

- “Heapviz: Interactive Heap Visualization for Program Understanding and Debugging” Aftandilian, Kelley, Gramazio, Ricci, Su, & Guyer, 2010

Mid-Term Presentations *Wednesday March 7th*

- ~ 5 minutes per person (10 mins per team of 2)
- Short & polished “Elevator Pitch” style presentation
 - Laptop projection (e.g., powerpoint or live demo), or
 - Poster printed
- Highly encouraged (not required) to revisit & extend a previous assignment
- Teams encouraged (not required)
- Formal peer feedback (incorporated into grade)