Uncertainty Part II: Node-Edge Graphs & Terrain

Today

• **Reading for Today**
 – “Representing Uncertainty in Graph Edges: An Evaluation of Paired Visual Variables”
 – Related Paper: "Quantitative Texton Sequences for Legible Bivariate Maps"

• Prof Franklin’s work on Observer Siting
 – An example of uncertainty visualization

• Emergency Management Visualization
 – Sean Kim’s masters project

• Readings for Tuesday after Break
Reading for Today

• “Representing Uncertainty in Graph Edges: An Evaluation of Paired Visual Variables” Guo, Huang, and Laidlaw, IEEE TCVG 2015

<table>
<thead>
<tr>
<th>Bertin’s Original Visual Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
</tr>
<tr>
<td>Size</td>
</tr>
<tr>
<td>Shape</td>
</tr>
<tr>
<td>Value</td>
</tr>
<tr>
<td>Colour</td>
</tr>
<tr>
<td>Orientation</td>
</tr>
<tr>
<td>Texture</td>
</tr>
</tbody>
</table>

Table 1: These are Bertin's visual variables

• Visual Variables:
 • location/position, size/width, color hue, color value/brightness, grain, orientation, and shape
 – J. L. Morrison [1974]
 • Color saturation, arrangement
 – Cleveland & McGill [1984]
 • Angle, volume curvature
 – A. M. MacEachren [1992]
 • Focus/fuzziness, resolution, transparency
 – M. Carpendale [2003]
 • Motion, depth, occlusion

• Encode “strength” (placeholder data)
 – Width, hue, or saturation

• Encode uncertainty using a visual variable
 – Lightness, fuzziness, grain, or transparency

Fig. 1: An illustration of how each of the seven visual variables progress with increasing data value.

• Their conclusions only apply to line based marks
• Which visual variables are most salient? Are most discriminable?
• Disassociativity of each pair of visual variables: Can you differentiate changes in one variable while ignoring changes in another variable?
• Are some visual variables more appropriate (more natural/intuitive?) for certain data?
• Evaluate by studying response time, accuracy
• How much can we (should we?) pack into a single visualization?
• Tangent: Are we good at multitasking?

• Random graphs
• Each edge one of 5 values for “strength” and “uncertainty”
• Locate one edge of a specific value (max or min) of strength or uncertainty that must be identified (or determined to be missing)
 – “find extremum”
 – “retrieve value”
 – “visual search”
• Which graph has overall higher strength or uncertainty?
 – “characterize distribution”
 – “identification-comparison”
 – “visual aggregation”
• Varied the relative discriminability of the two variables
 – Perception of the weaker one is better when they are more similar
• Large number of hypotheses
• 20 participants, 1 hour each, 5760 trials
 – Short teaching/training session with feedback on correctness
 – (personally don’t want to have to administer a user study!)
• Provide explicit design recommendations, useful reference
• Not surprised that lightness interferes with hue and width confused with fuzziness; Surprised that grain performed well
• Well written
 – clearly state hypotheses, justified their conclusions well
 – I could recreate the results from this paper
 – “open questions” instead of future work
• How would the results be different with people with visual training (not novices)?
• How would the results be different for colorblind users?
• Would have liked to see a real-world example of this graph style. And specifically high density graphs (requires thin edges).

Today

• Reading for Today
 – “Representing Uncertainty in Graph Edges: An Evaluation of Paired Visual Variables”
 – Related Paper: "Quantitative Texton Sequences for Legible Bivariate Maps"
• Prof Franklin’s work on Observer Siting
 – An example of uncertainty visualization
• Emergency Management Visualization
 – Sean Kim’s masters project
• Readings for Tuesday after Break
Today

• Reading for Today
 – “Representing Uncertainty in Graph Edges: An Evaluation of Paired Visual Variables”
 – Related Paper: "Quantitative Texton Sequences for Legible Bivariate Maps"
• Prof Franklin’s work on Observer Siting
 – An example of uncertainty visualization
• Emergency Management Visualization
 – Sean Kim’s masters project
• Readings for Tuesday after Break

Optional Reading for Today:

• “Siting Observers on Terrain”
 Wm Randolph Franklin, RPI ECSE
Observers have a specified maximum straight line sight distance
Some observer placements see more (black)
Some are occluded
• Let’s place “observers” (e.g., cell phone towers) on a complex terrain
 – Where should they be placed to maximize coverage?
 • What if the observers need to see each other? (form a connected network for communication)
 – How much error is introduced because of the original sensor measurements (discrete sample points might miss significant ridges or valleys)?
 – How much error is introduced if the dataset is compressed for storage or transmission and then lossily reconstructed?
 • Erroneous visibility, Erroneous occlusions
 – Knowing the terrain and placement of “red team” observers what path should the “blue team” take to avoid being seen?
 – Knowing that it will be used to do siting tasks, can you design a better compression algorithm that reduces lossy artifacts that cause significant errors?
Regular grid of height samples

Query for occlusions along sight line

Data interpolation might be incorrect!

Hue = terrain height
Value (binary color/black) = visibility
Grain/texture = uncertainty

If height is changed by epsilon, the visibility flips!

The visibility of one half of the points in uncertain!
Today

• Reading for Today
 – “Representing Uncertainty in Graph Edges: An Evaluation of Paired Visual Variables”
 – Related Paper: "Quantitative Texton Sequences for Legible Bivariate Maps”

• Prof Franklin’s work on Observer Siting
 – An example of uncertainty visualization

• Emergency Management Visualization
 – Sean Kim’s masters project

• Readings for Tuesday after Break

Emergency Response Decision Making
Full network detail is overwhelming.

Subset of data
Zoom and “expand” information for critical nodes and network links.

Trace back problem to source of outage.
Multi-User Non-Linear Adaptive Magnification for Satellite Imagery and Graph Networks
Sean Kim, Masters Thesis, RPI, July 2014
Today

• Reading for Today
 – “Representing Uncertainty in Graph Edges: An Evaluation of Paired Visual Variables”
 – Related Paper: "Quantitative Texton Sequences for Legible Bivariate Maps”
• Prof Franklin’s work on Observer Siting
 – An example of uncertainty visualization
• Emergency Management Visualization
 – Sean Kim’s masters project
• Readings for Tuesday after Break

Readings for Tuesday after Break

• Visual.ly's Code of Ethics for Data Visualization Professionals
• Society of Professional Journalists' Code of Ethics