
CSCI 4550/6550 Interactive Visualization
https://www.cs.rpi.edu/~cutler/classes/visualization/S24/

Lecture 3:
Graph Visualization

part 1

“Various shades
of acrylic paint
are dripped onto
a metallic rod,
which is connected to
a drill.
When switched
on, the paint
starts to move
away from the rod.”

http://fabianoefner.com/?portfolio=black-hole-2

● My office hours after lecture & Thursdays 1-3pm (Lally 302)
● Fauzan’s office hours are… TBA
● Reading & worksheet grades are posted in Rainbow Grades

○ Send me email when you complete your “Discussant” duty
so I make sure to enter your grade!

● Peer Grading for HW1 is in progress!
○ How is it going?
○ I will release the HW1 grades (both TA & peers) on Wednesday

● Rainbow Grades are available now and will update nightly
○ If you see something fishy, just ask…

Miscellaneous Announcements

● Homework 2 Discussion/Questions
● Readings for Today

○ “Improved force-directed Layouts”
○ “A Technique for Drawing Directed Graphs”

● Graph Drawing Goals, Questions, & Challenges
● Some Related Terms/Algorithms

(mentioned indirectly in the reading)
● Readings for Friday
● Computational Geometry: Closest pair of points

Today

Homework 2: Time-Based Datasets

● Team of 2
● Obtain an interesting time-based dataset

○ Should be collectable* from online sources, and
○ Require a modest effort to prepare*

* = you’ll submit your scripts/code to document
● Use Microsoft Excel or Google Sheets or LibreOffice Calc

○ Create a variety (one of each?!) of the charts following the
guidelines from "Eenie, Meenie, Minie, Moe: Selecting
the Right Graph for Your Message”

○ Excellent labels and captions for each
● Upload your assignment to Submitty by Thursday @ 11:59pm

And post two of the charts on the forum

Tools for Scraping Data from the Web

● copy-paste
● wget
● grep / sed / awk / sort / uniq
● Favorite programming language to parse/strip out

unnecessary html formatting
● Save as .csv (comma separated value) files to upload to

Excel / Google Sheets
● Python has lots of packages for parsing (e.g., json format)
● Selenium for automated browsing of websites

Homework Goal: Everyone learn something
(or learn more) about one of these tools (or similar)

● Homework 2 Discussion/Questions
● Readings for Today

○ “Improved force-directed Layouts”
○ “A Technique for Drawing Directed Graphs”

● Graph Drawing Goals, Questions, & Challenges
● Some Related Terms/Algorithms

(mentioned indirectly in the reading)
● Readings for Friday
● Computational Geometry: Closest pair of points

Today

“Improved force-directed layouts”,
Gansner and North, Graph Drawing, 1999.

Reading for Tuesday (pick one)

Reading for
Tuesday (pick one)

“A Technique for
Drawing Directed Graphs”
Gansner, Koutsofios, North, & Vo,
IEEE Trans. on Software
Engineering, 1993.

● Undirected graphs have too much freedom”
● “Isothetic rectangle”
● Writing

○ “Will be reported in []”: are forward
references to unpublished work ok?

○ Casual mentions of names of
computer programs (written by authors)

○ Related work as 2nd section or as last section:
which do you prefer?

○ Jumped straight into pseudocode without much
overview / intuition (hard to read)

○ Don’t use contractions in formal writing

Miscellaneous Notes
https://en.wikipedia.org/wiki/Isothetic_polygon#/media/File:Isothet.jpg

● Homework 2 Discussion/Questions
● Readings for Today

○ “Improved force-directed Layouts”
○ “A Technique for Drawing Directed Graphs”

● Graph Drawing Goals, Questions, & Challenges
● Some Related Terms/Algorithms

(mentioned indirectly in the reading)
● Readings for Friday
● Computational Geometry: Closest pair of points

Today

Graph Drawing Goals

● Automated!
● Can read all of the labels (not overlapping, font not too small)
● Can follow the line and see exactly which 2 vertices it connects
● Aesthetically pleasing
● Layout should display as much symmetry as possible
● Crossing free or minimal-crossing layout
● Consistent direction for directed edges
● All edge lengths are approximately equal
● Even vertex distribution
● Distance between nodes in final layout should be as close as possible

to “graph distance” (# of edges on shortest path between those nodes)

● What is the metric of success for each of our goals?
● Can we guarantee to find a solution? The optimal or best solution?
● Can we use randomness? Does it help?
● How expensive/slow are the different algorithms to draw graphs?
● How does it scale with more nodes/edges?

○ Does it lose effectiveness in meeting our goals?
○ How is the running time affected?

● How do we label the nodes/edges with color/words/images?
● Is there still use for graph drawing tools for data with 40-100 nodes?

Or should we focus exclusively on modern, “big data” datasets?

Graph Drawing Questions

● What if the graph is non planar?
● What if the graph has many nodes & edges?

○ ~40-100 works well for simple force-based methods
○ Is # of springs = # of edges?

Or is # of springs ≫ # of edges?
○ Computation & convergence & getting stuck in a local minimum

● Does 3D (or 4D or …) or layout on the surface of a
sphere or torus or … non Euclidean space help?

● Does adding interaction help? Are high quality static layout tools
necessary for building a high quality interactive graph visualization?

Graph Drawing Challenges

● Homework 2 Discussion/Questions
● Readings for Today

○ “Improved force-directed Layouts”
○ “A Technique for Drawing Directed Graphs”

● Graph Drawing Goals, Questions, & Challenges
● Some Related Terms/Algorithms

(mentioned indirectly in the reading)
● Readings for Friday
● Computational Geometry: Closest pair of points

Today

● Springs link the particles
● Springs try to keep

their rest lengths
and preserve the
length of the string

String/Hair/Cloth Simulation

Interactive Animation of Structured Deformable Objects Desbrun, Schröder, & Barr 1999

Note: mass-spring simulations
are expensive and slow and
challenging to tune to ensure
robustness and reasonable

performance.

● Force in the direction of the spring and
proportional to difference with rest length L0

● K is the stiffness of the spring
○ When K gets bigger, the spring really wants to keep its rest length

Spring Forces

Pi
Pj

L0 F

• Animal graph picture!

● Value for spring rest length?
○ Rest length = 0 - springs only attract, or
○ Springs both attract & repel (non-zero edge length), or
○ Rest length = infinity - springs only repel

● What is the correct spring constant?
○ Too high/stiff → system explodes (does not converge)
○ Too low → takes too long to converge

Using Springs for Graph Drawing

● A red flag? Algorithm might not be sufficiently general or robust.
● But honest and complete documentation is necessary for the work to

be reproducible, and improved in future.

Writing Note: Algorithms with arbitrary constants

● How to re-district the
Netherlands into provinces
so that everyone reports
to the closest capital

● Cell edges are the
perpendicular bisectors
of nearby points

● 2D or 3D

● Supports efficient
Nearest Neighbor queries

Voronoi Diagram/Cells/Regions

Computational Geometry Algorithms and Applications,
de Berg, Cheong, van Kreveld and Overmars, Chapter 7

● For a set of 2D/3D/nD points:
● Choose k, # of clusters

(maybe an “oracle” tells us...)
● Select k points from your data at

random as initial team representatives
● Every other point determines which

team representative it is closest to
and joins that team

● The team averages the positions
of all members, this is the team’s
new representative

● Repeat x times or until change < threshold

K-Means Clustering Same/Similar to: Lloyd’s Algorithm

Wei Zhang
https://wei2624.github.io/MachineLearning/usv_kmeans/

● Works quite well, when the data can be meaningfully classified
(and we know how many clusters to use).

● With dense data, output is visually similar to Voronoi diagram
(k-Means chooses the data points that define the cells)

K-Means Clustering

http://blog.mpacula.com/2011/04/27/k-means-clustering-example-python/ "Efficient K-Means Clustering using JIT" Yi Cao

● P(α, β, γ) = αa + βb + γc
with α + β + γ =1

● If 0 < α < 1 & 0 < β < 1 & 0 < γ < 1
then the point is inside the triangle!

Barycentric Coordinates

R
o

R
d

c

a b

P

● Ratio of opposite sub-triangle area to total area
 α = Aa/A β = Ab/A γ = Ac/A

● Use signed areas for points outside the triangle

How Do We Compute α, β, γ ?

But how do I know if the point is outside the triangle?
 That’s what I was trying to determine!

a b

P

Aa
A

 α < 0 α > 0

cc

a b

P

AaA

● Planar graphs (only?)

● Start with some fixed positions

● Each vertex is placed at
the average of its neighbors

● Can be solved as a system
of equations

● Results can have poor
resolution & poor distribution
of vertices

Barycentric Graph Layout

● Increase/maximize angular
resolution at vertices

○ Can use Bezier Curves

● Lombardi or “near-Lombardi”
○ Inspired by graphic designer (and conspiracy theorist) Mark

Using Non-Straight Edges

● What are the advantages of straight vs curved edges for the graph on
the right?

Effectiveness of Curved Edges

A seven-vertex cycle and
its complement, showing
in each case an optimal
coloring and a maximum
clique (shown with heavy
edges). Since neither
graph uses a number of
colors equal to its clique
size, neither is a “Perfect
Graph”.

https://en.wikipedia.org/wiki/Perfect_graph#/media/File:7-hole_and_antihole.svg

● 4 control points

● Curve passes through first &
last control point

● Curve is tangent at P0 to (P1- P0)
and at P3 to (P3- P2)

Cubic Bézier Curve

http://www.e-cartouche.ch/content_reg/cartouche/graphics/en/html/Curves_learningObject2.html
http://www.webreference.com/dlab/9902/bezier.html

● Hyperbolic layout has
better equal distance
layout for leaves of a
“complete tree”

● Related to
○ Fisheye view
○ Focus + context
○ Assumption that

center is more
important

Non Euclidean

Daina Taimina
http://www.math.cornell.edu/~dtaimina/Artexhibits.htm

● Homework 2 Discussion/Questions
● Readings for Today

○ “Improved force-directed Layouts”
○ “A Technique for Drawing Directed Graphs”

● Graph Drawing Goals, Questions, & Challenges
● Some Related Terms/Algorithms

(mentioned indirectly in the reading)
● Readings for Friday
● Computational Geometry: Closest pair of points

Today

“Social Network Clustering and Visualization using Hierarchical Edge
Bundles”, Jia, Garland, & Hart, Computer Graphics Forum, 2011.

Readings for Friday (pick one)

“Force-directed
Lombardi-style
graph drawing”,
Chernobelskiy
et al., Graph
Drawing 2011.

Readings for Friday (pick one)

● Homework 2 Discussion/Questions
● Readings for Today

○ “Improved force-directed Layouts”
○ “A Technique for Drawing Directed Graphs”

● Graph Drawing Goals, Questions, & Challenges
● Some Related Terms/Algorithms

(mentioned indirectly in the reading)
● Readings for Friday
● Computational Geometry: Closest pair of points

Today

● Given n points,
find the two points that
have the smallest distance
between each other.

● Applications?
○ Preventing graph node overlap
○ Collision detection simulation

(air traffic control, games, etc)
○ Merging similar data points

(data size reduction)

Closest Pair of Points Problem

https://en.wikipedia.org/wiki/Closest_pair_of_points_problem

● Goal: Reduce number of vertices/edges while minimize
shape/color/attribute loss

● Possible algorithm for 2D/3D meshes: Always collapse shortest edge

Edge Contraction / Edge Collapse

● Analysis?
For n points?

Brute Force Algorithm

O (n 2)

https://en.wikipedia.org/wiki/Closest_pair_of_points_problem

● Sort points by one of the axes
○ Find middle point,
○ Split points into two

equal sized groups
○ & Recurse…

Divide & Conquer Algorithm

● Combine results: Overall closest pair must be:
○ Closest pair in left half (distance = δl), or
○ Closest pair in right half (distance = δr), or
○ A pair that spans the halves w/ distance < min(δl , δr)

● How many pairs do we need
to consider at the boundary?

Divide & Conquer Algorithm

● In the worst case,
all points are within
δ of the split point!
Where δ = min(δl , δr)

● Isn’t this O(n2)??

Introduction to Algorithms, Cormen, Leiserson, & Rivest

● Let’s also sort the
points by the y-axis

● Walk from top to
bottom and compare
each point to all
points within δ vertical distance (grey box).

● Worst case, how many other points are in this rectangle?

Divide & Conquer

● No more than 7 other points!

Introduction to Algorithms, Cormen, Leiserson, & Rivest

● Analysis:

Divide & Conquer

● Store the points twice, sorted by x & y axes
○ Sort once at the start, not in each recursion

● Per recursion
○ Max of O(7n) pairwise comparisons

● Overall: O (n log n)

● Does it work in 3D? Or higher dimensions?
● Can we do better?
● What about dynamic data? What applications?

