
CSCI 4550/6550 Interactive Visualization

Lecture 4: Graph Visualization II: Clarity, Simplification, & Interaction

- Worksheet & HW 3: Graphing RPI CSCI Course & Instructor Data
- Reading: Clustering/Hierarchical Edge Bundling
- Reading: Lombardi Graphs
- Emergency Management Graph Visualization
 - Sean Kim's masters project
- Preview of "High-Dimensional" Data Visualization
- Readings for Tuesday

RPI's Standard for Degree Requirement Templates

- Advantages?
 - You know what you're doing every term, you have a plan
 - Simpler to look at than degreeworks
 - Quick & easy, & symmetric (pretty)
 - Understand average CSCI student
 - Structure is comforting, don't need to ask for help to understand basic requirements
 - Template is helpful, see how its possible to complete requirements
 - Organized by term, chronologic
 - Familiar, standardized across RPI
- What important information is missing?
 - No information/guidelines on free electives
 - Lots of footnotes
 - Doesn't have important stuff like comm intensive requirement
 - \circ If you miss or fail something, then everything later may be impacted
 - Fall vs spring offerings not visualized
 - Prereqs aren't visualized, don't know what will be impacted if a course is delayed
 - If have AP credits, don't know how to adapt
 - Doesn't have special case
 - Not shown that you can take > 16 per term (graduate a term early)
 - It is too rigid, if you get off schedule, you lose structure, have to talk to an advisor, that can be scary

First Year				
Fall 2022		Spring 2023		
CSCI 1100 Computer Science I1	4	CSCI 1200 Data Structures	4	
MATH 1010 Calculus I	4	MATH 1020 Calculus II	4	
PHYS 1100 Physics I2	4	BIOL 1010 Intro. to Biology2	3	
HASS Elective	4	BIOL 1015 Intro. to Biology Lab2	1	
		HASS Elective	4	
0				

Second Year				
Fall 2023		Spring 2024		
CSCI 2200 Foundations of CS	4	CSCI 2300 Intro. to Algorithms	4	
CSCI 2500 Computer Organization ³	4	CSCI 2600 Principles of Software ⁴	4	
Mathematics Option I	4	Mathematics Option II	4	
HASS Elective	4	HASS Elective	4	

Third Year			
Arch Summer 2024		Fall 2024 -or- Spring 2025	
CSCI 4210 Operating Systems ⁶	4	CSCI 4430 Programming Languages6 -or-	4
		CS Option/Capstone	
CS Option/Capstone -or- Free Elective5	4	Science Option	4
HASS Elective	4	HASS Elective	4
Free Elective	4	Free Elective	4
			-

Fo	urt	h Year	
Fall 2025		Spring 2026	
CS Option/Capstone -or- CSCI 4430 Programming Languages ⁶	4	CS Option/Capstone	4
CS Option/Capstone	4	Free Elective -or- CS Option/Capstone	4
Free Elective	4	Free Elective	4
Free Elective	4	Free Elective	4

Today's Worksheet: Graph Drawing Design

- Pair up with • someone new!
- Design a graph for the CSCI major template
- Visualize "Who teaches the CSCI courses"

First Year				
Fall 2022		Spring 2023		
CSCI 1100 Computer Science I1	4	CSCI 1200 Data Structures	4	
MATH 1010 Calculus I	4	MATH 1020 Calculus II	4	
PHYS 1100 Physics I ²	4	BIOL 1010 Intro. to Biology ²	3	
HASS Elective	4	BIOL 1015 Intro. to Biology Lab2	1	
		HASS Elective	4	

Second Year				
Fall 2023		Spring 2024		
CSCI 2200 Foundations of CS	4	CSCI 2300 Intro. to Algorithms	4	
CSCI 2500 Computer Organization ³	4	CSCI 2600 Principles of Software ⁴	4	
Mathematics Option I	4	Mathematics Option II	4	
HASS Elective	4	HASS Elective	4	

Third Year

Arch Summer 2024		Fall 2024 -or- Spring 2025	
CSCI 4210 Operating Systems ⁶	4	CSCI 4430 Programming Languages6 -or-	4
		CS Option/Capstone	
CS Option/Capstone -or- Free Elective5	4	Science Option	4
HASS Elective	4	HASS Elective	4
Free Elective	4	Free Elective	4

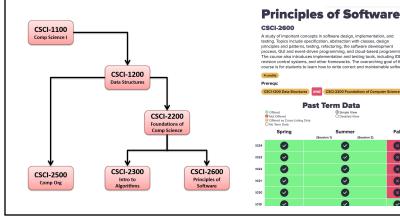
Fall 2025		Spring 2026	
CS Option/Capstone -or-	4	CS Option/Capstone	4
CSCI 4430 Programming Languages ⁶			
CS Option/Capstone	4	Free Elective -or- CS Option/Capstone	4
Free Elective	4	Free Elective	4
Free Elective	4	Free Elective	4

× 8

×

×

0

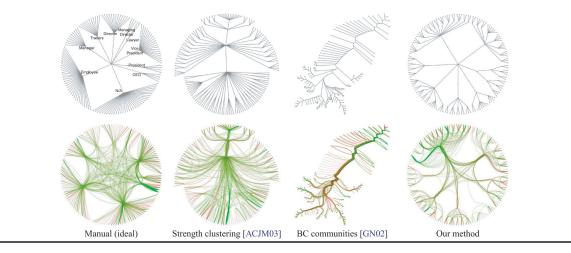

Ø

0

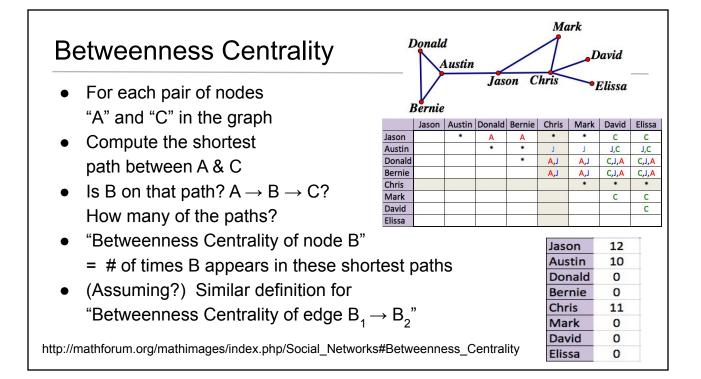
0

HW 3: Graphviz & RPI CSCI Course Data

- Learn GraphViz: Open-source software • for automated graph drawing
- Parse JSON data from QuACS

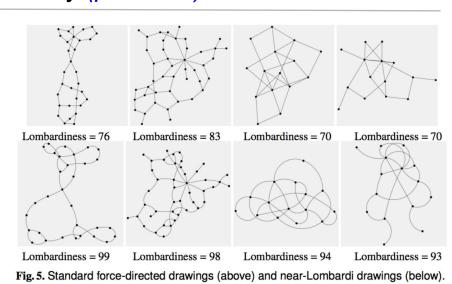


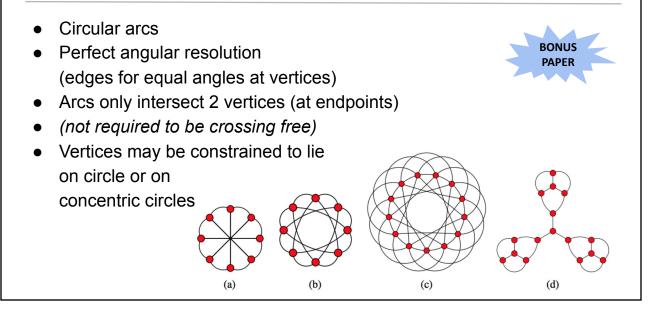
"crse": 4550,
"id": "CSCI-4550",
"sections": [
{
"act": 39,
"attribute": "Communication Intensive",
"cap": 45,
"credMax": 4.0,
"credMin": 4.0,
"crn": 93902,
"crse": 4550,
"rem": 6,
"sec": "01",
"subj": "CSCI",
"timeslots": [
{
"dateEnd": "04/24",
"dateStart": "01/08",
"days": [
"Т",
"F"
1,
"instructor": "Barbara Cutler",
"location": "Troy Building 2012",
"timeEnd": 1550,


- Worksheet & HW 3: Graphing RPI CSCI Course & Instructor Data
- Reading: Clustering/Hierarchical Edge Bundling
- Reading: Lombardi Graphs
- Emergency Management Graph Visualization
 - Sean Kim's masters project
- Preview of "High-Dimensional" Data Visualization
- Readings for Tuesday

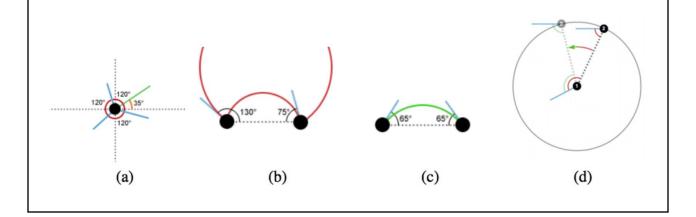
Readings for Friday (pick one)

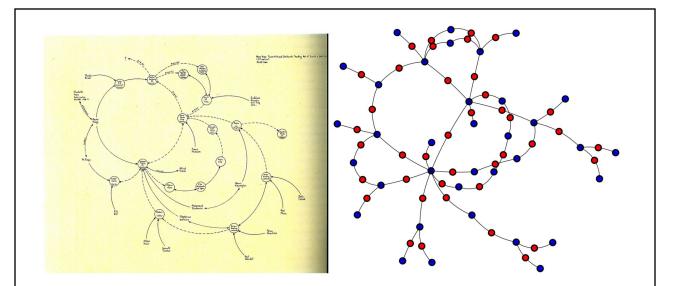
"Social Network Clustering and Visualization using Hierarchical Edge Bundles", Jia, Garland, & Hart, Computer Graphics Forum, 2011.


- Color is very helpful except concerns about colorblindness
- Relation to '6 degrees of separation'
- Concern that small (but important) features or communities may be lost
- Concern about high cost of computing betweenness centrality (BC) metric
- Final graphs can still be confusing to interpret
- Diagrams very helpful in explaining steps of algorithm
- What are some anecdotal real-world examples of a "low BC edge" and a "high BC edge"?
 - Why does it make sense to preserve or simplify away these edges?
 - Why is a tree the best simplified representation of a big complex graph?


- Worksheet & HW 3: Graphing RPI CSCI Course & Instructor Data
- Reading: Clustering/Hierarchical Edge Bundling
- Reading: Lombardi Graphs
- Emergency Management Graph Visualization
 - Sean Kim's masters project
- Preview of "High-Dimensional" Data Visualization
- Readings for Tuesday

Readings for Friday (pick one)


"Force-directed Lombardi-style graph drawing", Chernobelskiy et al., Graph Drawing 2011.



"Lombardi Drawings of Graphs", Duncan, Eppstein, Goodrich, Kobourov, Nollenberg, Graph Drawing 2010

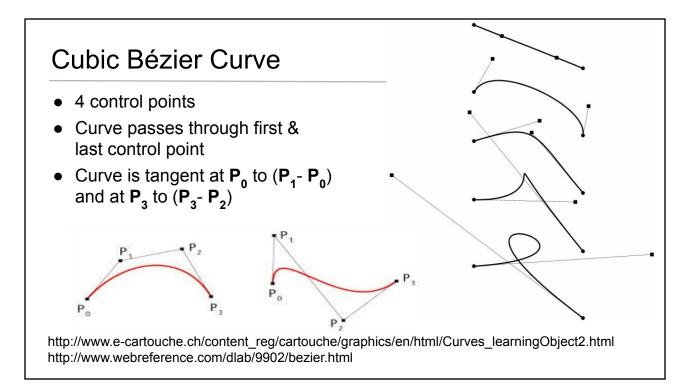
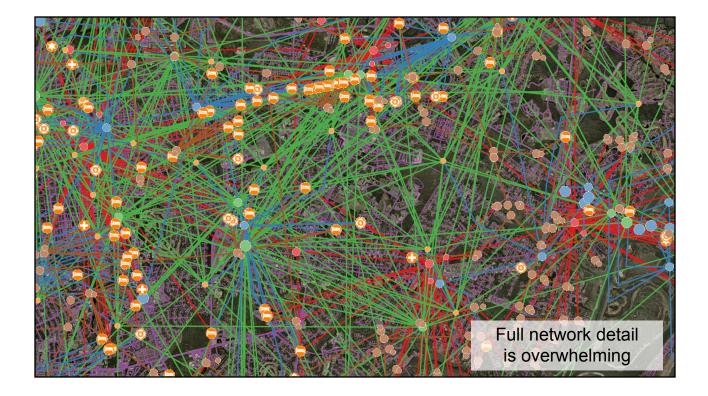
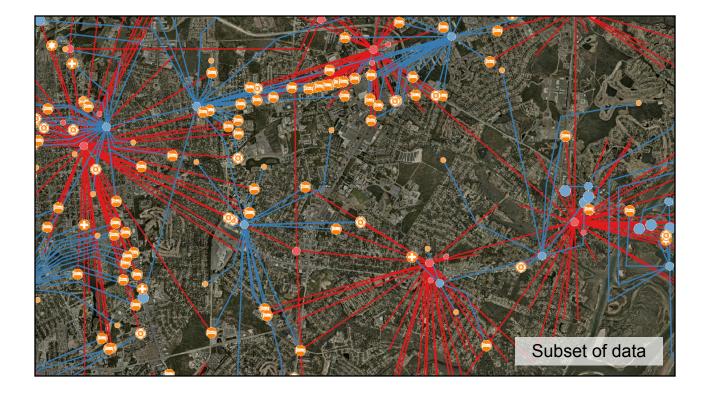
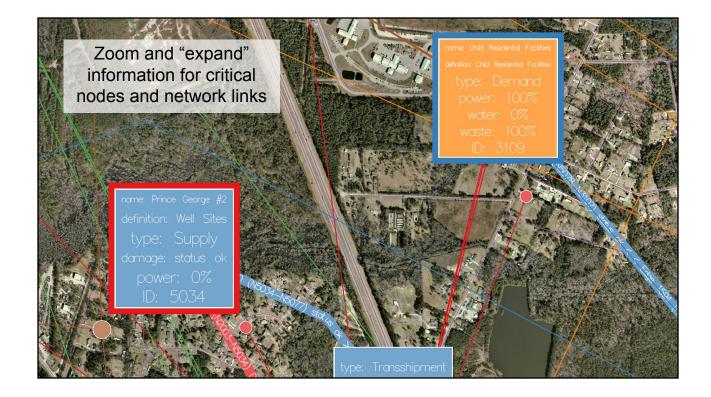

- Relaxation of the Lombardi Graph requirements
- "straight-line segments rarely occur in nature ... it is not clear that humans prefer straight-line segments for the sake of graph readability"
- Forces on tangent angles as well as on vertex positions

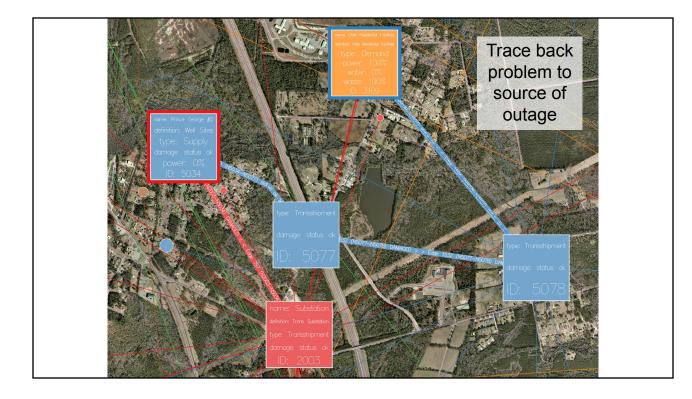
Fig. 8. The graph for Lombardi's Hans Kopp, Trans K-B and Shakarchi Trading [26], shown as rendered by Lombardi and as rendered by our force-directed method based on the use of dummy vertices.

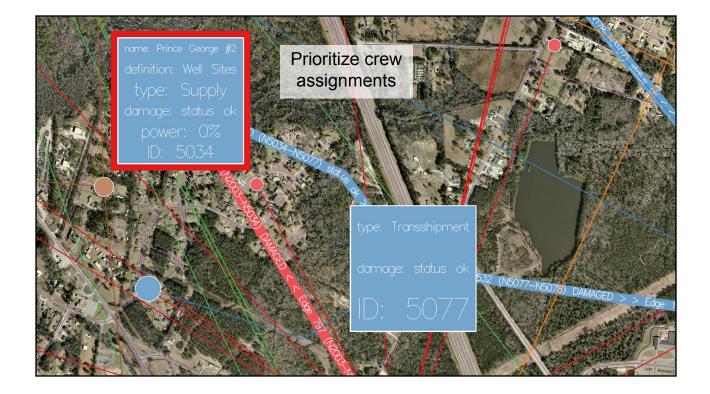
- People are more patient with aesthetically pleasing graphs (will spend longer studying to learn/draw conclusions)
- What about relaxing the circular arc requirement and allowing Bezier arcs?
- How does it scale to larger data?
- Long curved arcs can be much harder to follow
- Circular layout of nodes is often very good!
- Would like more pseudocode
- How well would graphs drawn by Mark Lombardi score on the "Lombardiness" metric?
 - Equal angles is not intrinsic to his drawings!
 - What alternate geometric properties are found in his drawnings? Is it possible to write code to mimic those properties?

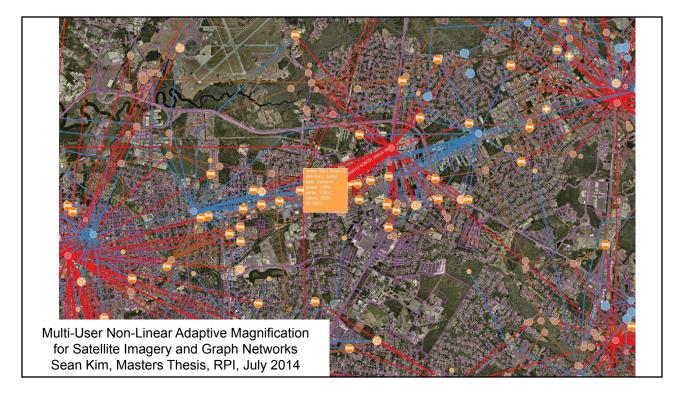


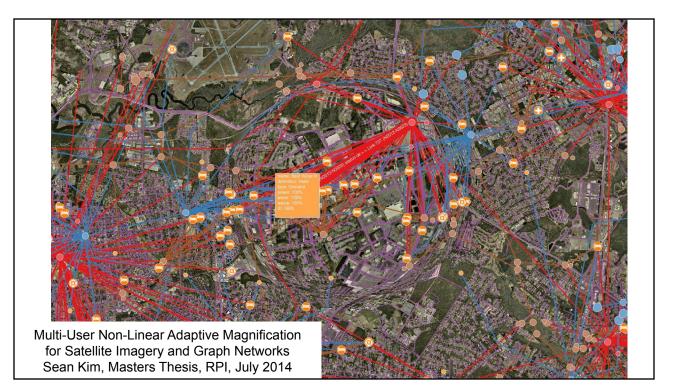

- Worksheet & HW 3: Graphing RPI CSCI Course & Instructor Data
- Reading: Clustering/Hierarchical Edge Bundling
- Reading: Lombardi Graphs
- Emergency Management Graph Visualization
 - Sean Kim's masters project
- Preview of "High-Dimensional" Data Visualization
- Readings for Tuesday

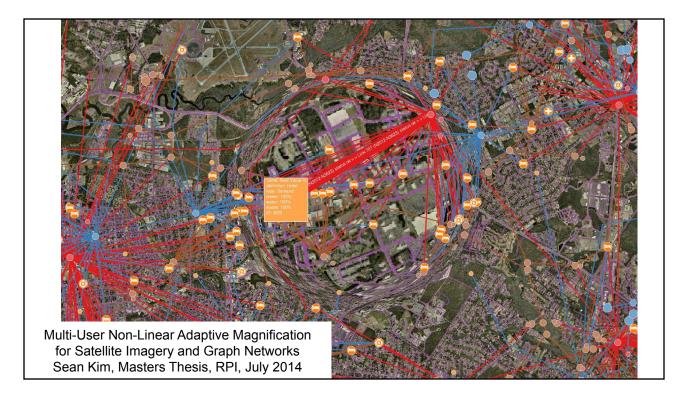


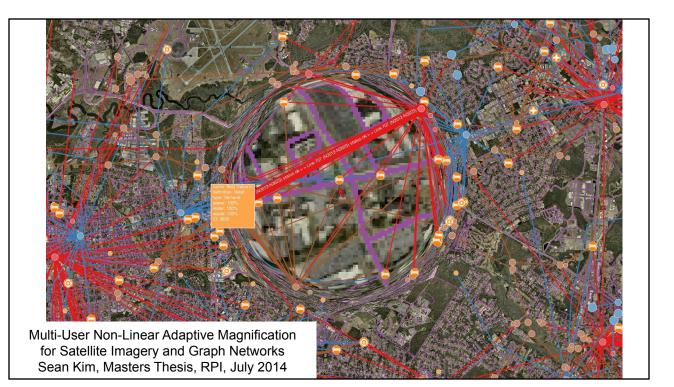

Emergency Response Decision Making

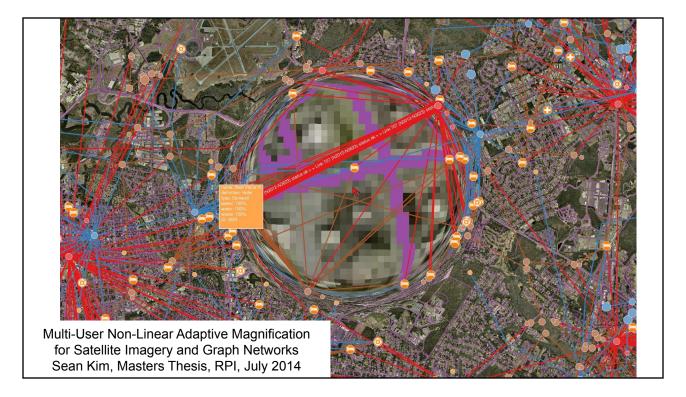




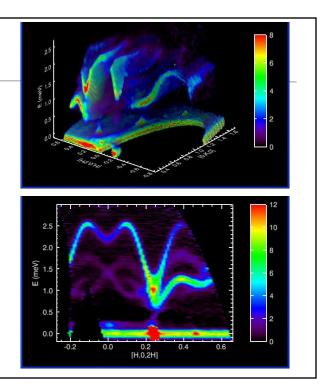


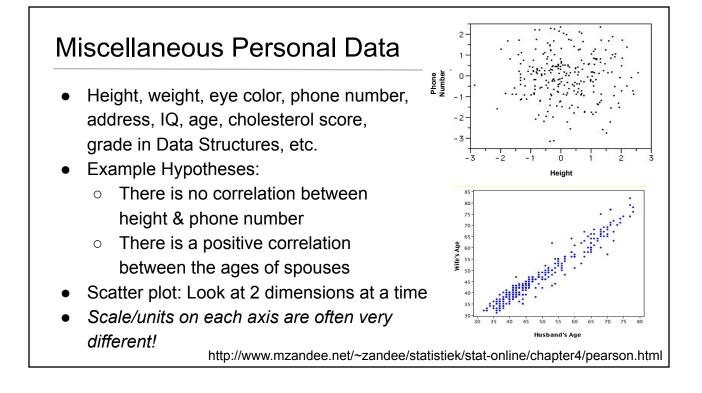


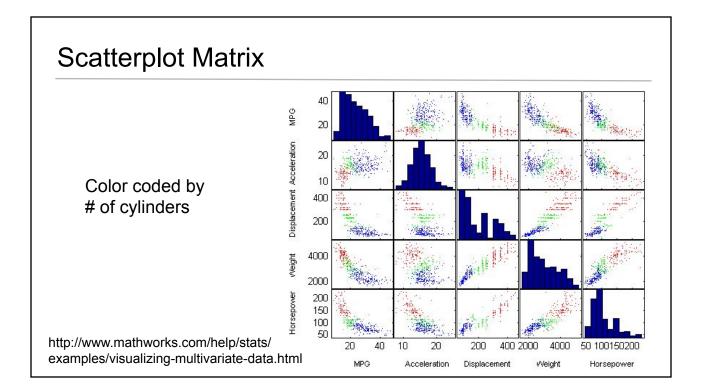


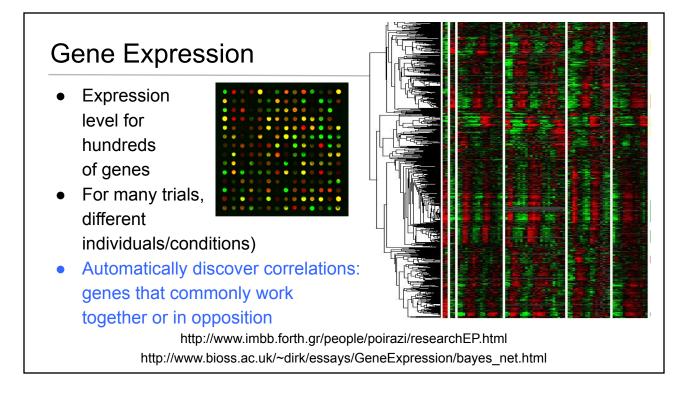


- Worksheet & HW 3: Graphing RPI CSCI Course & Instructor Data
- Reading: Clustering/Hierarchical Edge Bundling
- Reading: Lombardi Graphs
- Emergency Management Graph Visualization
 - Sean Kim's masters project
- Preview of "High-Dimensional" Data Visualization
- Readings for Tuesday


- Many datasets don't (initially) have coordinate systems!
- This graph shows the relationship among the words that describe people's personalities.

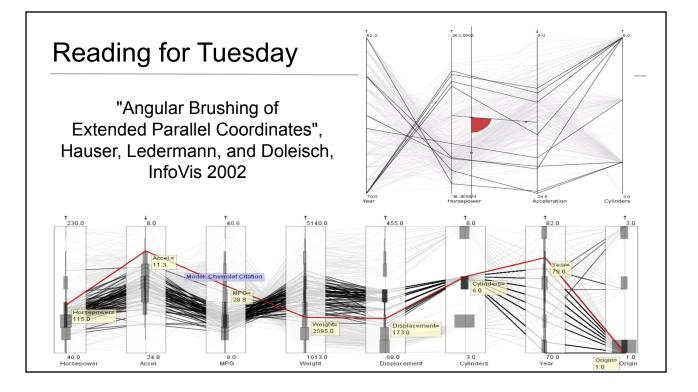

http://madang.ajou.ac.kr/~kwlee/images/theMBTImap_actual%20poster%20image.pdf


Scientific Data


- For many 3D(or 2D) spatial locations during an experiment or simulation...
- Collect time-varying temperature, velocity, pressure, humidity, etc.

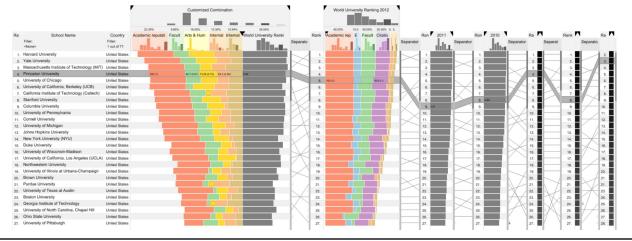
http://www.ncnr.nist.gov/dave/screenshots.html

>3 Dimensions vs. "Really High Dimensions"


- Obvious/intuitive dimensions
 - Position, Orientation, Time, Temperature, Color, etc.

VS.

- Hundreds or thousands of attributes
 - May be floating point values or binary values or even *unordered categorical values*
 - Stored as a "feature vectors" for each data point
 - Nearest Neighbor calculations become very expensive & visualization seems *impossible*


Today

- Worksheet & HW 3: Graphing RPI CSCI Course & Instructor Data
- Reading: Clustering/Hierarchical Edge Bundling
- Reading: Lombardi Graphs
- Emergency Management Graph Visualization
 - Sean Kim's masters project
- Preview of "High-Dimensional" Data Visualization
- Readings for Tuesday

Reading for Tuesday

"LineUp: Visual Analysis of Multi-Attribute Rankings", Gratzl, Lex, Gehlenborg, Pfister and Streit, IEEE INFOVIS 2013

