CSCI 4550/6550 Interactive Visualization

https://www.cs.rpi.edu/~cutler/classes/visualization/S24/

Lecture 7: Human Perception \& Color Spaces

Today

- What is Color?
- Human Perception
- Color Blindness \& Metamerism
- Readings for Today
- Color Spaces
- LMS, RGB, XYZ, HSV, L*a*b*,
- Color \& Projection in Spatially Augmented Reality
- Reading Choice for Friday

What Color is this Apple? What is Color?

What is Color?

What is Color?

What is Color?
Neon Lamp

What Color is the Dress?

What does
the viewer infer about the scene
illumination?

Blue \& Black under yellow-tinted illumination? White \& Gold under blue tinted illumination?

What is Color?

Reflectance
Spectrum

Stimulus

What is Color?

What is Color?

Incoming Light

Cones do not "See" Colors

- Different wavelength, different intensity
- May have same response to a single cone

Dim green

Cone M/G: 0.25

Bright cyan
Cone M/G: 0.25

Response Comparison

- Different wavelength, different intensity
- Will have different responses for different cones

Dim green
Cone L/R: 0.20
Cone M/G: 0.25
Cone S/B: 0.01
Bright cyan
Cone L/R: 0.20
Cone M/G: 0.25
Cone S/B: 0.25

Today

- What is Color?
- Human Perception
- Color Blindness \& Metamerism
- Readings for Today
- Color Spaces
- LMS, RGB, XYZ, HSV, L*****, ...
- Color \& Projection in Spatially Augmented Reality
- Reading Choice for Friday

Color Blindness

- Classical case: 1 type of cone is missing (e.g. red)
- Response is projected onto lower-dim space (2D)
- Makes it impossible to distinguish some spectra

3 cones: Can be differentiated

Ishihara Color Blindness Test

As we have already discussed... Illumination is very important to proper color perception.

This test must be conducted with a calibrated sample and controlled lighting.

- Deuteranopia:
missing medium / green cone
- Protanopia: missing long / red cone

- Tritanopia: (rare) missing short / blue cone
http://en.wikipedia.org/wiki/ File:Ishihara_compare_1.jpg

Metamerism: Apparent Matching

- When two materials look the same under one lighting condition (a coincidence), but look different under another.
- E.g. the shirt \& pants matched in the store

http://gusgsm.com/metamerismo lighting, but not outside!
- Different spectral distribution of input light yield different visual stimuli
- We all experience some color blindness

Tetrachromacy: Some People have 4 Cones!?!?

Typically a slight or moderate mutation of the red or green cone.
May be detectable by a vision test. Less likely to experience metamerism.
But cannot see wavelengths not visible to other humans. Not superhuman vision!

https://theneurosphere.com/2015/12/17/the-mystery-of-tetrachromacy-if-12-of-women-have-four-cone-types-in-their-eyes-why-do-so-few-of-them-actually-see-more-colours/

Glasses to "Correct" Colorblindness?

- "Enchroma does not endorse use of the glasses to pass occupational screening tests such as the Ishihara test."
- Enchroma (and other similar products) is not a cure for color blindness.
- Does not repair missing cones.
- Does not make the eyes more sensitive.
- Filters (selectively darkens) input stimulus.
- Reaction videos are mostly/entirely staged for viral internet marketing.

Debunked by Jonathon, a.k.a., MegaLag
https://www.youtube.com/watch?v=Ppobi8VhWwo\&t=0s

Today

- What is Color?
- Human Perception
- Color Blindness \& Metamerism
- Readings for Today
- Color Spaces
- LMS, RGB, XYZ, HSV, L*a*b*,
- Color \& Projection in Spatially Augmented Reality
- Reading Choice for Friday

Reading for Today

"ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps", Harrower \& Brewer, The Cartographic Journal, 2003.

"ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps", Harrower \& Brewer, The CartographicJournal, 2003.

- Good tool for novices - pick the right palette (sequential, diverging, categorical)
- Why not use continuous gradient rather than discretized values?
- Colorblind aware - good to have this check / assistance! Web accessibility standards
- Respect the difference in target display (monitor, print, etc.)
- Some dated technology, but still relevant concerns / criteria
- What to do when there is no suggested color palette for situation?
- Only for map area color, no universal recommendation for borders, roads, cities, etc.
- What to do when we have multiple axes of information to display/overlay?
- Limited palettes, other color choices might be more appropriate for specific datasets
- Should also consider cultural differences
- What about individual preference?
- Is this the only color palette tool? No! Was it the first? Probably not!
- Caution: some palette tools are art/design-focused
- Best paper, well-organized, easier-to-read than other papers this term

Emergency Response Decision Making

Reading for Today

"Optimizing Color Assignment for Perception of Class Separability in Multiclass Scatterplots", Wang, Chen, Ge, Bao, Sedlmair, Fu, Deussen, and Chen, IEEE InfoVis 2018.
(a) low rank
(b) medium rank
(c) high rank

(d) low rank

(e) medium rank
\qquad -
"Optimizing Color Assignment for Perception of Class Separability in Multiclass Scatterplots", Wang, Chen, Ge, Bao, Sedlmair, Fu, Deussen, and Chen, IEEE InfoVis 2018.

- Multiple studies
- numerical study, expert study, user study
- initial pilot study
- question: color expert vs. classic art background?
- Includes examples of good and bad visualizations
- Maximize color contrast w/ neighboring clusters and w/ background
- Optimize color choice for human perception
- Can we scientifically certify "best" visualization?

Genetic Algorithm

- If you can't figure out a smarter optimization method...
- Encode a potential problem solution as a sequence
- Each sequence must be same length, with a consistent meaning to the value at each location in the sequence
- Keep a group of your k best-ish solutions
- Try different random variations of that group
- Swapping random subsequences (crossover)

NOTE: This only makes "sense" if neighboring locations in the sequence are related (not fully independent)

- Randomizing a single location (mutation)

Today

- What is Color?
- Human Perception
- Color Blindness \& Metamerism
- Readings for Today
- Color Spaces
- LMS, RGB, XYZ, HSV, L*a*b*,
- Color \& Projection in Spatially Augmented Reality
- Reading Choice for Friday

Color Picker in Photoshop

- What are all the different choices?

		OK
	new	
		Cancel
	©	Add to Swatches
O	- \bigcirc current	Color Libraries
	(H: $226{ }^{\circ}$	L: 50
	S: 41 \%	a: 5
	B: 67%	b: -31
	- R: 101	C: 67 \%
	G: 118	M: 53 \%
Only Web Colors	B: 172	Y: 9 \%
	\# 6576ac	K: 0 \%

Standard Color Spaces

- Colorimetry: Science of color measurement
- Quantitative measurements of colors are crucial in many industries
- Television, computers, print, paint, luminaires
- Naive digital work uses a vague notion of RGB
- Unfortunately, RGB is not precisely defined, and depending on your monitor, you might get something different
- We need a principled color space...

CIE Color Matching Experiments

Figure 1-10

Commission Internationale de l'éclairage
(CIE)
a.k.a.

International
Commission on Illumination
target stimulus

what the observer sees

CIE XYZ Color Space

- Can think of $X, Y, \& Z$ as 3D coordinates
- Linear transform to/from typical LMS or RGB

$$
\left(\begin{array}{l}
R \\
G \\
B
\end{array}\right)=\left(\begin{array}{ccc}
3.24 & -1.54 & -0.50 \\
-0.97 & 1.88 & 0.04 \\
0.06 & -0.20 & 1.06
\end{array}\right)\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)
$$

$$
\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{lll}
0.41 & 0.36 & 0.18 \\
0.21 & 0.72 & 0.07 \\
0.02 & 0.12 & 0.95
\end{array}\right)\left(\begin{array}{l}
R \\
G \\
B
\end{array}\right)
$$

- Note that many points in XYZ do not correspond to visible colors!

Hue Saturation Value (HSV)

- Hue: dominant color (red, orange, etc)
- Saturation: from gray to vivid color (a.k.a. Chroma)
- Value: from black to white (a.k.a. Brightness, similar to Lightness)

Hering 1874: Opponent Colors

- Hypothesis of 3 types of receptors: Red/Green, Blue/Yellow, Black/White
- Explains well several visual phenomena

Red/Green Receptors

Blue/Yellow Receptors

Black/White Receptors

Color Opponents "Wiring"

- Sums for brightness
- Differences for color opponents
- It's just a 3×3 matrix to convert HSV from/to LMS, RGB, or XYZ

First zone (or stage): layer of retina with three independent types of cones

Second zone (or stage): signals from cones either excite or inhibit second layer of neurons, producing opponent signals

Linear Color Spaces: RGB/XYZ/YPbPr

- Can convert between these spaces with a 3×3 matrix multiplication, e.g.:

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{lll}
0.4124 & 0.3576 & 0.1805 \\
0.2126 & 0.7152 & 0.0722 \\
0.0193 & 0.1192 & 0.9505
\end{array}\right]\left[\begin{array}{l}
R_{\text {linear }} \\
G_{\text {linear }} \\
B_{\text {linear }}
\end{array}\right]
$$

- However, equal steps in linear color spaces do not correspond to equal differences for human perception
- MacAdam ellipses visualize the lack of perceptual uniformity [MacAdam 1942]

http://en.wikipedia.org/wiki/File:CIExy1931_MacAdam.png

Today

- What is Color?
- Human Perception
- Color Blindness \& Metamerism
- Readings for Today
- Color Spaces
- LMS, RGB, XYZ, HSV, L*a*b*,
- Color \& Projection in Spatially Augmented Reality
- Reading Choice for Friday

Spatially Augmented Reality (SAR) Projection

Tangible Interface for Architectural Design

Overhead camera

Exterior \& interior wall
Tokens for:

- Windows
- Wall/floor colors
- North arrow

Motivation

Can we do a better job reproducing the desired appearance?

geometry \& materials

desired appearance

uncompensated projection

Related Work: Radiometric Compensation

- Minimize artifacts caused by light modulation with local surface [Bimber et al. 2005; Nayar et al. 2003; Grundhöffer \& Bimber 2008]
- Does not consider global light inter-reflection

Grundhöffer \& Bimber 2008

Our Problem Statement

- Known scene geometry
- Known surface reflectances, all ideal diffuse
- Fixed, calibrated projectors
- Given:
- Desired target surface appearance (texture) for each physical surface
- Solve for:
- Projection texture for each physical surface that most faithfully reproduces the desired appearance

Related Work: Reverse Radiosity

- Forward lighting with radiosity

- Inverse lighting with radiosity:

Reverse Radiosity (RR)

- [Bimber et al. 2006]

L*a*b*: a Perceptual Color Space

- Designed to match human color perception data

$$
\begin{gathered}
\begin{array}{r}
\text { intensity } \\
\text { red-green } \\
\text { yellow-blue }
\end{array}\left[\begin{array}{l}
L \\
a \\
b
\end{array}\right]=\left[\begin{array}{c}
116 h\left(\frac{Y}{Y_{n}}\right)-16 \\
500\left(h\left(\frac{X}{X_{n}}\right)-h\left(\frac{Y}{Y_{n}}\right)\right) \\
200\left(h\left(\frac{Y}{Y_{n}}\right)-h\left(\frac{Z}{Z_{n}}\right)\right)
\end{array}\right] \\
h(t)= \begin{cases}t^{\frac{1}{3}} & t>(6 / 29)^{3} \\
\frac{1}{3}\left(\frac{29}{6}\right)^{2} t+\frac{4}{29} & \text { Otherwise }\end{cases}
\end{gathered}
$$

- L*a*b* is nonlinear, a challenge for optimization

Quantitative Perceptual Comparison

$$
\Delta E=\sqrt{\left(L_{1}-L_{2}\right)^{2}+\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}}
$$

- Where $2.3 \Delta E=\mathrm{JND}$ "just noticeable difference"
- The MacAdams ellipses are more equal size circles in L*a*b*

http://w3.kcua.ac.jp/~fujiwara/infosci/ellipses_lab.png

MacAdams Ellipses: XYZ vs. L*a*b*

http://en.wikipedia.org/wiki/File:CIExy1931_MacAdam.png

http://w3.kcua.ac.jp/~fujiwara/infosci/ellipses_lab.png

Our Optimization Formulation

- Absolute Error:

- Spatial Error: $\quad \phi_{s p t}=\sum\left[\left(L_{i}-L_{j}\right)-\left(L_{i}^{\prime}-L_{j}^{\prime}\right)\right]^{2}+\left[\left(a_{i}-a_{j}\right)-\left(a_{i}^{\prime}-a_{j}^{\prime}\right)\right]^{2}+\left[\left(b_{i}-b_{j}\right)-\left(b_{i}^{\prime}-b_{j}^{\prime}\right)\right]^{2}$

gradient in
desired appearance

gradient in projection result
- Complete Objective Function: $\quad \phi=\alpha \phi_{a b s}+(1-\alpha) \phi_{s p t} \quad$ We use $\alpha=0.9$
- Box constraints:
minimum \& maximum brightness of projector system
No negative light!

Sheng et al. 2010
Optimized in YPbPr space

Sheng et al. 2011
Optimized in $L^{*} A * B$ space
"Perceptual Global Illumination Cancellation in Complex Projection Environments"
Yu Sheng, Barbara Cutler, Chao Chen, and Joshua Nasman
Eurographics Symposium on Rendering (EGSR), June 2011.

Today

- What is Color?
- Human Perception
- Color Blindness \& Metamerism
- Readings for Today
- Color Spaces
- LMS, RGB, XYZ, HSV, L*a*b*,
- Color \& Projection in Spatially Augmented Reality
- Reading Choice for Friday

Reading for Friday pick one

"Modeling Color Difference for Visualization Design"
Szafir, IEEE TVCG / IEEE VIS 2017

Reading for Friday pick one

"Hue-Preserving Color Blending"

Chuang, Weiskopf, and Möller, TVCG 2009

Fig. 1. Volume rendering of a tomato data set using traditional (left) and hue-preserving (middle) color blending. The data histogram, transfer function, and color legend are shown on the right.

Reading for Friday pick one

"A Linguistic Approach to Categorical Color Assignment for Data Visualization", Setlur and Stone, IEEE InfoVis 2015

Fig. 1. This visualization was taken from a Tableau Public workbook [11] to illustrate the value of semantic color encoding. Left: The Tableau default colors are perceptually legible, but conflict with the data semantics ('Tomatoes' are pink, 'Corn' is green). Center: The Tableau author matched the colors to the data semantics (red for 'Tomatoes', yellow for 'Corn'), which makes it easier to identify the different types of vegetables in the graph. Right: Our algorithm automatically created a similarly effective result.

