CSCI 4550/6550 Interactive Visualization

# Lecture 7: Human Perception & Color Spaces

#### Today

- What is Color?
  - Human Perception
  - Color Blindness & Metamerism
- Readings for Today
- Color Spaces
  - LMS, RGB, XYZ, HSV, L\*a\*b\*, ....
- Color & Projection in Spatially Augmented Reality
- Reading Choice for Friday

# What Color is this Apple? What is Color?







#### What Color is the Dress?

https://en.wikipedia.org/wiki/The\_dress



What does the viewer infer about the scene illumination?



Blue & Black under yellow-tinted illumination? White & Gold under blue tinted illumination?















#### Today

- What is Color?
  - Human Perception
  - Color Blindness & Metamerism
- Readings for Today
- Color Spaces
  - LMS, RGB, XYZ, HSV, L\*a\*b\*, ....
- Color & Projection in Spatially Augmented Reality
- Reading Choice for Friday

### **Color Blindness**

- Classical case: 1 type of cone is missing (e.g. red)
- Response is projected onto lower-dim space (2D)
- Makes it impossible to distinguish some spectra



#### Ishihara Color Blindness Test



As we have already discussed... Illumination is very important to proper color perception.

This test must be conducted with a calibrated sample and controlled lighting.

http://en.wikipedia.org/wiki/Ishihara\_color\_test

 Deuteranopia: missing medium / green cone
 Protanopia: missing long / red cone
 Tritanopia: (rare) missing short / blue cone
 <u>http://en.wikipedia.org/wiki/</u> File:lshihara\_compare\_1.jpg

# Metamerism: Apparent Matching

- When two materials look the same under one lighting condition (a coincidence), but look different under another.
- E.g. the shirt & pants matched in the store lighting, but not outside!



http://gusgsm.com/metamerismo

- Different spectral distribution of input light yield different visual stimuli
- We all experience some color blindness

# Tetrachromacy: Some People have 4 Cones!?!?

Typically a slight or moderate mutation of the red or green cone. May be detectable by a vision test. Less likely to experience metamerism. But cannot see wavelengths not visible to other humans. Not superhuman vision!



### Glasses to "Correct" Colorblindness?



- "Enchroma does not endorse use of the glasses to pass occupational screening tests such as the Ishihara test."
- Enchroma (and other similar products) is not a cure for color blindness.
- Does not repair missing cones.
- Does not make the eyes more sensitive.
- Filters (selectively darkens) input stimulus.
- Reaction videos are mostly/entirely staged for viral internet marketing.

Debunked by Jonathon, a.k.a., MegaLag https://www.youtube.com/watch?v=Ppobi8VhWwo&t=0s

#### Today

- What is Color?
  - Human Perception
  - Color Blindness & Metamerism
- Readings for Today
- Color Spaces
  - LMS, RGB, XYZ, HSV, L\*a\*b\*, ....
- Color & Projection in Spatially Augmented Reality
- Reading Choice for Friday

# Reading for Today

"ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps", Harrower & Brewer, The Cartographic Journal, 2003.



"ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps", Harrower & Brewer, The CartographicJournal, 2003.

- Good tool for novices pick the right palette (sequential, diverging, categorical)
  Why not use continuous gradient rather than discretized values?
- Colorblind aware good to have this check / assistance! Web accessibility standards
- Respect the difference in target display (monitor, print, etc.)
  - Some dated technology, but still relevant concerns / criteria
- What to do when there is no suggested color palette for situation?
- Only for map area color, no universal recommendation for borders, roads, cities, etc.
  - What to do when we have multiple axes of information to display/overlay?
- Limited palettes, other color choices might be more appropriate for specific datasets
  - Should also consider cultural differences
  - What about individual preference?
- Is this the only color palette tool? No! Was it the first? Probably not!
  - Caution: some palette tools are art/design-focused
- Best paper, well-organized, easier-to-read than other papers this term





https://en.wikipedia.org/wiki/Choropleth\_map#/media/File:Choropleth-density.png







"Optimizing Color Assignment for Perception of Class Separability in Multiclass Scatterplots", Wang, Chen, Ge, Bao, Sedlmair, Fu, Deussen, and Chen, IEEE InfoVis 2018.

- Multiple studies
  - o numerical study, expert study, user study
  - o initial pilot study
  - o question: color expert vs. classic art background?
- Includes examples of good and bad visualizations
- Maximize color contrast w/ neighboring clusters and w/ background
- Optimize color choice for human perception
- Can we scientifically certify "best" visualization?

# **Genetic Algorithm**

- If you can't figure out a smarter optimization method...
- Encode a potential problem solution as a sequence
  - Each sequence must be same length, with a consistent meaning to the value at each location in the sequence
- Keep a group of your *k* best-*ish* solutions
- Try different random variations of that group
  - Swapping random subsequences (crossover) NOTE: This only makes "sense" if neighboring locations in the sequence are related (not fully independent)
  - Randomizing a single location (mutation)



#### Today

- What is Color?
  - Human Perception
  - Color Blindness & Metamerism
- Readings for Today
- Color Spaces
  - LMS, RGB, XYZ, HSV, L\*a\*b\*, ....
- Color & Projection in Spatially Augmented Reality
- Reading Choice for Friday

# Color Picker in Photoshop

What are all οк new the different Cancel choices? Add to Swatches 0 current **Color Libraries** • н: 226 ° O L: 50 41 S: O B: 67 % ○ b: -31 C: 67 % 101 118 M: 53 % ○ G: 172 Y: 9 ○ B: Only Web Colors K: 0 # 6576ac

# **Standard Color Spaces**

- Colorimetry: Science of color measurement
- Quantitative measurements of colors are crucial in many industries
  - Television, computers, print, paint, luminaires
- Naive digital work uses a vague notion of RGB
  - Unfortunately, RGB is not precisely defined, and depending on your monitor, you might get something different
- We need a principled color space...

# **CIE Color Matching Experiments**





# Hue Saturation Value (HSV)

- Hue: dominant color (red, orange, etc)
- Saturation: from gray to vivid color (a.k.a. Chroma)
- Value: from black to white (a.k.a. Brightness, similar to Lightness)









### Today

- What is Color?
  - Human Perception
  - Color Blindness & Metamerism
- Readings for Today
- Color Spaces
  - LMS, RGB, XYZ, HSV, L\*a\*b\*, ....
- Color & Projection in Spatially Augmented Reality
- Reading Choice for Friday

# Spatially Augmented Reality (SAR) Projection







### **Motivation**

Can we do a better job reproducing the desired appearance?







desired appearance



uncompensated projection

# **Related Work: Radiometric Compensation**

- Minimize artifacts caused by light modulation with local surface [Bimber et al. 2005; Nayar et al. 2003; Grundhöffer & Bimber 2008]
- Does not consider global light inter-reflection

Grundhöffer & Bimber 2008



#### **Our Problem Statement**

- Known scene geometry
- Known surface reflectances, all ideal diffuse
- Fixed, calibrated projectors
- Given:
  - Desired target surface appearance (texture) for each physical surface
- Solve for:
  - Projection texture for each physical surface that most faithfully reproduces the desired appearance







#### **Quantitative Perceptual Comparison**

$$\Delta E = \sqrt{(L_1 - L_2)^2 + (a_1 - a_2)^2 + (b_1 - b_2)^2}$$

- Where 2.3  $\Delta E$  = JND "just noticeable difference"
- The MacAdams ellipses are more equal size circles in L\*a\*b\*











Sheng et al. 2010 Optimized in YPbPr space

Sheng et al. 2011 Optimized in L\*A\*B space





Sheng et al. 2010 Optimized in YPbPr space

Sheng et al. 2011 Optimized in L\*A\*B space

"Perceptual Global Illumination Cancellation in Complex Projection Environments" Yu Sheng, Barbara Cutler, Chao Chen, and Joshua Nasman Eurographics Symposium on Rendering (EGSR), June 2011.

#### Today

- What is Color?
  - Human Perception
  - Color Blindness & Metamerism
- Readings for Today
- Color Spaces
  - LMS, RGB, XYZ, HSV, L\*a\*b\*, ....
- Color & Projection in Spatially Augmented Reality
- Reading Choice for Friday



# Reading for Friday *pick one*

"Hue-Preserving Color Blending" Chuang, Weiskopf, and Möller, TVCG 2009



Fig. 1. Volume rendering of a tomato data set using traditional (left) and hue-preserving (middle) color blending. The data histogram, transfer function, and color legend are shown on the right.

# Reading for Friday pick one

"A Linguistic Approach to Categorical Color Assignment for Data Visualization", Setlur and Stone, IEEE InfoVis 2015

