
CSCI 4550/6550 Interactive Visualization
https://www.cs.rpi.edu/~cutler/classes/visualization/S24/

Lecture 18:
Visualization

for Debugging

Today
● Final Project Proposals & Accessing Academic Papers
● Visualization for Debugging

○ Not: Traditional Debugging
○ Not: Software Development Dashboards
○ Lots of helpful examples from class & research!

● Today’s Readings:
○ “Active Reading of Visualizations”, Walny, Huron, Perin, Wun,

Pusch, and Carpendale, IEEE InfoVis 2017
○ “DimpVis: Exploring Time-varying Information Visualizations by

Direct Manipulation”, Kondo and Collins, IEEE Visualization 2014
● Readings for Friday

Final Project Proposals
• Feedback (& grades) posted yesterday
• Overall the grades were not great…

– Majority of proposals were missing a descriptive project title
– Many missing timeline with sufficient milestones / “who will do what”

• Some proposals were confusing / vague / not self-contained
– This is a communication-intensive course!

• COVID visualization seems popular again …
– Yes, we have LOTS of data – but it is not all consistent in format

or collection methodologies (either by locale or by year!)
• If you are tackling a huge & well-studied topic

– Has this already been done? You aren’t expected to do novel research!
– Suggest: Narrow focus to find a unique angle or question

How to get a paper when you hit the publisher paywall?
•

How to get a paper when you hit the publisher paywall?
• Give up. Read the other paper.
• Just watch the video (hey, you weren’t going to read it anyway)
• Use Google – some other university may have it on their reading list.
• Go to the author’s webpage. Many/most conferences/journals allow the

author to post a “pre-print” on their own site.
• Go to the library! RPI “RensSearch” has online access to

many/most technical journals. And other materials via Interlibrary Loan.
You may need VPN off-campus and/or your RCS credentials.

• Ask if your employer has a subscription or procedure to obtain materials.
• Unpaywall, Open Access, ResearchGate, Library Genesis, Citationsy,

Sci-Hub, Other questionably-legal methods…
https://en.wikipedia.org/wiki/Aaron_Swartz

Today
● Final Project Proposals & Accessing Academic Papers
● Visualization for Debugging

○ Not: Traditional Debugging
○ Not: Software Development Dashboards
○ Lots of helpful examples from class & research!

● Today’s Readings:
○ “Active Reading of Visualizations”, Walny, Huron, Perin, Wun,

Pusch, and Carpendale, IEEE InfoVis 2017
○ “DimpVis: Exploring Time-varying Information Visualizations by

Direct Manipulation”, Kondo and Collins, IEEE Visualization 2014
● Readings for Friday

https://en.wikipedia.org/wiki/Aaron_Swartz

What is Debugging?

1. Identify the problem

2. Isolate the source of the problem

3. Correct the problem - OR -

Determine a way to work around the problem

4. Test the correction and make sure it works

https://searchsoftwarequality.techtarget.com/definition/debugging

The First Computer Bug

https://www.nationalgeographic.org/thisday/sep9/worlds-first-computer-bug/

“Thermal Debugging”

https://electronics.stackexchange.com/questions/430152/the-art-of-using-breadboard

Mis-wiring a computer chip
can cause it to overheat,
burn out and fail.

If your circuit isn’t working
touch each chip and if one
is hot to the touch, that’s
likely the problem!

• Debugging Level 1:
– Remove syntax errors in compilation

• Debugging Level 2:
– Produces an answer

• Debugging Level 3:
– Matches output provided by the instructor

• Debugging Level 4:
– Hypothesize system behavior
– Develop & run experiments
– Collect data & analyze results
– Validate (or repeat process)

Learning to Debug Software

Applies to software
development, and other

sciences too!

Being a CS1/DS Mentor:
Helping students

do steps 1-3...

• Do the #’s match your
intuition/hypotheses?

• Do you expect
a positive
correlation or
a negative
correlation?

• Can you improve
even simple
plots to allow
the viewer to
read(understand)
information faster?

Did this person
get faster or slower

at the end of their run?

Which is “better”
performance?

Higher or lower values?

Print Debugging is Not Enough

• Recompiling the whole program between step is slow
• Non-deterministic bugs can be difficult to reproduce
• We don’t know for sure what we need to print

→ we often print too much or too little
• Requires a long time to re-run if error is late in program execution

• Instead: We can fully capture a specific run
– Enable the program/system to “core dump”

(save full memory content, all registers, etc.)
– Then use traditional debugging tools to explore
– May even facilitate reverse step-by-step debugging!

Traditional Debugging Tools

• Inspect variable state: don’t try to print everything!
• Inspect call stack: who called this function with bad data??

• Force program into a specific state:
– Externally modify specific variable values
– Externally coordinate thread/process interleaving

• Operating System specific:
– View OS specific system state,

e.g. other threads, loaded libraries, kernel level info, etc.

Today
● Final Project Proposals & Accessing Academic Papers
● Visualization for Debugging

○ Not: Traditional Debugging
○ Not: Software Development Dashboards
○ Lots of helpful examples from class & research!

● Today’s Readings:
○ “Active Reading of Visualizations”, Walny, Huron, Perin, Wun,

Pusch, and Carpendale, IEEE InfoVis 2017
○ “DimpVis: Exploring Time-varying Information Visualizations by

Direct Manipulation”, Kondo and Collins, IEEE Visualization 2014
● Readings for Friday

Is this Visual//Visualization Debugging?

This is a great tool,
but no, this isn’t what
we’re talking about

today

https://github.com/Submitty/Submitty/actions/runs/8398563239/job/23003574662?pr=10276

Designs for smart & efficient
software development UIs should
use good color and other human

perception / visualization knowledge!

http://build.chromium.org/p/chromium.memory.fyi/console

Today
● Final Project Proposals & Accessing Academic Papers
● Visualization for Debugging

○ Not: Traditional Debugging
○ Not: Software Development Dashboards
○ Lots of helpful examples from class & research!

● Today’s Readings:
○ “Active Reading of Visualizations”, Walny, Huron, Perin, Wun,

Pusch, and Carpendale, IEEE InfoVis 2017
○ “DimpVis: Exploring Time-varying Information Visualizations by

Direct Manipulation”, Kondo and Collins, IEEE Visualization 2014
● Readings for Friday

Ray Tracing
• Need to debug

angle & direction of
reflection, shadow,
& refraction rays

• Solution:
Draw the rays
traced for
a single pixel,
use color for
different ray types

Ray Tracing
• Need to debug

angle & direction of
reflection, shadow,
& refraction rays

• Solution:
Draw the rays
traced for
a single pixel,
use color for
different ray types

Spatial Data Structures for Efficiency
• Primitives that overlap multiple cells?

– Insert into
multiple cells

• For each cell
along a ray
– Does the cell

contain an
intersection?

Traversing Spatial Data Structures
• Solution 1:

Draw solid box
for each visited cell

• Solution 2:
Draw solid quad
for each cross cell face

• Color code by order
(white = first cell, etc.)

Mesh Connectivity
• Maintain consistent

orientation of triangles
• Visualize surface

self-intersections
• Solution: Color

back-facing triangles blue
• Maintain connectivity

through local simplification
and subdivision operations

• Solution: Color edges with
only 1 triangle neighbor red

“Watertight” Model Construction
• Red = edge with only 1 triangle neighbor
• Yellow = edge with > 2 triangle neighbors (non manifold)
• Green = triangle with zero area
• Blue = triangle that is neighbor to a zero area triangle

If rendering bugs / visual artifacts
occur at or near these

mesh conditions, we may have
a lead on debugging!

Mesh Simplification
• Blue Edge:

candidate edge
to delete

• Light Blue Face:
triangles to be deleted

• Green Edge:
edges that will merge
or change length

• Orange Edge:
“one ring” edges
that share a vertex
with a green edge

Mesh Topology
• Neighborhood &

local editing
• Lots of print statements:

• Solution: Draw by hand
• This graph drawing

could be automated!

Triangle 206: 31 32 42
Triangle 207: 31 42 28
Triangle 208: 41 19 17
Triangle 209: 42 41 43
Triangle 210: 28 42 27
<etc.>

What to do when
it mostly works, but

you have unexpected
& infrequent crashes?

“Marching Tetrahedra”

“Interval volume tetrahedrization”
Visualization '97, Nielson & Sung

How Do Tetrahedra Fill Volumetric Space?
• Drawing (in 2D) didn’t convince me
• Creating an OpenGL

visualization didn’t work either
(even with transparency)

• Solution: Build paper & tape models

• For developer or designer / modeler
• Fast interaction to understand sublayer details

Volumetric Exploration
● Solution: Render edges

● Solution: Render tetrahedral
faces, shrinking each vertex
inward by ~5%

• For developer or designer / modeler
• Fast interaction to understand sublayer details

Volumetric Exploration ● Solution: Use a cutting plane

● Solution: Only render faces
separating different materials

To Understand Relationships and Thresholds

● Solution: Visualize each region with a unique color

● Solution: Discretize and visualize enclosure of each pixel

Calibration
• Validate the

projector world
coordinate
calibration

• Solution: Project
the mesh from
each projector,
verify that
the images
closely align

• Surprisingly, this became one of our more popular “demo”s
& this image made the RPI 2010 Research calendar

Solution: Print vertex IDs &
illumination values on mesh!

• Occlusions & Projector Visibility
• Fade in/fade out for transitions
• Sum of projectors = 1
• Solution: Visualize

– # of projectors seen by each patch
– blending weights for each projector

Visibility & Smooth Projection

4x4 Calibration Projection Matrices
• Sanity check

position & direction of
camera & each projector

• Understand distribution
of calibration error

• Solution: Render
all point samples
and rays in a common
coordinate system

When debugging requires a reboot AND
your output devices are all tied to projectors
you may be running around to find where
important error codes might be displayed…

Fluid Dynamics
• Problem: Understanding

data structure used by
Navier Stokes algorithm

• Solution: Visualize
vertical & horizontal
grid cell face velocities

• Problem: Offset grids of
Vertical & horizontal grids
Are interpolation headache

• Solution: Densely visualize
interpolated vector field
(it should be smooth!)

http://tobiasrick.org/re
search_particles.html

http://www.eng.utah.edu/~ehan/
math6790/project2/Report.html

Solution: Trace streamlines
through the vector field and
search for any non-intuitive /
unexpected behavior

● Identify outliers
● Set appropriate curve

for each assignment
● Look for patterns over time
● Notice individual student’s

strengths & weaknesses
● Identify fair final grade boundaries

Today’s Takeaway Message:

● Invest your time & energy in Visualization for Debugging

● Make Intermediate Visualizations
Even if you don’t think they’ll go in your final report

● Take screenshots of “Bloopers” as you work
They may be helpful for explaining the challenges
and how you overcame them!

Today
● Final Project Proposals & Accessing Academic Papers
● Visualization for Debugging

○ Not: Traditional Debugging
○ Not: Software Development Dashboards
○ Lots of helpful examples from class & research!

● Today’s Readings:
○ “Active Reading of Visualizations”, Walny, Huron, Perin, Wun,

Pusch, and Carpendale, IEEE InfoVis 2017
○ “DimpVis: Exploring Time-varying Information Visualizations by

Direct Manipulation”, Kondo and Collins, IEEE Visualization 2014
● Readings for Friday

Reading for Today
● “Active Reading of Visualizations”, Walny, Huron, Perin,

Wun, Pusch, and Carpendale, IEEE InfoVis 2017

• Parallels to research in active reading of text
• Pen & paper annotations easier (more fluid)

than digital (have to learn option menus)
• Pilot study to explore qualitative use + second study for precision
• Action types:

– View preserving (looking/following/contact)
– View altering (positioning/marking/creation)
– Goals: recognizing, tracking, reorganizing, decoding, and analyzing

• Vary graph size -- people use different techniques with larger graphs
• Recommendations for interactive visualization design

(supporting active reading) & further studies

Today
● Final Project Proposals & Accessing Academic Papers
● Visualization for Debugging

○ Not: Traditional Debugging
○ Not: Software Development Dashboards
○ Lots of helpful examples from class & research!

● Today’s Readings:
○ “Active Reading of Visualizations”, Walny, Huron, Perin, Wun,

Pusch, and Carpendale, IEEE InfoVis 2017
○ “DimpVis: Exploring Time-varying Information Visualizations by

Direct Manipulation”, Kondo and Collins, IEEE Visualization 2014
● Readings for Friday

Reading for Today
● “DimpVis: Exploring Time-varying Information Visualizations by Direct

Manipulation”, Kondo and Collins, IEEE Visualization 2014

DimpVis: DimP Information Visualization
(DimP = Prior paper “Video Browsing by Direct Manipulation”)

Is this intuitive?
Is this practical?
Dynamic bar charts… cool!
No natural way to
overlay the trajectory
Time axis overlaps (left→right)
with whatever (non time-based) data the horizontal axis represents

But is this an intuitive way to interact?
No natural direction to spatially overlay the trajectory

• “Interaction Ambiguity”
– What if data is not clearly headed in a direction?
– What if data has constant value for two or more timesteps?
– What if data returns in the direction it came from?
– What if there are multiple times that “the bar graph is at value 500”?

• Avoid/disambiguate:
– Temporal continuity

enforced at cusps
– Fake loops can be traversed

to change time, even if the
object you are directly
manipulating does not change.

– Nonintuitive?
– Does this work if the path

has lots of overlaps/loops?

• Related work
– Visualize trends/trajectories of multiple individual data points

• Keeps your focus on the data you are interested in
(not distracted by spatially separate slider).

• Touch is preferable to mouse (which also separates user from data).
– somatic: affecting the body; corporeal or physical; the vertebrate nervous

system that regulates voluntary movement
– Very game-like, fun to use
– Like playing connect the dots (but what if I want to go my own way?)
– Futuristic & forward thinking
– But mouse precision is so much better than “fat finger”

• Hard to understand interaction from static figures
(despite lots of diagrams and overlays)
– Video was more clear

Did you read the paper too or just watch the video?

Small Multiples

http://flowingdata.com/2014/08/11/california-drought-in-small-multiples/

http://www.latimes.com/science/la-me-g-california-drought-map-htmlstory.html

Evaluation
• Quantitative evaluation compared to traditional time slider and small

multiples – mixed results, but better in some cases
• Measure performance (time & error rate) to complete tasks

in reading & observing trend
– Spatial task “When is the bar at height 3?” vs.
– Temporal task “In 1995, what is the height of the bar?”
– Comparison “When is A greater than B?”
– Distribution “When do both A & B decrease?”
– Outliers “When does A move in opposite direction to other points?”

• Test cases for study
– Real data, but adjusted to ensure just 1 “correct” answer
– 3 techniques (DimpVis, slider bar, small multiples)

x 2 visualizations (scatter plot, bar chart)

• Technique Comments/Concerns/Ideas
– Dragging along a path isn’t that you have true control over where the

object should go, you are constrained to follow its path
– DimP same as time slider, only more confusing since it the path

bends in strange ambiguous ways – seems like a gimmick
– Showing the paths of 1 or more data points forward & back in time

seems helpful
– Instead of the path (directly manipulating) of a single point, can we

show (control time via) the average path of multiple points?
– Instead of replacing a linear slider (so many other ways to do this)

what about using this for a true 2D “slider”?

• Additional “features”
– Traditional time slider

Why did they have to add this?
Because DimP manipulation is nonintuitive/hard to control?

– Flexible rubber band (threshold for direct manipulation)
– Snap to discrete timepoint
– Fast forward (jump to time point with tap)

• Tasks removed from study because
– Not enough time
– Performing the task was “frustratingly difficult” during pilot study

• Set of clear hypotheses
– Use of statistical tests (ANOVA), judges for data set size

whether the measured differences are significant or
could probabilitistically just be noise (not significant)

– Their hypotheses partially supported or rejected by measurements
– Subjectively DimpVis was preferred!

But is this reproducible with another set of users?

• “Enhanced engagement with data”
• Some misuse of tool (intuition/prior experience w/ other interfaces)

– Attempted 2 finger interaction
– Attempted to drag in opposite direction vertically

• Open Questions
– Scalability

• Great job removing outside factors from what was being tested
• Clearly listed hypotheses (# of hypotheses seemed low)
• Refreshing that they didn’t just propose a visualization,

they tested it thoroughly!
• “temporal navigation” felt like I was reading a paper on time travel ☺

Today
● Final Project Proposals & Accessing Academic Papers
● Visualization for Debugging

○ Not: Traditional Debugging
○ Not: Software Development Dashboards
○ Lots of helpful examples from class & research!

● Today’s Readings:
○ “Active Reading of Visualizations”, Walny, Huron, Perin, Wun,

Pusch, and Carpendale, IEEE InfoVis 2017
○ “DimpVis: Exploring Time-varying Information Visualizations by

Direct Manipulation”, Kondo and Collins, IEEE Visualization 2014
● Readings for Friday

Reading for Friday pick one
● "An Image-based Approach to Extreme Scale In Situ Visualization and Analysis”,

Ahrens, Patchett, Jourdain, Rogers, O'Leary, & Petersen, Supercomputing 2014

Reading for Friday pick one
● “Visualization, Selection, and Analysis of Traffic Flows”,

Scheepens, Hurter, van de Wetering, van Wijk, IEEE InfoVis 2015

Reading for Friday pick one
● “Learning Patterns of Activity

Using Real-Time Tracking”,
Stauffer & Grimson, IEEE PAMI 2000

