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Fig. 1. The color assignment has a strong influence on the visual separability of class structures shown in multiclass scatterplots. Here
we show synthetically labeled six-class (top row) and eight-class (bottom row) datasets, and color palettes from ColorBrewer [16] (a,b,c)
and Tableau [42] (d,e,f). Scatterplots are displayed from left to right using color assignments produced by our method with the lowest
(i.e., poor) scores ranked by our separation measure (a,d) towards the one with the highest (i.e., best) scores (c,f).

Abstract—Appropriate choice of colors significantly aids viewers in understanding the structures in multiclass scatterplots and becomes
more important with a growing number of data points and groups. An appropriate color mapping is also an important parameter for
the creation of an aesthetically pleasing scatterplot. Currently, users of visualization software routinely rely on color mappings that
have been pre-defined by the software. A default color mapping, however, cannot ensure an optimal perceptual separability between
groups, and sometimes may even lead to a misinterpretation of the data. In this paper, we present an effective approach for color
assignment based on a set of given colors that is designed to optimize the perception of scatterplots. Our approach takes into account
the spatial relationships, density, degree of overlap between point clusters, and also the background color. For this purpose, we use a
genetic algorithm that is able to efficiently find good color assignments. We implemented an interactive color assignment system with
three extensions of the basic method that incorporates top K suggestions, user-defined color subsets, and classes of interest for the
optimization. To demonstrate the effectiveness of our assignment technique, we conducted a numerical study and a controlled user
study to compare our approach with default color assignments; our findings were verified by two expert studies. The results show that
our approach is able to support users in distinguishing cluster numbers faster and more precisely than default assignment methods.

Index Terms—Color perception, visual design, scatterplots.

1 INTRODUCTION

Scatterplots are one of the most commonly used visualization tech-
niques for displaying two quantitative variables [8]. Encoding data
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points by the position of a visual mark (e.g. a dot) allows users to reveal
a number of different relationships in the data, such as correlation,
clusters shape and separation and other properties [29]. Multiclass
scatterplots have been shown to be effective for exploring quantitative
data accompanied with class information [35], referred to as labeled
data. In such plots, the color of the points is typically used for encod-
ing their class label. If the number of dimensions is larger than two,
dimensionality reduction techniques [22] have to be used to make data
points visible on the plane. For analyzing the data, inspecting the class
separation is then a major task for most users [5]. During this task, the
user’s perception of the point class is heavily affected by the adopted
color mapping scheme [14,23]. A good mapping makes class structures
clearly visible, while a bad one results in different classes being barely
separable, which even might lead to a misinterpretation of the data.

In practice, an appropriate color mapping scheme is often obtained
by a two-step procedure: (i) selecting a good palette using a categorical
color palette tool (e.g., ColorBrewer [16] or Colorgorical [15]) and (ii)
assigning the selected colors to the classes through a trial-and-error
process. Our goal is to automate and optimize the second step. Figure 1



shows some good and bad assignment examples generated by using
the default Tableau color palette and the ColorBrewer template palette,
which are both designed to be perceptually discriminable and legible.
An un-optimized color assignment still results in barely discriminable
class structures (see Figures 1(a,b,d,e)), while an optimized color as-
signment makes almost all the classes clearly visible (see Figures 1(c,f)).
The few color assignment strategies that exist for scatterplots [24, 37]
assume all classes to be associated with semantics and use these se-
mantics to generate meaningful colors. In most cases, however, data
sets do not come with such class semantics; for instance, when they
stem from clustering algorithms [5]. In other cases, semantics cannot
be easily associated with colors. To the best of our knowledge, there
are no methods at present that allows a proper assignment of colors for
general multiclass scatterplots.

To fill this gap, we formulate an optimization approach to auto-
matically generate a color assignment that maximizes the perceptual
separability between classes. To do so, we extend state-of-the-art visual
class separation measures [1, 40] to incorporate color factors to model
human perception of multiclass scatterplots, and use these measures
to guide the automatic search of proper color assignments. A variety
of visual separation measures exist, which imitate human perception
in multiclass scatterplots. Almost all existing measures, however, do
not consider the color assignment factors. Thus, their measured separa-
tion values might not align with human perception, if the scatterplot
is visualized using an improper color mapping scheme. Following
existing color design guidelines [48], we extend these measures by
incorporating color factors for visual class separation by quantifying (i)
the color difference between neighboring classes and (ii) the color con-
trast between each class and the background. By integrating these two
factors into state-of-the-art class separation measures [1], our measure
resembles human class separation judgments for color-coded multiclass
scatterplots quite well, as will be shown below.

One straightforward method for finding an optimal color assignment
is to evaluate all possible solutions and then rank the assignments by
the score of our perceptual separation measure. When n is small, this
method is feasible, but there is an exponential increase of required
computational costs with an increase of n. To address this issue, our ap-
proach uses a customized genetic algorithm [27] to efficiently search for
a color assignment scheme by maximizing the proposed class separa-
tion measure. Using this approach, we are able to deal with scatterplots
having 15 classes in less than 2.5 seconds.

We evaluated our approach using 27 multiclass scatterplots [4] and
quantitatively measured the quality of our results using Lee et al.’s class
visibility measure [23]. For the tested datasets, our method is capable
of producing results with high class visibility. We also ran two user
studies: the first study investigated how our selected color assignment
helps users estimate class separation. The second one aimed at learning
if users subjectively prefer our results, and if yes, why they prefer them.
Both studies confirmed the capability of our method to produce results
that align well with human perceptual judgments.

We furthermore present an interactive color assignment system with
three extensions of our methods for the interactive exploration of mul-
ticlass scatterplots. First, our system is able to suggest a set of good
and diverse color assignments for the user to select the preferred one.
Second, in some cases, the user might prefer specific colors for some
classes, and accordingly, we extend our genetic algorithm to satisfy
such user-provided constraints. Lastly, when the user is interested in
some specific classes, our approach allows the generation of a color
assignment that maximizes the class separation for such classes.

In summary, the main contributions of this paper are:

• We formulate an optimization approach to automatically generate
a color assignment based on (i) incorporating color factors into
state-of-the-art visual separation measures, and (ii) devising a
customized genetic algorithm to rapidly generate proper color
assignments (Section 4).

• We quantitatively evaluate the resulting color assignments using
a class visibility measure [23], and conduct two user studies to
show the usefulness of our approach (Section 5).

• We present three extensions that show how our method can be
used to help the exploration of multiclass scatterplots (Section 6).

2 RELATED WORK

Existing related work can be divided into two categories: visual class
separation measures and color design in visualization.

2.1 Visual Class Separation Measures

Scatterplots support a number of different analysis tasks such as cor-
relation estimation and object clustering [33]. As mentioned above,
for multiclass scatterplots, the main task is to investigate the visual
separability of classes in labeled data [5]. Sedlmair et al. [36] developed
a taxonomy of factors that influence the human perception of visual
class separation, where most factors are derived from the positions of
the data points. They suggested that the design of reliable separability
measures should be guided by this taxonomy.

By combining different factors, some visual separation measures
have been proposed in the past. Distance Consistency [40] defines the
class separability as the proportion of data points whose closest class
center has the same class label. The Class Density and Histogram
Density measures [43] are based on class density, which is described
by a density image and a histogram. Distribution Consistency [40] is
also based on class density but it computes the proportion of nearest
data points with the same class label directly in data space. Aupetit and
Sedlmair [1] generalized such neighborhood approaches by factorizing
them into two aspects: neighborhood graphs and class purity functions.
By combining 143 neighborhood graphs and 14 class purity functions,
they proposed a set of 2002 new visual separation measures.

In the machine learning community, there are some separation mea-
sures developed for the qualitative evaluation of clustering and clas-
sification algorithms, such as the Silhouette Index [32], Fisher’s dis-
criminant ratio [18], and Dunn’s index [11]. All these measures are
also based on the factors summarized in the taxonomy of Sedlmair et
al. [36], although they are not intended to work in visual space. There-
fore, using them for measuring visual class separation might not well
align with human judgment.

To learn how well the measures predict human judgments, Sedlmair
and Aupetit [34] proposed a machine learning framework. They found
that Distance Consistency (DSC) is better than others but its accuracy
is still not perfect. Using their proposed 2002 new measures [1], a large
scale evaluation was conducted using the same framework. The results
showed that their proposed “0.35-Observable Neighbors of each point
of the target class” (GONG) performs the best, much better than DSC.
Meanwhile, they found that the “average Class-Proportion of the 2-
Nearest-Neighbors of each point in the target class” (KNNG) performs
slightly worse than GONG, but has a much lower computational cost.

Recently, Wang et al. [47] extended KNNG by incorporating the
density information and used it to achieve a perception-driven dimen-
sionality reduction (DR) technique, which performs better than the
state-of-the-art DR methods. Likewise, our work also extends KNNG
but with an additional factor, color, which is an essential element in
visualization but overlooked by the current taxonomy [36].

2.2 Color Design in Visualization

Color is one of the most commonly used visual channels. Creating an
appropriate color map for visualization has attracted much attention. A
complete review of color map design is beyond the scope of this paper;
we refer the reader to Silva et al. [39] and Zhou and Hansen [50]. There-
fore, we restrict our discussion to techniques for finding categorical
color maps for visualizing labeled data.

Color palette creation. Creating a categorical color palette for maxi-
mizing visual discrimination between classes is a demanding task for
the visualization of labeled data [45, 48]. A few guidelines for the
manual design of color palettes have been provided in the past, such as
“color should be well separated” [45] or “colors should cooperate with
each other” [49]. However, most visualization creators would like to
avoid creating palettes from scratch.



Also a few automatic or semi-automatic tools have been provided.
Bergman et al. [3] developed a rule-based approach that uses the varying
sensitivity of the human visual system for spatial frequencies as a basic
rule for creating color palettes. Healey [17] proposed to create palettes
by using colors named with the ten Munsell hues that maximize the
perceptual distance between colors. Maxwell [26] further considered
the spatial characteristics of classes to create color palettes for multi-
variate data. Harrower and Brewer [16] developed ColorBrewer, a
widely used tool, which provides a large number of pre-defined well-
discriminable color palettes. Recently, Gramazio et al. [15] proposed
Colorgorical, a tool that not only incorporates aesthetics for color
palette creation but also allows users to customize palettes. Our work
assumes that a high-quality palette was already selected (or designed)
for a labeled data visualization, such as the ones provided by the Tableau
palette library [42] and by ColorBrewer [16]. Our work then focuses
on optimally assigning these colors to a multiclass scatterplot.

Color palette optimization. A selected color palette might further
be optimized for color harmony [46], energy consumption [7], class
visibility [23], and perceptual distance [12]. The last two tasks are the
closest to our work, which attempt to optimize the class discrimination.

Class visibility [23] is defined by the perceptual intensity of a class,
and the perceptual intensity is based on the saliency of each point
against its neighborhood. Based on the class visibility, Lee et al. [23]
presented a method that perceptually optimizes a given color palette
to better reveal all the class structures. Similar to this class visibil-
ity method, our proposed color-based visual separation method also
considers the spatial distribution of each class, but it additionally incor-
porates the color contrast against the background, which could heavily
influence the perception of class structures [48]. Second, the class visi-
bility does not consider the class density, whereas our measured color
contrast with the background is weighted by the class density. Last,
the class visibility is defined on the pixel, thus it might not accurately
characterize the data patterns. In contrast, our method works with the
data points in multiclass scatterplots of many intertwined points instead
of just maps and focuses on the search of good color assignments for
improving the visual separation between classes.

Rather than optimizing colors for a specific visualization, Fang et
al. [12] proposed to maximize the perceptual distance among a set
of given colors while incorporating a set of user-defined constraints.
They further compared three optimization algorithms in solving this
problem and found that a Genetic Algorithm (GA) can alleviate the
issue of sticking to the local maxima. Similar to this work, our color
optimization framework also enables users to define constraints and
uses GA to solve the optimization. Moreover, we show that our color
assignment optimization can improve the visualization produced by
this method in terms of class discrimination (see Section 5).

Color assignment. Given a target color palette and a set of class
labels, color assignment aims to find a unique optimal color for each
class, which has not been extensively studied so far. Most methods
focus on associating colors with semantics, which are modeled by
collecting representative images from Google Image Search. Lin et
al. [24] proposed a method to select such semantically resonant colors
and experimentally demonstrated the benefits of this method. Setlur
et al. [37] improved this method by using a co-occurrence measure of
color name frequencies from Google n-grams and showed better results
than Lin et al. [24]. Most classes shown in scatterplots, however, might
not have clear semantics, especially the ones generated by clustering
algorithms or customizable tools, thus such method cannot be directly
applied to general multiclass scatterplots.

It should be noted that we are not the first to work on color assign-
ment without semantics in visualization and computer graphics. Hurter
et al. [19] proposed an optimization method for assigning colors to
lines of a metro map that assigns close routes with the most distin-
guishable colors. Kim et al. [21] proposed a perception-driven color
assignment method for assigning colors to unordered image segments,
where color aesthetics as well as contrast are incorporated. Our method
can be regarded as a task-driven color coding [44], where our task is to
maximize the perceived class separation in the scatterplots.

3 PRELIMINARIES: FORMAL DEFINITIONS

In this section, we provide formal definitions of some components of
our approach. We start by describing a state-of-the-art separation mea-
sure and then introduce the color factors that influence the separability
of color-coded classes. In general we suppose to have a multiclass (m
classes) scatterplot with 2D data points X = {x1, · · · ,xn}, where each
xi is associated with a class label l(xi) and the j-th class (with n j data

points) consists of {x
j
1, · · · ,x

j
n j
}, j ∈ {1, · · · ,m}.

3.1 Class Separation Measure: KNNG

Aupetit and Sedlmair [1] proposed the above-mentioned KNNG mea-
sure and showed that it performs slightly worse than the best state-of-
the-art measure but has lower computation complexity. Because of
this characteristic, Wang et al. [47] extended the measure to guide the
process of dimensionality reduction. Our method can be regarded as a
further extension of KNNG.

KNNG is built upon a k-nearest neighbor graph with k = 2, where
each data point xi is connected to its two nearest neighbors, denoted as
Ω(xi). For each xi, we compute its separation degree as

s(xi) =
1

|Ω(xi)|
∑

x j∈Ω(xi)

δ (l(xi), l(x j)) , (1)

where δ (l(xi), l(x j)) returns one if xi and x j have the same class label,
else zero. The final KNNG value is then the average separation degree
over all data points of the same class in relation to the entire dataset.
Since finding Ω(xi) for a data point requires us to test its nearby data
points in X\{xi}, the overall time complexity is O(n logn), which is
feasible for most applications.

3.2 Color-based Separation Factors

Sedlmair et al. [36] created a taxonomy of visual class separation factors
in scatterplots, which guided the recent development of class separation
measures [1, 47]. Almost all existing measures that include KNNG [1,
40, 43] are purely based on the position of the data points, whereas
the color associated with the data points is completely overlooked.
However, human judgments for color-coded labeled data are influenced
by a number of color factors, as summarized by Ware [48]. Here,
we only briefly review two factors: distinctness and contrast with the
background, which are most related to the design of color palettes for
multiclass scatterplots.

Distinctness is one of the key factors in the human saliency detection
process [13], referring to how good an object can be discriminated from
others. To achieve distinctness, Ware [48] suggested that choosing a
color set should consider the separation not only between the colors
themselves but also between the colors and the background, the marker
size as well as the distribution of the data points [33]. Margolin et
al. [25] defined the color distinctness of a data point as its color dif-
ference with the neighboring points, where the color difference can be
measured by many metrics, such as the Euclidean RGB distance or by
the CIE76, CIE94 and CIEDE2000 distance measures [6, 38].

Contrast with background is an essential perceptual factor that dra-
matically influences the readability of color-coded objects. For example,
the yellow class in Figure 1(d) is hard to be recognized but is clearly
shown in Figure 1(f). By measuring the color difference with the back-
ground in terms of luminance [20], Kim et al. [21] integrated this factor
to optimize color assignments for showing image segments. Likewise,
we also include this factor in our optimization for color assignment.

Although other factors such as unique hues, color blindness and
cultural conventions might also influence the perception of multiclass
scatterplots, they either should be considered by the design of the
color palettes or are not of general interest. Thus, we base our color
assignment optimization on the above two factors.

4 CLASS SEPARABILITY DRIVEN COLOR ASSIGNMENT

To visualize a set of labeled 2D data points X of m classes
M = {1, · · · ,m} in a scatterplot, with a given color palette C =



{C1, . . . ,Cp} (p ≥ m) and a background color Cb, we need a mapping
τ : M 7→ C that assigns the colors to classes. Most existing visualiza-
tion tools like Tableau [42] assume that classes as well as colors are
ordered and assign colors simply by following the order. However,
most multiclass datasets shown in scatterplots do not inherently contain
such ordering information, so the assignment is just a random order
based on the point ordering in the data file. This might not produce
effective visualizations. Figures 1(b,d) are generated in this way. It is
obvious that some classes have a poor separation from the rest.

To address this issue, we first introduce some color-based class
separation measures that seek to imitate human perception of class
separability in color-coded multiclass scatterplots. Based on such
measures, we formulate color assignment as an optimization problem,
by which we seek a color mapping that makes all the classes in the
scatterplot easily recognizable to humans.

4.1 Class Separation guided Color Assignment

As reviewed in Section 3.2, we assume that distinctness and contrast
with the background are the two main factors in the design of a proper
color mapping. In the case of a multiclass scatterplot, each class will
have its own spatial distribution, which should also be considered. To
achieve this goal, we first construct a k-nearest neighbor graph and
then compute these two factors for each data point based on its local
neighborhood.

Point distinctness. Suppose the set of k-nearest neighbors of data
point xi is Ωi, the color distinctness of xi under the color mapping τ is:

α(xi) =
1

|Ωi|
∑

x j∈Ωi

∆ε(Cr,Cs) g(d(xi,x j)) , (2)

where Cr = τ(l(xi)), Cs = τ(l(x j)), ∆ε is the CIEDE2000 distance met-
ric [38], and g(d(xi,x j)) is a distance-based function to assign large
weights to nearby points and small weights to far-away points. Thus,
it can be regarded as the degree of influence of point x j to point xi,
an appropriate function is g(d) = 1/d. A good color assignment aims
to assign colors, so that nearby points have larger color differences
than points that are far away. Note that if we set g(d) = 1, this mea-
sure is equivalent to the point saliency, which is the base of the class
visibility [23]. The larger the α(xi), the larger the point distinctness is.

Point contrast with background. Other than examining the color
difference with the background, the point’s contrast also depends on
the spatial distribution of the neighboring points [30]. If most points
in Ωi are close to xi and have the same label, xi should have a large
separation degree (see Eq. (1)); see the points in Figure 2(a). However,
if most points in Ω have different labels, l(xi) would become hard to be
identified; see the examples in Figure 2(b). To maximize the visibility
of all classes, points with lower class separability degrees should be
assigned with colors that have larger contrast to the background. Hence,
we define the point contrast as

β (xi) =
1

|Ωi|
∑

x j∈Ωi

∆L(Cr,Cb) ns(xi) , (3)

where ∆L(Cr,Cb) is the luminance difference between the assigned
point color Cr = τ(l(xi)) and the background color Cb, and ns(xi) is
the position-based non-separability degree. A class’s non-separability
degree can be regarded as the reverse of the separability degree. Classes
with larger separability degrees should have smaller non-separability de-
grees, and vice versa. Below, we explore how to define non-separability,
which is an essential part in β (xi) above.

Non-separability. Although existing class separation measures such
as KNNG can help compute such non-separability degrees, most of
them are based on a class purity function (see Eq. (1)) without con-
sidering any density information. Figure 2(b) shows an example that
illustrates this drawback of KNNG. To address this issue, we incorpo-
rate the distance between xi and its neighboring points into Eq. (1) and

KNNG: 0

ns(xi): 1.625

KNNG: 0

ns(xi): 0.81

(b)(a)

Fig. 2. Illustration of the separation between color-coded classes, where
the same color mapping is assigned to classes with different class sep-
arability degrees. (a) Classes with large separation degrees can easily
be separated although their assigned colors are similar; (b) Classes
with poor separation degrees can hardly be separated although their
assigned colors are the same as in (a). The points with black circles
illustrate the drawback of KNNG in characterizing the separation degree.

compute the within-class separation degree by measuring the compact-
ness of xi and other points belonging to the same class as

a(xi) =
1

|Ωi|
∑

x j∈Ωi

δ (l(xi), l(x j)) g(d(xi,x j)) , (4)

and based on that calculate the non-separability degree between xi and
the data points of other classes by

b(xi) =
1

|Ωi|
∑

x j∈Ωi

(

1−δ
(

l(xi), l(x j)
))

g(d(xi,x j)) . (5)

Then, the non-separability of the point xi is defined as

ns(xi) = b(xi)−a(xi) . (6)

Hence, a negative ns(xi) indicates that most neighbor points have the
same label as xi, and vice versa. In other words, ns(xi) performs simi-
larly to density-aware KNNG [47] in characterizing class distribution,
but it reflects the non-separability with the un-normalized values, so
that the density between points is more accurately described.

Objective function. Based on point distinctness and contrast with the
background, we can now define our objective function as maximizing
the sum of the separation degree of all the points in each class:

argmax
τ

E(τ) =
m

∑
j=1

∑
i=1..n j

{ λα(x
j
i ) + (1−λ )β (x

j
i ) } , (7)

where λ is a weight parameter to balance the two factors. For a proper
choice of λ , we refer readers to Section 4.3.

4.2 Optimization by using a Genetic Algorithm

For a palette of p colors and a scatterplot of m (m ≤ p) classes, there
are p!/(p−m)! color assignment choices. Just for m = p = 10, we
already have more than three million possible assignment choices. To
find the optimal assignment with the maximal energy with respect to
Eq. (7) in such huge search space, we use a genetic algorithm [27]
which is especially suitable for finding a near optimal solution for
combinatorial optimization problems with a large parameter space.
Compared with another optimization method [31], GA can produce
more diverse solutions, so it is more likely to find the global optimum.

By representing each candidate τ as a genome, our genetic algorithm
performs the search in a heuristic way. Since the color assignment
for multiclass scatterplots requires each class to have a unique color,
the genome we work with in essence is a table that assigns such a
unique number of a color to each bin (class). Each color assignment is
a permutation of these numbers. After generating a number of random
permutations as the initial population, our algorithm evaluates each
solution by using Eq. (7) and then iteratively improves the solution
through performing steps of selection, crossover, and mutation until it
converges, as outlined in Algorithm 1.



Algorithm 1 Genetic Algorithm for optimizing color assignment

Input: An initial population P = {τ1, ...,τs}, each τi being a
color assignment solution

Output: The fittest individual τ ′s
1: repeat
2: Perform selection on P
3: Perform crossover on P
4: Perform mutation on P
5: until the fitness of the fittest individual cannot be improved

or reaching the maximum iteration
6: return τ ′s
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Fig. 3. Illustration of the crossover process: (a) Two genomes τi and
τ j with segments (boxed in black) are to be exchanged. (b) To replace
segment {3,5,4} in genome i by {6,7,8} from genome j, we first remove
any 6,7,8 color number from i, and then (c) assign 3,5,4 randomly to the
locations where we have removed 6,7,8. (d) After that, we put {6,7,8}
into the genome i in the child population.

Selection. The idea here is to select individuals with high fitness scores
from the existing population and use them to breed a new generation.
To balance between “exploitation” and “exploration,” many different
selection methods have been developed [2]. Here, we use the method
of a roulette wheel selection, which each time randomly selects an
individual with a sufficiently high fitness score.

Crossover. This is a significant step in our genetic algorithm. With
a certain probability, we combine two individuals to produce new
offsprings. We perform the crossover by using a two-point crossover
method, which selects a point on the genome and then exchanges b
consecutive genes between the two genomes. However, when doing so,
we have to ensure that the color permutation in each genome is only
shuffled and any color number still appears only once.

Suppose we have genomes τi and τ j , each with a segment of b bins,
say S = {s1, . . . ,sb} in τi and T = {t1, . . . , tb} in τ j , to be exchanged in
the crossover. We take the following steps to perform the operation:
without loss of generality, we describe the steps to process τi, since τ j

can be processed in the same way (see the illustration in Figure 3): (i)
find the bins with colors (short for color numbers) in τi that contain a
color in T and randomly replace them with colors in S, and (ii) then
replace the colors of S with the colors of T .

Mutation. To increase the diversity within a population and to
avoid being trapped in local optima, GA performs mutations on some
randomly-selected genomes from time to time. When an individual is
selected for a mutation, the genes at two randomly selected positions
are simply swapped.

GA parameters. For a quick convergence, it is important to appro-
priately set the algorithm’s parameters: population size, crossover and
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Fig. 4. Value of the objective function E(τ) (Eq. (7)) versus the number of
iterations during the genetic optimization. The process converges after
300 iterations.

(a) initialization (b) 4th iteration

(c) 110th iteration (d) final

Fig. 5. Exploring the convergence of our genetic algorithm: (a) result
after the random initialization; (b) result after 4 iterations; (c) result after
110 iterations; and (d) final result after 280 iterations.

(a) λ=0

(d) λ=1

(b) λ=0.1

(c) λ=0.3
Fig. 6. Exploring the influence of λ on the selected color assignment: (a)
result generated by only considering the color contrast with background;
(b) result generated with λ set to 0.1; (c) result generated with λ set to
0.3; and (d) result generated by considering only the point distinctness.

mutation rate. There are, however, no general guidelines for setting up
these parameters for different situations. Following the empirical sug-
gestions of Jong et al. [10], we set the population size to 50, crossover
rate to 0.6 and mutation rate to 0.01. These values are assumed to be
the best for most GA applications.

Figure 4 shows the convergence curve. Our method converges to a
reasonable solution, but then jumps through a number of smaller and
bigger steps towards the final value. This is a reasonable behavior, since
mutations help us not to stuck in a local optimum. Figure 5 confirms
this by showing intermediate results of the optimization for a multiclass
scatterplot, the result of the 110th iteration already shows a clearly
visible class separation.
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Fig. 7. Exploring the sensitivity of our objective to parameter k. (a) The
bar chart shows the consistency of the selected color assignment with
different k, where the selected color assignment has high consistency for
most data; (b,c) two example scatterplots corresponding to the datasets
highlighted in red and yellow boxes (a,b).

4.3 Parameter Study

Our algorithm comes with two free parameters that need to be set:
weight (λ ) and the number of nearest neighbors (k).

Weight λ . Figure 6 illustrates the influence of λ on the selected color
assignment. Considering only the color contrast with the background
might lead to some neighboring classes with small color differences,
such as the blue and cyan classes in Figure 6(a). Similarly, considering
only the distinctness might lead to some non-separable classes that are
assigned with low contrast colors to the background, such as the pink
class in Figure 6(d). Thus, finding a good λ to balance these two terms
is very important. We found that λ = 0.3 works well for most data in
our experiment; see an example in Figure 6(c).

Number of neighbors k. The original KNNG is defined on the k
nearest neighborhood graph with k = 2, but our objective function can
be defined for any k nearest neighborhood graph. To understand the
sensitivity of our objective function to k, we randomly selected ten
datasets, constructed the graphs with a k ranging from one to twenty
for each dataset, and computed the best color assignment using each of
the graphs. Based on the selected color assignments, we computed the
number of same color assignments selected by different k ranging from
one to twenty, referred to as consistency. Figure 7 (a) shows results
using a bar chart, for six datasets our method selects the same color
assignment no matter what k was chosen; the consistency value is larger
than 75% for the other cases. To show why some data has high or low
consistency, two selected data sets are shown in Figures 7 (b) and (c).
We can see that the one with lower consistency corresponds to data
with a large variation of class densities. Since a larger k demands more
computation in the construction of the nearest neighborhood graph, we
set k to two in our experiments as in the original KNNG.

4.4 Implementation & Performance

We implemented our method using JavaScript (see code in supplemen-
tal material) and tested it on a computer with an Intel Core i5-7400
processor with 8GB memory. The k nearest neighborhood graph is con-
structed by using the FLANN library [28]. To support the interactive
search of the optimal color assignment, we decompose the computa-
tion of color distances and class non-separability degrees and the GA
algorithm. The performance of GA algorithm heavily depends on the
number of classes, namely, the length of each genome, rather than
the number of data points in each scatterplot, as to be shown later in
Figure 8(c).

5 EVALUATION

To confirm that our method resembles the human perception of class
separation, we evaluated the quality of its selected color assignments
by: (i) judging their quality with an existing numeric measure [23];
(ii) conducting a lab study to verify that they can improve human

class separation judgments and measure how close they match the user
preferences; and (iii) comparing with expert-chosen color assignments.

5.1 Evaluation with Numerical Measures

To perform a quantitative evaluation, we took 27 multiclass scatterplots
of real datasets gathered from the UCI repository [4]. For visual
encodings, we took the Tableau 20 default palette [42] with white
background as the input. We run our method with default parameters
k = 2 and λ = 0.3.

Measure. We computed the quality of our results by using Kim et al.’s
class visibility measure [23]. For this measure, the quality is defined on
the whole scatterplot and thus we take the sum of the visibility of all
classes. Although directly comparing values of our measure and class
visibility [23] does not say much, the relative difference of the quality
measures generated for the best, medium, and worst color assignments
are comparable. Hence, we score all possible color assignments with
our measure and pick the best, medium, and worst ones.

Once we have these three color assignments, we can compute the
relative differences

dEy =
Ey −Eworst

Eworst
and dVy =

Vy −Vworst

Vworst
, (8)

where Ey and Vy refer to our objective values E(τ) (see Eq. (7)) and
class visibility [23], respectively, computed with the best or medium
color assignment. Hence, the values of dEy and dVy represent the
relative distance between the best or medium color assignment and the
worst one, according to Ey and Vy, respectively. Although there are
several major differences between these two measures as discussed in
Section 2.2, we expect that both measures will give consistent quality
orderings for the selected color assignments.

Results. Figure 8(a) shows the four variables dEbest, dEmedium, dVbest,
and dVmedium for each dataset, with dEworst and dVworst being the base.
If a value is out of the plot range, we treat it as an outlier and draw
a dark halo in the plot to indicate them. The scatterplot shown in
Figure 7(b) is an example of such an outlier.

The ranges of dEbest and dEmedium are much larger than the ones of
dVbest, and dVmedium. For most dataset, the ranking order of dEbest and
dEmedium and the ones of dVbest and dVmedium are consistent, only the
two rankings of the digits5 8 dataset are inconsistent. After carefully
investigating this dataset, we found that this dataset has very strong
overlap between classes, so that pixel-based class visibility cannot
accurately characterize the separation between the classes.

To facilitate the comparison between our measure and class visibility,
we summarize the resulting relative difference associated with each
kind of color assignments in the boxplot shown in Figure 8(b). It shows
that our measure covers a larger range than class visibility, facilitating
it to search for the best color assignment.

5.2 Lab Study

As our goal is to optimize color assignments with respect to human
perception, it is necessary to test our results with human subjects. We
thus run two human-subject studies, including a controlled lab study
(this section) and an expert study (next section).

Goals and tasks. The main goal of the lab study is to test the effects
of our method on task efficiency and subjective preferences of users.
Specifically, we hypothesize that the colorings suggested by our ap-
proach will lead to reduced time and errors (H1), as well as fitting to
the subjective preferences of the users (H2). According to these goals,
the study consists of two parts.

Part 1—Efficiency: we sought to measure the effectiveness of color
assignments by asking users to count the number of classes in a scat-
terplot and to choose one of the several given numerical options. The
actual number of classes in our scatterplots ranges from six to eight, and
the number of given options ranges from one to twelve. We recorded
the time taken by each user for each trial, counted their errors, and com-
puted the number of mismatch between the actual number of classes
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summarizing the values of the four variables in (a); and (c) scatterplot with a red trend line, showing the relationship between computation time and
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Illustrating the generation of our test datasets used in part 1
of the user study. (a) The scatterplot with six classes is taken as the
base for the creation of the other datasets; (b)-(e) two seven-class and
two eight-class scatterplots created by a few randomly-selected points
highlighted by lassos from the base (a) as the new classes; and (f) the
background color of the scatterplot shown in (e) is changed to black.

and their choice (dependent variables). Figure 9 shows several exam-
ples of the scatterplots we used in this task. Each scatterplot stimulus
has a different E(τ) score from our method (independent variable). We
expect the participants to spend less time and produce fewer errors on
“good” scatterplots (with large E(τ)).

Part 2—Subjective preference: in the second part, we offered users
two scatterplots per trial, where one score is larger than the other.
Participants were then asked to choose the plot they “perceptually”
preferred. We expect that most people would choose the picture with
the higher E(τ) (independent variable), and that there would be only a
few neutral selections; see Figure 10 for an example pair.

Pilot studies. We conducted a pilot study involving five students from
our university to quickly iterate on our study design. In this study, we

(a) (b)

Fig. 10. An example picture for part 2 of the lab study. Users were asked
to choose the scatterplot they would “perceptually” preferred from (a)
and (b), whose E(τ) are 2873 and 1021, respectively.

randomly selected five scatterplots used in Section 5.1, each scatterplot
was colorized with the best, medium, and worst color assignments.
Since there are three kinds of combinations for each scatterplot, i.e.,
“best” vs. “medium”, “medium” vs. “worst”, and “best” vs. “worst”, we
thus have 5(scatterplots)×3(combinations) = 15 pairs for the study
in part 2. We showed the 15 scatterplots in random order to each
participant to perform part 1 of the pilot studies and then showed the
15 scatterplot pairs in random order to perform part 2. In part 1, we
found the errors to be close to zero for almost all scatterplots, while the
result in part 2 showed some randomness. We performed a follow-up
interview with each participant and asked them why they were able to
quickly and accurately count the number of classes in part 1 and why
they made a random choice for some scatterplots in part 2.

The answers hinted at two factors that influence the results in part
1: strong learning effect and large point sizes. The learning effect was
caused by the five selected scatterplots with different distributions, so
that participants could easily remember the number of classes. The
large point size, on the other hand, reduced the task difficulty, even
for the scatterplots with the worst color assignments. Such findings
suggested us to synthesize scatterplots with similar distributions and
to assign a proper point size. Regarding part 2, we found that the
participants randomly chose one plot, if they found the two plots to be
similar. Accordingly, we added the third option “No preference” in our
study interface.

Datasets. To reduce the learning effect as found in the pilot studies, we
used different datasets in the two parts of our lab study. Hence, we first
create a synthetic scatterplot with six classes. Each class followed a
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Fig. 11. Results of the lab studies. For part 1, we show mean values and deviation as 95% CIs of (a) user error, (b) time (lower values are better).
For part 2, we display the consistency between people’s choice and the rating of our method (c). If the user chose the better scatterplot of a pair, the
choice was marked with “consistent,” otherwise “inconsistent.” If they choose “No preference,” the result was “neutral.”

Gaussian distribution with strong overlaps between some of the classes;
see Figure 9(a). Taking this dataset as the base, we created the other
four datasets (2x7 classes and 2x8 classes) by randomly selecting some
points to form new classes. For example, the dataset with 7 classes
shown in Figure 9(b) was created by randomly selecting some points
from the orange and green classes and regarding them as a new class.
Such points selected from the base were highlighted by a lasso in each
set, as shown in Figures 9 (b) to (e). Doing so, we generated five
synthetic scatterplots (1x6 classes, 2x7 classes, and 2x8 classes), where
all the datasets consistently have 230 data points.

For our color palette, we chose the “Tableau 10” palette from the
Tableau software system [42]. Each sample was displayed twice over
a white and a black background; see Figure 9(f). Each picture was
colored with three types of color assignments: large E(τ), median
E(τ), and small E(τ); see Figures 9 (a) to (e). The total number of
trials was 5(scatterplots)×2(backgrounds)×3(cases) = 30. All the
pictures were scaled to 1048 × 1048px, with a point size of 2px. We
intentionally zoomed the scatterplots to half of their original size as
our task was to count the number of classes, where a point size of 2px
seemed to be a good tradeoff between readability and complexity. For
each sample, six trials were performed, we alleviated the learning effect
by rotating each scatterplot by an angle of t ∗30◦ with randomized t.

In part 2 of the lab study, we randomly selected five different scat-
terplot samples from the ones used in the numerical evaluation; see
Section 5.1. In addition, we used three different color palettes, “Tableau
20” and two from ColorBrewer. Again, each dataset was displayed
over a white and a black background. In part 2, the scatterplots were
shown in pairs. Hence, the total number of trials was 5(scatterplots)×
3(color palettes)×2(backgrounds)×3(combinations) = 90. All the
images were shown in their original resolution of 1235 × 666.6px, with
a point size of 4px, since preference tasks (part 2) should be insensitive
to the point size.

Participants. We recruited 20 participants (13 males and 7 females).
All were from the local university with a major in Computer Science.
Their ages range from 21 to 31 (median 23). All participants passed
our color deficiency test, had a normal or corrected-to-normal vision,
and were used to using computing devices.

Device. The study was run on a quad-core PC with a 27” LCD
widescreen with a mouse and a keyboard as the input and a 3840×2160
pixel display as the output. The monitor was calibrated using test
images for a faithful color reproduction. All participants were seated at
around 60cm from the display in a constantly illuminated room.

Procedure. We applied the following procedure in the lab study:
(i) explaining the tasks by the researcher, followed by training; (ii)
performing part 1 of the study; (iii) a ten-minute break; (iv) performing
part 2 of the study; and (v) a short interview about part 2. In the
interview, we were particularly interested in inconsistent choices made
by the participants, so we asked them why they did not choose the good
ones assumed by our method and what are the factors that influence
their choices. Overall, the participants need five minutes on average to
finish part 1 (min: 3 minutes and max: 12 minutes), and 13 minutes on

average to finish part 2 (min: 8 minutes and max: 20 minutes).

Results. We used an estimation-based approach with effect sizes and
confidence intervals [9]. Part 1 results are summarized in Figures 11
(a)-(b). The results were consistent with our hypotheses. The error was
taken as the total number of errors made by a participant in this task.
The result shows that the participants tend to make fewer mistakes in
counting classes when E(τ) is high, in other words, when we optimized
the color assignment. In terms of time, the results are less clear but
still show a tendency that our color assignment method makes it more
efficient for people to distinguish between classes. We assume the
reason for the less apparent result is that the used color palettes are
already quite good, so that even the worst color assignment helps the
participant quickly finish the task.

Part 2 results are summarized in Figure 11(c). We measured the
consistency of the participant’s choices to our ratings in percentage.
When a participant chose the better color assignment from the two
pictures (e.g., if the participant chose the “good” picture from a “best
vs. medium” pair), this trial was marked as “consistent;” otherwise as
“inconsistent.” A value of “neutral” represented the percentage of op-
tions with “no preference.” Figure 11 (c) shows that most participants’
choices are consistent with our method’s ratings. This indicates that
our method aligns well with human perception.

Furthermore, we looked at the results from the interviews to un-
derstand why the participants made inconsistent choices. Five of the
participants mentioned that when they saw two similar pictures, they
chose the one that is visually more pleasant. For example, one par-
ticipant said that he did not like pictures that looked “half dark and
half bright,” which he thought was “unbalanced.” The other four par-
ticipants all mentioned that they did not like pictures in which “some
neighboring classes have incompatible colors, for example, red and
green.” This is reasonable because our algorithm does not take color
harmony into account, which will be part of our future work.

We summarize our lab study results as follows:

• our selected color assignments make the classes separation easy
to be perceived;

• there are no significant benefits of our selected color assignments
in terms of time; and

• our selected color assignments are typically preferred by users.

5.3 Expert Studies

To compare the performance of our method with expert-chosen color
assignments, we invited two experts (1 male and 1 female) who have
more than 20 years of experience in color design. In this study, we asked
the experts to create their favorable color assignments for multiclass
scatterplots, and then examined how close their results were to the
results generated by our method.

Study design. We used the two multiclass scatterplots and the color
palettes shown in Figure 1 in this study. To help the experts judge
the class separabilities, we show the points of different classes in
different gray levels. We also plot a convex hull of each class as a
guidance for them to observe the class separability, once the expert



(a) (b)

(c) (d)

(e) (f)

class 1

class 3

class 2

class 4

class 5

class 6

class 1

class 3

class 2

class 4

class 5

class 6

class 7

class 8

Fig. 12. The inputs and results of two expert studies. (a,b) The grey-scale
scatterplots used as the input; (c,d) results generated by one expert; (e,f)
results generated by the other expert.

clicks on the corresponding class name; see Figures 12(a) & (b). After
selecting a color from the palette, the expert can assign the selected
color to the class by brushing the corresponding points. We informed
the experts that a good color assignment would foster the separation
between classes and that they were allowed to iteratively improve the
assignment until they were satisfied with the results.

Results. The two experts spent about five minutes on each scatterplot
and generated the results shown in Figures 12 (c) to (f), where all
the classes look well-separated like those generated by our method;
see Figures 1 (c) and (f). To quantitatively compare the results, we
computed the scores of the expert results according to Eq. (7) and deter-
mined how this would rank among all the possible 40320 and 720 color
assignment permutations for the eight and six classes, respectively;
note that 40320 = 8! and 720 = 6!. The results shown in Figures 12
(c) and (d) are ranked 756th (top 1.8%) among the 40320 assignments
and 19th among the 720 assignments (top 2.6%), respectively, while
the ones shown in Figures 12(e) and (f) are ranked 4053rd (top 10.1%)
and 96th (top 13.3%), respectively. These scores show that both results
made by the experts closely match with our measure. In particular,
the results produced by the first expert are ranked within the top 3%.
In summary, we believe that our method resembles and optimizes for
human perception of class separation.

6 INTERACTIVE COLOR ASSIGNMENT SYSTEM

To further assist the users in selecting appropriate colors, we develop an
interactive color assignment system that allows the users to interactively
find desired color assignments for multiclass scatterplots. It runs in a
web-based environment, which is available as an online tool1. After
the user uploads a multiclass scatterplot, our system can automatically
suggest color assignments by using the default color palette. The users
may also select or design their desired color palettes. Besides these
basic interactions, we provide three extensions to facilitate the user to
intuitively find the desired color assignments.

Top K suggestions. Our basic GA optimization algorithm only reports
the single optimal color assignment to the user. In many cases, however,
users would like to have more diverse choices. To address this issue, we
extend the GA algorithm by choosing the top K unique assignments at
each iteration besides recording the best fit. In our system, the default
K is six; see the project web page for results.

1http://www.color-assignment.net/

(a) (b)

(c) (d)

Fig. 13. Two extensions of our approach. (a) a scatterplot where two
classes are assigned pink and green indicated by the color of lasso; (b)
the result generated by our method; (c) scatterplot with three classes
of interest selected; and (d) result generated by our method, where the
separation between the two selected classes is maximized.

Pre-assignment of colors. In some cases, users want to assign specific
colors to certain classes due to their domain knowledge. Our GA
algorithm can easily support this extended function by fixing the pre-
assigned colors on the corresponding genes. An example is shown in
Figures 13 (a) to (b), where the user chooses the pink and purple classes,
re-assigns them with red and green colors, respectively, and then lets
the system re-generate the color assignment for the other classes.

Classes of interest. Lastly, users may want to make certain classes
more distinguishable, especially for classes that are particularly interest-
ing to the users. By applying the GA algorithm first to these classes, our
method finds colors with maximal separation for these classes. After
finding colors for these classes, our method searches for the colors of
the other classes from the rest of the colors in the palette. In Figures 13
(c) and (d), the user would like to enhance the separability of three
classes on the right bottom of the screen, so these three classes are first
optimized with maximized color differences. Then the system assigns
the remaining colors in the palette to the other classes.

7 CONCLUSION

We present a method for the color assignment of multiclass scatter-
plots that takes into account the spatial relationship, density, degree of
overlap between point clusters, as well as the background color. These
aspects are combined to a new perceptual metric, which is used by an
optimization method based on a genetic algorithm to create good color
assignments automatically. We evaluated the approach numerically, per-
formed a controlled user study as well as two expert studies. The studies
demonstrate that our approach creates good correspondences between
optimization results and human preferences for color assignment.

There are various other analytical tasks in multiclass scatterplots [33],
such as relative mean value judgments, correlation patterns, and outlier
detection. While our current evaluation only investigates the perception
of class separability, in the future, we would like to conduct a more thor-
ough evaluation to assess the effectiveness of the color assignments also
with respect to these other tasks. Furthermore, we plan to incorporate
point sizes of scatterplot dots to point distinctness, whose influence on
the color difference has been verified by Szafir et al. [41]. Finally, we
want to study color assignments for people with color vision deficiency
where the color palette and color assignment might both need to be
adapted.
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