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Abstract
The hierarchical edge bundle (HEB) method generates useful visualizations of dense graphs, such as social
networks, but requires a predefined clustering hierarchy, and does not easily benefit from existing straight-line
visualization improvements. This paper proposes a new clustering approach that extracts the community structure
of a network and organizes it into a hierarchy that is flatter than existing community-based clustering approaches
and maps better to HEB visualization. Our method not only discovers communities and generates clusters with
better modularization qualities, but also creates a balanced hierarchy that allows HEB visualization of unstructured
social networks without predefined hierarchies. Results on several data sets demonstrate that this approach clarifies
real-world communication, collaboration and competition network structure and reveals information missed in
previous visualizations. We further implemented our techniques into a social network visualization application on
facebook.com and let users explore the visualization and community clustering of their own social networks.

Keywords: visualization, network clustering, edge bundles, betweenness centrality

ACM CCS: I.6.9 [Simulation, Modeling, and Visualization]: Visualization–Information visualization.

1. Introduction

Socialnetworks have grown larger, denser and more inter-
connected. For example, the popular social network Face-
book now has 500 million users, each averaging 130 friends
[Fac11], which implies a network of 65 billion edges. Vi-
sualizing even small portions of such massive networks
has become a formidable task. Straight-line graph drawings
are cluttered by too many edge crossings to effectively re-
veal structure, which motivates the investigation of alterna-
tive graph drawing techniques. Curve-based or edge-bundle-
based graph drawings [DEGM05, PXY∗05, Hol06, BD07,
CZQ∗08] can more effectively present communication in a
network by depicting edges as curved pathways that adhere
to similar pathways to reveal an underlying graph ‘control’
structure.

Because the control structure is often much simpler than
the graph itself, edge bundling draws curved edge sharing

the same part of the control structure near each other to
form bundles that drastically reduce the distracting visual
clutter of edge crossings. For example, the hierarchical edge
bundle (HEB) method [Hol06] bundles graph edges based
on a predefined hierarchical clustering of the nodes. After
positioning the hierarchy (and nodes) via standard tree layout
methods, each edge is drawn as a B-spline curve adhering to
the path up and down the hierarchy from one node endpoint
to the other.

The effectiveness of these edge bundling approaches re-
lies critically on the hierarchical control structure used to
order the nodes and to lay out the curved edges connect-
ing them. The original HEB approach [Hol06] assumes this
control structure is provided with the input graph as a node
hierarchy that organizes it into a compound graph. Exist-
ing methods for automatically building such hierarchies are
based on repeated clustering, and the state-of-the-art is rep-
resented by small-world clustering based on edge strength
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Figure 1: Comparison between different community hierarchies (top) and their hierarchical edge bundle visualizations (bottom)
on the graph ‘enron-email-2001.08’.

[ACJM03] and community clustering based on betweenness
centrality (BC) [GN02].

Figure 1 demonstrates HEB visualizations of Enron
e-mails using several control structures. The first one is
a hierarchy created manually by a user based on the em-
ployee status reports [SA04]. Against this, we compare pre-
vious automatic hierarchical clustering methods based on
edge strength [ACJM03] and low-BC communities [GN02].
The edge strength approach results in large hierarchy fanouts
and its community clustering yields many inter-community
overlapping edge curves in the bottom HEB visualiza-
tion. Low-BC clustering detects better community clusters
than edge strength but yields an unbalanced binary tree
of lists, a ‘dendrogram’. Our proposed hierarchical cluster-
ing generates more balanced communities designed specif-
ically for effective HEB visualization. Its hierarchies are
more evenly distributed, which yields more visually orga-
nized edge bundle pathways that keep the curved edges
away from the otherwise crowded middle of the HEB disk
layout.

Section 3 details this new clustering approach. Like BC
communities [GN02], it first computes the BC of every edge
in the social network, then removes edges in order of de-
creasing BC, then reintroduces these edges in community
merging steps to form a hierarchy of links between iso-
lated communities. Our new community clustering algorithm
builds on this basic approach with (1) modified edge-removal
constraints to find a collection of small isolated communi-
ties, (2) new community merging rules to yield better orga-

nized (flatter, more balanced) hierarchies, and (3) new hi-
erarchy adjustments applied after clustering is completed to
further improve the community structure for visualization
purpose.

Section 4 demonstrates the results, and Section 5 shows
that this new method generates quantitatively better clusters
for social networks, with superior modularization qualities
(MQ) [MMCG99], when compared to a few existing clus-
tering methods, especially on large graphs. Section 5.2 in-
troduces a relative community strength measure called the
‘BC differential’ that we use to indicate when community
merging is indicated by social structure or a necessary but
arbitrary choice needed to maintain tree structure quality. We
integrate this new BC differential measure as bundle strength
in the resulting HEB visualization.

Section 6 describes interactive implementations, including
a Facebook social network visualization application that lets
users visualize their own social networks using the proposed
new hierarchical community clustering approach for HEB
visualization. Section 8 concludes with ideas for future work
on larger graphs and time-varying networks.

2. Previous Work

Given a social network, we construct a social community
hierarchy based on BC to automate and improve edge bundle
visualization. Here we review the background work in each
of these areas.
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2.1. Graph hierarchies

Graph hierarchies are useful for visualizing large graphs, and
are often created by repeatedly clustering nodes into affinity
groups [HMM00]. Wu et al. [WGH04] hierarchically clus-
tered nodes by their shortest-path distance from hub nodes
(chosen by least BC or highest degree) for data mining and
visualizing power-law graphs. Kumar and Garland [KG06]
clustered nodes based on an ‘authority’ metric and strati-
fied the graph into different layers that were overlaid for fast
layout and interactive visualization.

Graph hierarchies can also be created by filtering. Auber
et al. [ACJM03] removed weak edges in a small-world graph
to visualize a large graph as a hierarchy of strongly connected
components. Chiricota et al. [CJM03] applied similar ideas
based on edge strength to discover component structure in
software systems. Both Newman [New04b] and Blondel et al.
[BGLL08] clustered nodes by maximizing an ‘MQ’ metric
to find communities in social networks.

Our work proposes new rules for filtering edges and clus-
tering nodes into isolated communities and merging these
communities into a balanced hierarchy which yields a flatter
and more regular layout than these past approaches.

2.2. Betweenness centrality

BC measures how often an edge is found on all shortest paths
from any node to any other node. High-BC edges connect
large communities, whereas low-BC edges connect individ-
uals within a community.

Girvan and Newman [GN02] removed high-BC edges to
reveal community structures in social and biology networks,
and this approach was later surveyed and compared with
other approaches by Newman [New04a]. van Ham and Wat-
tenberg [vHW08] explored similar ideas to visualize small-
world networks. Heer and Boyd [HB05] removed high-BC
edges to reveal communities within social networks, whereas
Jia et al. [JHGH08] removed low-BC edges to reveal the
communication pathways within social networks.

We likewise utilize low-BC edges to detect communities,
and simplify high-BC edges to accentuate the communication
pathways between communities.

2.3. Edge bundle visualization

Edge bundles render large graphs via edge clustering, by
collecting together long edges analogous to the way electric
wires are merged into bundles along a shared mutual path
segment, fanning out at ends to connect distinct endpoints.

Holten [Hol06] proposed HEBs to visualize a compound
graph accompanied by a predefined hierarchy. His approach
first drew the hierarchy using an existing tree layout method,
such as radial layout [Ead92], balloon layout [CK95] or

treemap [Shn92]. It then laid out long and complex graph
edges using the nodes of the tree as B-spline control points.
Each edge in the original graph was modelled as a single
B-spline using the control points along the shortest path in
the hierarchy from one end node to the other.

Cui et al. [CZQ∗08] visualized large graphs via edge clus-
tering through a geographical control structure. Balzer and
Deussen [BD07] used edge bundles to simplify edges in a
clustered level-of-detail graph visualization. Confluent draw-
ing [DEGM05] displayed non-planar node-link diagrams us-
ing curved edges, although not all graphs are confluently
drawable. Flow map layouts [PXY∗05] route edges through
a binary cluster hierarchy, although only for single-source
graphs.

Our contributions to edge bundle visualization are based
on the automation, integration and colouring provided by our
proposed community hierarchy approach.

3. Balanced Community Hierarchy Construction

We cluster a social network into a balanced community hier-
archy in two steps, illustrated in Figure 2. We first compute
the BC of every edge in the graph, and remove edges in non-
increasing order of BC to find the smallest communities that
collectively form the base of the hierarchy. We then construct
the hierarchy by merging these communities according to the
increasing BC of the removed edges, and visualize the result
with HEB.

3.1. BC edge removal

BC [Fre77] indicates how often a node lies on the shortest
and presumably most used communication paths between
other nodes

BC(v) =
∑

s �=v �=t∈V

σs,t (v)

σs,t

, (1)

where σ s,t counts the number of shortest paths between s and
t, and σ s,t(v) counts only the ones containing v. BC of an
edge is computed similarly

BC(u, v) =
∑

s,t,u,v∈V

σs,t (u, v)

σs,t

, (2)

where σ s,t(u, v) counts the number of shortest paths between
s and t that pass through edge (u, v).

High-BC edges typically connect communities of nodes
within which connections are dense but between which con-
nections are loose [GN02]. The bigger the BC, the larger
the communities. In contrast, low BC edges usually connect
nodes within the same community. In particular, an edge with
BC equal to one (the smallest allowed) indicates it connects
two nodes clearly in the same community, and these two
nodes form the smallest possible community. Similar to the
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Figure 2: Work flow of our approach. Different colours are used for graph edges (blue) and hierarchy edges (grey).

Figure 3: Edge removal on graph ‘enron-email-2001.08’.

approach of Girvan and Newman [GN02], we detect commu-
nities in a graph by removing edges in descending BC order,
leaving small disjoint communities of nodes connected by
the remaining edges. The important difference is that their
method continues until all edges are removed whereas our
method terminates with a collection of isolated communities.
We achieve this by implementing the following edge removal
constraints.

3.1.1. Definition 1 (edge removal constraints)

An edge can be removed if and only if neither its BC, nor the
degree of either of its vertices, equals one.

In other words, at the end of the edge removal phase,
an edge either has unit BC or has degree-one end node(s).
Edges with unit BC connect nodes within the smallest com-
munities. Edges with degree-one end node(s) are the least-
BC edges for those nodes, which further indicate relatively
the smallest communities to which those nodes belong. By
enforcing these two constraints in edge removal, we con-
verge on the smallest communities for all nodes simultane-
ously. Figure 3 shows the edge removal result on the Enron
email network. Each connected component in Figure 3(b)
represents the smallest communality relative to nodes
within it.

Removed edges are placed on a stack so they can be later
reintroduced by a merging phase in last-in-first-out order.
Please note that BC is not recomputed during edge removal,
as discussed in Section 6.1.

Figure 4: Merging two communities. Here two communities
are connected because node a ∈ Ta and b ∈ Tb are connected
by an edge e(a, b).

3.2. Merging communities

The numerous small communities that result from edge re-
moval are detected by a simple connected component sweep.
These small components are converted into a forest of small
subtrees to form the bottom of the hierarchy, illustrated in
the third step of Figure 2. Subtrees are then merged accord-
ing to the previously removed edges in order of increasing
BC. If a removed edge connected a pair of nodes from two
subtrees, then those two subtrees belong to a bigger commu-
nity in the original graph. Because removed edges are pushed
onto a stack in non-increasing BC order, popping these edges
from the stack produces non-descending BC edges that merge
communities in the correct order. Our new method to merge
two subtrees works as follows.

3.2.1. Definition 2 (community merging rules)

Let removed edge e(a, b) connect two graph nodes a and b
belonging to two different communities, represented in the
hierarchy by subtrees Ta and Tb. If Ta and Tb share the same
height, then they can be merged as children of the same new
parent tree node. Otherwise assume without loss of generality
that Ta is taller than Tb. Let Sa be the unique (lowest) subtree
of Ta that contains a and shares the same height as Tb. Then
the communities are merged by assigning the parent of Sa as
the parent of Tb.

If two subtrees have the same height, we simply merge
them by joining their roots. Otherwise, the two nodes are
in two communities (subtrees) of different sizes (heights).
We thus seek the smallest common community while re-
taining community tree balance. In the example shown
in Figure 4, the smallest common community for a and
b is the union of Sa and Tb. This subtree merging rule
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Figure 5: Creating hierarchies by merging communities in
graph ‘enron-email-2001.08’.

differentiates our method significantly from previous ap-
proaches [GN02, New04b], demonstrated in Figure 5
with results on the Enron email network. In the previ-
ous approaches, shown in Figure 5(b), every merge in-
creases the height of the result, and can produce a tree
of worst-case O(n) height for n nodes, whereas the worst
case height under our rules is O(log n) by induction. If
there are two nodes, the height is one. If there is a sub-
tree of height k, then by inductive hypothesis it has O(2k)
nodes. Under the merging rule, its height would not in-
crease unless there is another tree of at least that height.
Even if there was, the merged tree would then have height
k + 1 and consist of O(2k+1) nodes.

These new merging rules make more sense for both com-
munity detection and HEB visualization. For community de-
tection, a reintroduced graph edge (a, b) defines a common
community by joining two communities that contain a and
b. However, node a may belong to several communities,
represented as nested subsets by an ancestry path in the com-
munity hierarchy. We must select one of these communities
of a to merge with the community of b, so we merge the
largest communities of both that share the same level in the
hierarchy with the assumption that they represent the same
kind of community. This represents the smallest common
community of a and b.

With our method, the resulting hierarchy tends to be bal-
anced, whereas previous approaches, including Girvan and
Newman [GN02], can merge a small community with a large
community, leading to the rather jagged, lopsided hierarchies
shown in Figure 1.

For HEBs, a Girvan-Newman hierarchy routes commu-
nication from one community to another through a shared
parent (the current root during the tree merging process).
Sending all communications that far up and then back down
unnecessarily increases the edge density in the interior of the
radial layout of the HEB visualization, as shown in Figure 1.
Merging subtrees at lower heights yields simpler and shorter
communication pathways in the HEB visualization, leaving

Figure 6: Root adjustments (b and c) of the community hi-
erarchy (a) of graph ‘enron-email-2001.08’ to improve HEB
visualization from (d) to (e).

the interior to highlight more significant cross-community
communications.

3.3. Hierarchy root adjustment

Radial layout [Ead92] is commonly used to lay out trees
and HEBs [Hol06]. Such layouts work best for trees of uni-
form depth, otherwise multiple radii are needed to position
the leaves. For large depth difference, the layout could be
skewed, as demonstrated by the third hierarchy in Figure 1.
Although our community hierarchy construction rules strive
for uniform depth, they do not always achieve it. Further-
more, the root of the tree might not represent the mass centre
of the graph nodes at its leaves. In severe cases, this can lead
to a lopsided drawing and an off-centre HEB visualization,
as shown in image (a) and (d) of Figure 6, respectively.

To overcome these problems, only two simple adjustments
are needed in the preparation of the community hierarchy for
radial HEB visualization. First, different root node choices
are explored to re-centre the radial tree layout so that no
child of the root node represents more than half of the original
graph nodes (or more than half-plus-epsilon for a binary tree).
If a root’s child is found to represent too strong a majority of
nodes, then it is set to be the new root and the hierarchy is
retested, as shown in image (b) of Figure 6.

The radial layout of HEB visualization works best when
the leaf nodes on its perimeter all share the same depth. For
community hierarchies of varying depth (e.g. Figure 6b), we
can improve the appearance of the HEB layout by inserting
‘dummy’ nodes via a bottom-up depth-balancing process.
Figure 6(c) shows the hierarchy after the adjustment, with all
of the inserted ‘dummy’ nodes marked using red dots.
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Figure 7: HEB visualization of graph ‘college-football-
2000’ resulting from the community hierarchy discovered
by our proposed automatic method.

4. Results

We have tested our algorithm with several real data sets to
demonstrate its effectiveness at both community detection
and visualization. Unless explicitly stated otherwise, we use
the GEM method [FLM95] to lay out the original graph
and the radial method [Ead92] to lay out the hierarchy and
edge bundles. For directed graphs, we follow the colouring
scheme by Holten [Hol06] which colours source nodes with
green and target nodes with red. For undirected graphs, we
colour nodes in a hue colour mapping based on their polar
angles in the radial layout. In both cases, the colour is linearly
interpolated along the B-spline that is used to visualize the
edge.

Figure 7 visualizes the undirected graph ‘college-football-
2000’, which represents 616 matches between 115 Division
IA college football teams during regular season fall 2000

[GN02]. What makes this data set interesting is that its com-
munity structure is known [NCA00]. In particular, those
teams belong to 11 conferences except a few independent
teams that do not belong to any conference. Games were
played more frequently between teams in the same confer-
ence. The hierarchy constructed by our approach discovers
these conferences and clusters teams in the same confer-
ence as siblings to each other. The independent teams are
placed in conferences they played more with. This con-
firms that our method correctly clusters the communities
within this graph. Girvan and Newman [GN02] also cap-
tures the team conferences, but their unbalanced hierarchy
poorly describes relations between teams in the same confer-
ence and does not fit well with the hierarchial edge bundle
visualization.

Figure 6 visualizes the directed graph ‘enron-email-
2001.08’, which represents 389 emails between 132 Enron
employees in August 2001, extracted from the cleansed
Enron email data [SA05]. Green represents senders and
red represents recipients. We only considered the ‘TO’
recipients and ignored the ‘CC’ or ‘BCC’ recipients.
When compared to their straight line drawing counterparts
(i.e. Figure 3a), HEBs more effectively convey different
communities and the communications between them.
Relevant employees are user labelled and emails between
them are visualized by interactive user selections. For
example, Kenneth Lay was named the CEO of Enron
during this data set’s time interval. Selecting his node, as
shown in image (f) of Figure 6, reveals many emails sent
from him to employees in various groups. The SocialRank
project [MDPP08], shown in Figure 8(a), serves as a
partial ground truth organizational structure, resembles the
community structure found by our method, as highlighted
in Figure 8(b). In particular, the organization structure
indicates that both Kay Mann (kay.mann@enron.com) and
Christian Yoder (christian.yoder@enron.com) worked with
Elizabeth Sager (elizabeth.sager@enron.com). Our method
clusters them into the same community shown on the left.
Similarly, Susan Bailey (susan.bailey@enron.com), Sara
Shackleton (susan.shackleton@enron.com), Stephanie
Panus (stephanie.panus@enron.com), Tana Jones
(tana.jones@enron.com) and Marie Heard (marie.heard@
enron.com) are correctly clustered together, as all of them
worked with Mark Tylor (mark.tylor@enron.com).

Figure 9 visualizes the undirected graph ‘myface-
book’ which represents the network between the first au-
thor’s 165 facebook friends. By the nature of social net-
works, the graph is highly connected with 1803 edges.
As shown in Figure 9(c), our method clusters this friends
network into different groups, including friends in the
subject’s academic department, and the method automati-
cally discovers further sub-categories including lab mates,
previous college alumni, seniors, juniors, a registered stu-
dent organization colleagues, soccer teammates and fellow
interns.
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Figure 8: The organization ground truth (top) of Enron em-
ployees during January 2000 and November 2001. Similar
groups (bottom) are discovered with our community cluster-
ing method.

The HEB visualization is shown in Figure 9(b) and leads
to some discovery. First, the internship friends do not know
other friends because they are from different colleges, with
a few exceptions. Secondly, there are many connections be-
tween current department friends and friends from the pre-
vious college. This is simply because after graduation they
joined the same college and same department as the author.

Figure 10 visualizes the undirected graph ‘sp500-38’,
which represents 3206 cross correlations of price fluctuation
of 365 stocks from the S&P 500. Our method is able to rec-
ognize different stock sectors and clusters them near to each
other in the hierarchy. The HEB visualization reveals that
financial stocks affect all other kind of stocks except energy,
consumer staples, and health stocks, which are relatively
independent. For example, there are many edge bundles con-
necting to the financial stocks on the left of the circle, but
very few of them connecting to health and energy stocks on
the bottom right.

Figure 11 visualizes a bipartite human disorder-gene
network [GCV∗07] ‘diseasome’, which represents 1550 as-
sociations between 1419 disorders and genes. A disorder
is connected to a gene if the disorder arises from the
mutation of the gene. Figure 11(a) shows a visualization of
the network published in the New York Times [Pol08] and in-
teractively [BC08], in which squares correspond to genes and

Figure 9: Graph ‘myfacebook’, including user supplied
labels of groups discovered by our community clustering
method.

circles correspond to disorders, coloured by disorder types
and sized by the number of gene links. We visualization this
network using HEBs as follows. We first repeatedly clus-
ter to form a community hierarchy, shown in Figure 11(b).
This hierarchy is then laid out using an adaptive tree draw-
ing technique [JH08], shown in Figure 11(d). All first level
internal nodes are drawn on different layout circles to em-
phasize the communities they represent. A few disorders
are also labelled to show that the same type of disorders is
likely clustered into the same community. Finally, all the
disorder–gene associations are drawn on top of the hierarchy
as edge bundles, which is shown in Figure 11(c). There are
seldom connections between communities whereas disorders
and genes within the same community are more strongly as-
sociated with each other. One benefit of the visualization is
that the layout differentiates communities better with well
separated node clusters without overlapping or interleaving.
In addition, it is easy to tell large and dense communities
from small, sparse ones.

The steps in our method have linear complexity with
two exceptions. One superlinear step is the BC computation
which can be performed for n nodes and m edges in O(nm)
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Figure 10: Graph ‘S&P500’, including user supplied la-
bels of stock sectors discovered by our community clustering
method.

time for unweighted graphs and O(nm + n2log n) time for
weighted graphs [Bra01]. The other superlinear step sorts the
edges in non-increasing order of BC before edge removal,
which requires mlog (m) running time. All presented layouts
and drawings were computed in a matter of seconds for the
graphs shown.

5. Discussion

The results show our proposed HEB layouts to be an effective
approach based on qualitative visual comparison. Here we
evaluate the layouts based on quantitative measurements.

5.1. Comparing cluster quality

To further justify our clustering method, we measured the
modularization quality (MQ) of communities found in the
network and compared it against results from other meth-
ods. MQ was first introduced as a partition cost function in
the field of software reverse engineering [MMCG99], but
has also been applied to measure cluster qualities for small-
world networks [ACJM03]. Given a set of clusters C = {C1,
C2, . . . , Cp} of a graph G, MQ measures the average edge
density within clusters versus the average edge density be-

Figure 11: Visualizations of a human disorder-gene network
‘diseasome’. Labels in (d) are aligned on the right side of the
corresponding nodes.

tween clusters as

MQ{C; G} = 1

p

p∑

i=1

s(Ci, Ci)

− 1

p(p − 1)/2

∑

i<j

s(Ci, Cj ), (3)

where s(Ci, Cj) measures the edge density between nodes in
Ci and Cj as

s(Ci, Cj ) = |e(Ci, Cj )|
|Ci ||Cj | , (4)

where |e(Ci, Cj)| denotes the number of edges connecting a
node in Ci to a node in Cj and |Ci| represents the number of
nodes within Ci. Hence a larger MQ should indicate a better
clustering.

When creating a hierarchy, the graph is divided into a
unique number of clusters at each step. To measure the quality
of these clusters, we measure and plot the MQ at each step
to show the change of MQ versus the number of clusters.

Figure 12 shows the MQ measured on networks ‘enron-
email-2001.08’ and ‘myfacebook’ clustered by four meth-
ods: ‘strength clustering’ [ACJM03], ‘BC communities’
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Figure 12: Clustering quality comparison on networks ‘enron-email-2001.08’ (left) and ‘myfacebook’ (right).

[GN02], ‘fast communities’ [New04b] and our method. The
three previous methods begin with every node in its own
cluster, whereas our method starts with nodes in small com-
munity clusters. Hence, our method begins with 44 instead of
132 clusters for the Enron network and 67 instead of 165
clusters for the facebook example. Furthermore, ‘strength
clustering’ is a top down approach that repeatedly divides
clusters into sub-clusters, but does not generate all possible
numbers of clusters. We marked the available cluster num-
bers with ‘∗’s.

Figure 12 (left) shows that for the same number of clus-
ters, that is from 44 to 2, our method achieves higher MQ
than does either of Newman’s methods. One possible reason
is that their methods start by picking one small initial clus-
ter and iteratively merge neighbouring clusters connected
to it by low BC edges. Thus it prioritizes merging of well-
connected clusters which might not be optimal for the entire
graph. While our method finds the smallest clusters for all
the nodes simultaneously, and obtains better clusters overall.
“Strength clustering” produces higher MQ than our method
at 25 clusters, because their method varies the number of
clusters to maximize MQ. Eventually, all methods converge
on a single cluster with the same MQ. The facebook network
(right) is much denser than the Enron network (left). The
facebook results show our method achieves the highest MQ
ranging from 66 to 3 clusters. Both plots indicate that our
method generates high quality, densely connected clusters
themselves only loosely connected with each other.

A clustering method with higher MQ could potentially
benefit the quality of HEB created using a clustering hier-
archy. A higher MQ indicates more intra-cluster edges and
fewer inter-cluster edges. In HEB, intra-cluster edges are
drawn as short B-splines, whereas inter-cluster edges are
drawn as long B-splines. In comparison to short edge-bundle

Figure 13: HEB with edges drawn as straight B-splines.

B-splines, long edge-bundle B-splines route through higher
level hierarchy nodes, and tend to overlap more. A clustering
method with higher MQ would generate an HEB with more
short B-splines and fewer long ones. As a result, such an
HEB would exhibit fewer edge bundle crossings.

Figure 13 shows an HEB visualization of ‘enron-
email-2001.08’. Grey lines represent the clustering hierar-
chy while blue lines represent the edge bundles. Here the
bundle ‘strength’ is set to zero so that edges no longer
bundle but follow independent straight lines. This figure
shows there are only a few long blue lines across the
circle centre, which correspond to inter-cluster edges, be-
cause our clustering method achieves a high modularization
quality.

A ‘modularity’ measure [NG04] indicates the quality of
communities discovered in networks. It sums over each com-
munity the difference between observed connectivity and the
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expected value of a random graph with the same degree
distribution [GdMC10]. For the Enron network, ‘fast com-
munities’ obtained the best modularity of 0.481, compared
to 0.387 obtained by our method, because ‘fast communities’
clusters the graph by maximizing modularity. Recent stud-
ies [FB07, GdMC10] argue that the behavior and accuracy
of maximizing modularity is not well understood and mod-
ularity itself can exhibit degeneracy. Empirically we found
that clustering by high modularity may not produce good
HEB visualizations. For example, ‘BC communities’ obtains
a modularity of 0.475 but yields overlap of many B-splines
through the centre branch of the hierarchy as shown in the
third column of Figure 1.

5.2. Measuring community strength

Communities are detected based on edge BC and low BC
edges connect nodes in small communities. The BC of intra-
community edges is lower than that of inter-community
edges. A community is strong if this margin is large. In
other words, the strength of a community can be measured
by the BC difference between intra-community edges and
inter-community edges. We call this the ‘BC differential’
and we use it to indicate for each community hierarchy node
whether the choice of which two communities to merge was
obvious or arbitrary.

Let C be one of the communities at some non-root, non-
leaf level in the community hierarchy, representing a set of
nodes. Let p(C) indicate the parent community of C, and let
Ci indicate its ith child community. We denote by e(Ci, Cj) a
portion of the set of ‘intra-community’ edges of C connecting
nodes in sub-community Ci to nodes in Cj, and the number
of these edges is denoted by set cardinality |e(Ci, Cj)|. We
can hence measure the intra-community BC of a cluster C as
the total BC of edges between child clusters of C,

BC(C) =
∑

i �=j BC(e(Ci, Cj ))
∑

i �=j |e(Ci, Cj )| , (5)

normalized by the number of edges over which the BC was
measured. We can similarly define the inter-community BC
of a cluster C as the average BC of the edges connecting a
node in C to a node in a sibling cluster

BC(C) =
∑

i:C �=p(C)i
BC(e(C, p(C)i))∑

i:C �=p(C)i
|e(C, p(C)i)| . (6)

We can then define the BC differential as the normalized
BC difference between inter-community edges and intra-
community edges

DBC(C) = BC(C) − BC(C). (7)

Figure 14(a) shows the BC-differential measured on the
graph ‘college-football-2000’ and visualized on the hierar-
chy with pseudo colour mapping. Nodes with high-BC differ-

ence indicate strong communities, which coincide with the
conferences of those teams. Smaller BC difference nodes in-
dicate weaker, somewhat arbitrary, choices for communities
because their intra-community edges and inter-community
edges have smaller difference in BC.

Besides measuring the strength of communities, we use the
BC differential to control the HEB drawing. Instead of having
a single edge bundle strength [Hol06] applied to all the nodes,
we set strength for each node individually proportional to its
BC difference. A node with high-BC difference represents a
strong community and we increase the tension of B-splines
through that control point to make the edge bundles more
compact near that node.

Figure 14(b) demonstrates the rendering of the BC-
differential metric for community strength, depicted by the
strength of B-spline control points in the HEB. We marked
two nodes with dashed rectangles. One of them has much
higher BC difference than the other, and its edge bundles
are more compact in the visualization to illustrate that it is a
strong community.

This information could further be used to discover more
accurate community information from the graph. In particu-
lar, nodes in the hierarchy are removed if their BC differences
are lower than a threshold. One result is shown in Figure 14(c)
with a threshold of 10 out of the range [0.7, 30.7]. Only strong
communities are reserved here and they more closely match
to the conferences of those teams. Finding a good threshold
requires some experiments, and can be expedited by plotting
the histogram of the BC differential.

6. Interaction

The HEB layout tool can be deployed as an offline graph lay-
out process, but here we discuss how it can be implemented
more rapidly for interactive display of dynamic graphs, to al-
low user correction to the automated community clustering,
and our deployment of the layout as a facebook application.

6.1. Accuracy versus speed

Users also have control over the tradeoff between accuracy
and speed in our clustering algorithm. In particular, when
removing edges, BC is only computed once to determine
the order of all edges, which saves computation time. If
accuracy is more important, then BC can be recomputed after
removing each edge, as done in the approach by Girvan and
Newman [GN02]. For ‘college-football-2000’, in the static
BC case, the Big 12 and Big West conference are merged into
a bigger community, as shown in the first image in Figure 16.
By recomputing a dynamic BC after each edge is removed,
those two conferences end up well separated, as shown in
the first image in Figure 15. The hierarchy is more accurate
and similar to the community ground truth, which is shown
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Figure 14: Measuring strength of communities with BC differential on the graph ‘college-football-2000’.

Figure 15: Community hierarchy constructed with recom-
puting BC (left) compared to the community ground truth
(right) of the graph ‘college-football-2000’.

in the second image. However this incurs the additional time
complexity of a factor of m overall.

6.2. User interactions

We have implemented our algorithm in an interactive visu-
alization tool. Users can modify the hierarchy based on their
knowledge of the data through two operations: moving and
swapping. The moving operation allows users to change the
parent of a chosen node whereas the swapping operation al-
lows users to swap two nodes in the hierarchy, with both
operations affecting the descendants of the selected node.
An example on the graph ‘college-football-2000’ is shown
in Figure 16. The hierarchy constructed automatically by our
method intermixed several teams from the Big 12 and Big
West conferences, which can be interactively corrected as
shown.

Users can also filter displayed edge bundles by selecting
or deselecting graph nodes. For the graph ‘college-football-
2000’, a user can perform queries such as ‘display only the

Illinois’ games’. The result is shown in the left image of
Figure 17. Users can also select a community of nodes by
selecting the corresponding parent node in the hierarchy.

Our tool can also takes advantage of standard HEB visual-
ization features. For example, users can change the strength
and transparency of edge bundles, and apply different colour
mappings. An example on the graph ‘college-football-2000’
is shown in the right image of Figure 17, where the strength
is changed to 0.65.

7. Visualization Application on Facebook

We have also implemented our clustering method and HEBs
in a visualization application on facebook.com, namely
‘Friend Insight’ [JTH09]. The facebook application allows
users to visualize their network of friends, and is written in
Flash based on the existing data visualization package ‘flare’
[Vis09]. A snapshot is shown in Figure 18, anonymized with
random names. Users can visualize their networks with our
HEB layout, which automatically collects their friends into
communities the user might not have previously considered.
Users can pan and zoom to inspect the details of the visual-
ization. To facilitate easier visualization of inter-community
connections, the user can change the edge bundle strength
and can filter the visualization to a single node’s connections
by either searching for a name or clicking on a friend.

8. Conclusion

We proposed a new social network clustering method, based
on BC, that clusters a social network into a community
hierarchy. This new method generates a balanced hierar-
chy that improves HEB graph visualization. We also as-
sessed the strength of the discovered communities, to help
users understand the community structure residing in graphs.
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Figure 16: An interactive user modification of the community hierarchy of graph ‘college-football-2000’ to separate two
conferences.

Figure 17: Manipulating a hierarchical edge bundle visu-
alization of graph ‘college-football-2000’.

We implemented this method as part of an interactive graph
visualization tool, on top of the Tulip library and VTK, where
users can modify and manipulate visualizations to facilitate
knowledge discovery. We also implemented it into a visual-
ization application on facebook to allow potential users to
explore their own personal social networks.

This approach has a few limitations. When applying it
to larger graphs, the radial layout spaces nodes too closely,
and the B-spline paths become unusable, necessitating other
tree drawing methods, for example balloon or treemap lay-
outs. Another scalability concern is the superlinear compu-
tation time of BC, sometimes addressed by approximation
[BKMM07] or parallelism [MEJ∗09, JLH∗11]. The applica-
tion of this approach to time-varying or real-time data, such
as real time messages or email within a social network, opens
up interesting problems of making a dynamic hierarchy that
maintains its meaning over time.

We would like to improve our facebook application. Cur-
rently, it rasterizes each B-spline to dozens of short line seg-
ments for smooth Flash rendering which can become slow
for many line segments. It does not support bundle-centric
interactions, such as selecting crossing edge bundles. A user
study might reveal further strengths and weaknesses of this
approach.

Figure 18: Our facebook application ‘Friend Insight’.
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