Overview

- The Design Process
- Target Audience
- Our Demands
- Rule Sets
- System Diagram
- Other

The Design Process

1. Programming
 - relationship to site
2. Conceptual Design
 - relationship between program elements, general shape
3. Schematic Design
 - plans & sections, materials
4. Design Development
 - line up contractors (plumbing & electrical, etc)
5. Construction Documents
 - papers for contractors
6. Construction Management

Target Audience

- Architects:
 - Virtual Structural Engineer
 - Faster (real-time) feedback
 - Enters into design process earlier
 - Can selectively ignore its suggestions
 - maintain control over design process
 - 70% of architects would be willing to try it
 (learning experience/teaching tool)
 - 10% of architects would actually use it seriously for design
- Structural Engineers?

Gaudi Design Tools
Kyle, Eric, Emily & Barb
Meshing Controls

- string & node connectivity
- string length (set/equalize length)
- weights (set/equalize weights)
- platforms (set area/shape/dimensions)

Simulation Controls

- angle between 2 strings (also, 2 strings are parallel)
- angle of string/platform relative to ground
- vertical height of node/platform
- (length of string, area of platform)
Overview

- The Design Process
- Target Audience
- Our Demands
- Rule Sets
- System Diagram
- Other

Rule Sets

- Often architects develop a set of rules that will govern a particular design
 - Talia Dorsey
 - Talia Variant 1
 - Talia Variant 2
 - Floating Plan
 - Convex Hull Plan
 - Shape Driven
 - Structural Element Design
 - Tutorial/Design your own rule set

Talia Dorsey: fixed mesh

- editing 2 curves & the mapping between the curves
- fixed grid/mesh
Talia: Variant 1

- Edit mesh (lengths & connectivity)
- shell/ 2D problem
- flashlight or magnet to increase/decrease the density of points

The Floating Plan

- Specify program spaces (area/height/shape)
- User provides initial strings
- System solves for placement in 3D
- View in section

Convex Hull Plan

- Given Strings
- Specify height of each floor
- Convex hull of string intersections defines initial plan
- Can edit plan
Shape Driven

- Convert box skyscraper to efficient structure
- Make structure to hold up regular shape

Structural Element Design

- Given local force diagram for a structural member (arch, column, beam)
- Visualize force paths for different loading conditions
- Edit volume
- "margin of safety"

Tutorial / String JR.

- Intuition builder
- Teaching tool
- Access to all simulation controls
- Build your own rule sets

Overview

- The Design Process
- Target Audience
- Our Demands
- Rule Sets
 - System Diagram
 - Other
 - Visualization
 - GUI Issues
 - Defining Spaces with Strings
 - String/Platform Intersections
System Diagram: Tools

- GUI
- Physical Models
- Rule Sets
- Simulation
- Mesh
- user-defined

Visualization
- tension/compression
- magnitude of force
- "this string is redundant/useless"
 - no force is acting along its length
- "this set of constraints is impossible to satisfy" & why

GUI issues
- As much as possible, let’s aim for a 2D control interface
- Let’s match existing/common mouse/control-key navigation & editing

Defining Space with Strings?
- Architectural spaces are not necessarily defined by the arrangement of strings/load-bearing elements
- A string/column may cut through a space, but not be a "problem"

String/Platform Intersections
- Ignore
 - no connection & no weight transfer
- Create new node & fix the current string lengths
 - just a modeling/user interface problem
- Slide & Support
 - the string can slide (don’t move the platform) but weight IS transferred
 - (probably the hardest to implement)