
Parallel ODETLAP for Terrain Compression and Reconstruction

Jared Stookey
ECSE Dept, RPI

jstookey@jstookey.com

Zhongyi Xie
CS Dept, RPI

xiez@rpi.edu

Barbara Cutler
CS Dept, RPI

cutler@cs.rpi.edu
W. Randolph Franklin

ECSE Dept, RPI
frankwr@rpi.edu

Dan Tracy
CS Dept, RPI

tracyd@rpi.edu

Marcus V. A. Andrade
DPI - Univ. Fed. Vicosa -

Brazil and RPI
marcus.ufv@gmail.com

ABSTRACT
We introduce a parallel approximation of an Over-determined
Laplacian Partial Differential Equation solver (ODETLAP)
applied to the compression and restoration of terrain data
used for Geographical Information Systems (GIS). ODET-
LAP can be used to reconstruct a compressed elevation map,
or to generate a dense regular grid from airborne Light De-
tection and Ranging (LIDAR) point cloud data. With previ-
ous methods, the time to execute ODETLAP does not scale
well with the size of the input elevation map, resulting in
running times that are prohibitively long for large data sets.
Our algorithm divides the data set into patches, runs ODET-
LAP on each patch, and then merges the patches together.
This method gives two distinct speed improvements. First,
we provide scalability by reducing the complexity such that
the execution time grows almost linearly with the size of the
input, even when run on a single processor. Second, we are
able to calculate ODETLAP on the patches concurrently
in a parallel or distributed environment. Our new patch-
based implementation takes 2 seconds to run ODETLAP
on an 800 × 800 elevation map using 128 processors, while
the original version of ODETLAP takes nearly 10 minutes
on a single processor (271 times longer). We demonstrate
the effectiveness of the new algorithm by running it on data
sets as large as 16000×16000 on a cluster of computers. We
also discuss our preliminary results from running on an IBM
Blue Gene/L system with 32,768 processors.

Categories and Subject Descriptors
I.3.5 [Computing Methodologies]: Computer Graphics—
Computational Geometry and Object Modeling

Keywords
GIS, LIDAR, PDE solver, parallel computation, terrain mod-
eling, terrain elevation data set compression, terrain inter-
polation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM GIS ’08 , November 5-7, 2008. Irvine, CA, USA (c) 2008 ACM
ISBN 978-1-60558-323-5/08/11 ...$5.00.

Figure 1: Our parallel version of ODETLAP was
used to generate a dense 10000 × 10000 raster (B)
from raw urban LIDAR data consisting of 13 million
points (A) quickly on a cluster of 128 2.6 GHz AMD
Opteron processors.

1. INTRODUCTION
Due to recent advances in GIS data acquisition methods

such as LIDAR and satellite imagery, vast amounts of GIS
data is being collected at such a fast rate that storing and
processing all of this data currently poses a problem, and
will increasingly pose a problem in the near future. We can
help to reduce these problems in several ways. First, we can
reduce the size of the stored data by inventing new compres-
sion techniques that are optimized for GIS data. Second,
we can process data more quickly using new approximation
techniques that will reduce the time required for operating
on larger data sets. Third, by taking advantage of machines
such as multi-processor and multi-core machines, as well as
computing clusters and supercomputers, we will be able to
transform vast amounts of raw data collected in the field into
strategic planning intelligence in a short amount of time. In
this paper, we introduce a method to accelerate the process
of ODETLAP terrain compression and reconstruction [13]
that demonstrates each of these.

ODETLAP has proven to be an effective method for gen-
erating data that closely represents the original terrain by
filling in the unknown points. This feature can be used to
generate raster data from sparse point cloud data, or to re-
construct an elevation map from a small subset of points.
Using ODETLAP as a black box, we have developed ter-
rain compression algorithms to reduce the storage space for
large terrains. However, ODETLAP suffers from a scalabil-

Figure 2: We apply ODETLAP to overlapping layers
of patches. This example shows a 400x400 grid with
49 100x100 patches. In this example, 16 patches
would be enough to cover the entire heightmap with-
out any overlap, but we would see errors at the patch
edges. Instead, we run ODETLAP on 49 overlap-
ping patches.

ity issue. As the dimensions of the elevation map increase,
the numerical complexity of ODETLAP causes the compu-
tation time to increase quadratically with the number of
pixels (Figure 5). In this paper, we describe an approxi-
mation for ODETLAP in which we divide the terrain into
overlapping patches which ODETLAP can process quickly
(Figure 2), and later merge the results together as shown in
Figure 3. This method, which we call patch-based ODET-
LAP, quantizes the numerical complexity of ODETLAP, so
that the execution time grows linearly with the size of the
input matrix. Also, by dividing the input matrix into sep-
arate patches on which ODETLAP is run, we are able to
take advantage of parallel and distributed systems to cal-
culate multiple patches simultaneously. By combining both
of these advantages, we are able to gain tremendous speed
improvements for large terrain maps when compared to the
original version, which we call non-patch ODETLAP.

Figure 1 provides a powerful demonstration of ODET-
LAP’s ability to fill in unknown points. Given over 13 mil-
lion sparse point cloud data points generated using airborne
LIDAR, ODETLAP generates a very accurate representa-
tion of the original urban elevation map. Using our parallel
patch-based ODETLAP, this calculation took 33 minutes
and 22 seconds on 128 processors in a cluster of 2.6 GHz
AMD Opterons. Extrapolating from the data in Figure 5,
the same calculation would have taken more than 179 days
using the non-patch version of ODETLAP on a single pro-
cessor.

Parallel ODETLAP greatly improves the efficiency and
still compares favorably with the non-patch ODETLAP in
reconstruction accuracy. Because we provide generous over-
lap between the patches and ensure that sufficient known
data samples are shared between the patches, the result of

Figure 3: Our final step is to merge the overlapping
patches (A) into the complete reconstructed eleva-
tion map (B).

the patch-based parallel ODETLAP matches the non-patch
version of ODETLAP within 0.1%.

Our contributions are as follows:

• A partitioning scheme for calculating ODETLAP that
greatly reduces the overall numerical complexity for
large elevation maps.

• A method for distributing and merging data partitions
in order to calculate ODETLAP in a parallel or dis-
tributed environment.

• Demonstration of our algorithm for calculating ODET-
LAP on much larger terrains than what was previously
possible with nearly identical results.

2. RELATED WORK
Research on parallel computing in GIS began to play an

important role in the 1990s [2] as parallel computing tech-
nology became more widely available. Research has been
done on parallelizing existing algorithms like line simplifica-
tion by Mower [10], polygon line shading by Roche et al [11]
and processing heterogeneous networks for GIS by Clema-
tis [1]. Research at the Edinburgh Parallel Computing Cen-
tre (EPCC) emphasized creating new parallel libraries to
support high performance GIS data models [2, 6, 9].

A newer approach to the problem of parallelizing GIS op-
erations was taken in [7] in which the GRASS GIS appli-
cation was modified to operate in a clustered environment.
Ichikawa et al [12] demonstrate an iterative data partition-
ing scheme for parallelizing a PDE solver. Griebel et al
[5] made excellent progress using parallel multigrid to solve
PDE’s. More recently, we have seen research in image pro-
cessing that involves large linear systems on huge images
using a streaming multigrid that can benefit by running on
parallel systems [8] in such a way that could be adapted to
problems in GIS.

We extend these important pieces of research to over-
determined PDE’s. We specifically target GIS applications
and provide an in-depth analysis of the quality-cost trade-
off associated with partitioning very large elevation maps.

In this paper, we propose a parallel terrain compression al-
gorithm that is capable of processing terrain maps of size
16000× 16000 and larger in a reasonable amount of time.

2.1 The ODETLAP Solver
The Over-determined Laplacian Approximation (ODET-

LAP), [13] is an extension to the Laplacian equation:

4zxy = zx−1,y + zx+1,y + zx,y−1 + zx,y+1 (1)

This equation states that for every non-border point iden-
tified by coordinate (x, y) in the elevation matrix, the el-
evation zxy is equal to the average of its neighbors. The
handling of border points forms a special case and is omit-
ted due to the lack of deep theoretical interest. This equa-
tion by itself is unable to represent local maxima in terrain
modeling [4], thus we also include a second equation:

zxy = hxy (2)

Equations 1 and 2 form a basis for our over-determined
linear system. The system’s input is a set of points (x, y, z)
which specify the elevation of certain locations (x, y). For
those locations with known elevation, we have both equa-
tions, and for the rest of the locations, only equation 1 is
specified. The relative importance of these two sets of equa-
tions is determined by a parameter R during the interpola-
tion process. Weighting equation 2 over equation 1 results in
a more accurate surface which sacrifices smoothness, while
weighting equation 1 over equation 2 gives us a smoother
surface that interpolates the known points.

We use ODETLAP when we have incomplete information
about the actual elevation matrix. The known value and
the Laplacian constraint (the average of its neighbors) can
be used to interpolate the elevation value for every unknown
and known point. In this way, ODETLAP can be consid-
ered as a solver whose input is a set of known points (x, y, z)
and an interpolation parameter R and output is the Digi-
tal Elevation Model (DEM) matrix of the complete terrain.
ODETLAP has several benefits that are ideal for terrain
data, including the ability to handle continuous as well as
broken contour lines of elevations, processing kidney-bean-
shaped contours without giving fictitious results at regions
inside, and the ability to infer local maxima from a series of
contours.

2.2 ODETLAP-based Terrain Compression
Since ODETLAP is capable of reconstructing the whole

DEM matrix from a few sparse input points (x, y, z), it can
be used as a decompressor in the ODETLAP-based com-
pression algorithm. In order to reduce the amount of space
required to store the data, only a limited subset of the el-
evations from the original elevation data are stored. Later,
ODETLAP is used to lossily reconstruct the elevation map
by filling in the missing points.

Figure 4 presents the flow chart of the algorithm [4]. The
DEM first undergoes a point selection which picks a subset
of posts, S, as input to the ODETLAP solver. ODETLAP
selects points that are deemed important to the accurate
reconstruction of the terrain such as contour lines, border
points, or any other available points. The points can consist
of a sparse point cloud, a regular grid, or a mix between the
two. The ODETLAP solver reconstructs from S the whole
DEM matrix of elevations giving us an initial approximation

Figure 4: ODETLAP algorithm: Square boxes rep-
resent data and curved boxes (light green) represent
operations.

Mtn1 Mtn2 Mtn3
Elev range 1040m 953m 788m
St. Dev. 146.0 152.4 160.7
Orig size 320KB 320KB 320KB

Compr. size 9744B 9670B 9895B
Compr. ratio 33:1 33:1 32:1
pts selected 4160 4160 4160

Elev. RMS error 9.48 9.55 9.68
Elev. RMS perc. 0.91% 1% 1.23%
Slope RMS error 8.34◦ 8.36◦ 7.87◦

Table 1: Results from compressing three mountain-
ous terrain data sets using non-patch ODETLAP.

of the elevation matrix. We initially pick a very small sub-
set of points (|S| ≤ 1000 in a 400 × 400 elevation matrix),
yielding an approximation with insufficient accuracy. After
obtaining the initial approximation, iterative refinement is
performed to insert additional elevation values where the re-
constructed surface most poorly matches the original data.
The refinement steps end when the overall RMS elevation er-
ror is below the specified threshold. Table 1 summarizes the
ODETLAP algorithm’s compression performance on three
mountainous terrain samples of size 400× 400.

2.3 Regular and Irregular Point Data
In this paper we demonstrate ODETLAP in two different

reconstruction scenarios. In Figure 1 a LIDAR point cloud
with approximately 13 million points is inflated to a 100 mil-
lion point dense grid. In the other examples in the paper we
reconstruct the terrain from a compressed subset of points
consisting of 1% of the total points, uniformly sampled in
a regular grid. For example, a 400 × 400 grid consisting of
160000 points will be represented by 1600 values in its com-
pressed form. With the ODETLAP compression scheme we
can optionally augment the regular grid with additional im-
portant points to reduce the error in the reconstructed ele-
vation map, however we do not concern ourselves with this
in the context of this paper because we are focusing on the

Figure 5: ODETLAP performance on a single large
patch on grid with 1% known (original) points. The
“Number of Points” refers to the number of points in
the reconstructed grid. The calculation time grows
quadratically with the number of points, and it takes
nearly 10 minutes to process an 800× 800 grid.

parallelization of the algorithm rather than optimizing the
compression method. The primary difficulty for using only
irregular data with the patch method is ensuring that ev-
ery patch contains enough data and sufficiently overlaps the
data from neighboring patches to accurately reconstruct the
unknown data points. We leave this as an area for future
work.

3. OUR APPROACH
The time it takes to calculate ODETLAP on an elevation

map does not scale as the size of the data set increases, and
the execution time quickly becomes prohibitively long. Fig-
ure 5 illustrates the ODETLAP performance issue. When
the terrain is of size 50 × 50 and 100 × 100, it takes less
than one second to run ODETLAP. However, when we run
ODETLAP on an 800× 800 terrain, it takes nearly 10 min-
utes to finish, and 800 × 800 is a very modest terrain size.
Thus, our goal is to develop a scalable implementation of
ODETLAP to allow manipulation of large terrains, such as
those collected by LIDAR scanners.

As the data set size grows, more and more points are in-
volved in the calculation, some of which are quite distant
and thus have little influence on each other. In Figure 6, we
show that when we edit a single known point in the input
to ODETLAP, only points within a small neighborhood of
the point are affected. Beyond that small region, the ef-
fect becomes negligible. This supports our hypothesis that
it should be possible to divide large data sets into separate
patches, run ODETLAP on them individually, and achieve
similar results to the non-patch ODETLAP solution. Specif-
ically, a patch size of 100×100 should be sufficient to capture
the detail for a terrain grid with a subsampling percentage
of 1%. When using a patch size of 100×100, each patch will
overlap with a window of 100× 50 with its neighbors to the
north and south, 50×100 with its neighbors to the east and
west, and 25 × 25 with its diagonal neighbors. If we used
a higher subsampling percentage, then less overlap would
be needed, so a smaller patch size would be appropriate.
When the reconstructed patches are merged back together
into the reconstructed elevation map as shown in Figure 7,
the difference between the reconstructed and original should

Figure 6: Altering a single known point in the ter-
rain has a limited radius of impact during recon-
struction. This plot shows the per-pixel difference
between the ODETLAP solution (using a 1% sub-
sampling of a 400×400 elevation map with elevations
ranging from 219 to 1040) and the ODETLAP solu-
tion for the same data with the central point edited
by setting its elevation to 100,000. The difference in
the solutions was restricted to a 62× 62 area around
the altered point, with 88% of the affected points
concentrated in the center 30× 30 area.

be minimal.

3.1 Dividing into Patches
The ODETLAP calculation depends on elevation data

from neighboring pixels, which causes a problem when run-
ning it on individual patches. At the edges of a patch, there
is less information to work with, and therefore the calcula-
tions tend to have errors when compared to the non-patch-
based ODETLAP solution. Figure 8 highlights the problem
by showing that when the image is reconstructed, the values
are generally correct near the center of the patch, but near
the edges of the patch, it is common to encounter errors of
5 meters or more.

To determine the value for the error, we calculate ODET-
LAP on the heightmap using a single large patch that covers
the entire elevation map, and then we calculate ODETLAP
on each individual patch. The error is defined as the absolute
value of the difference between the corresponding elevation
values for each method. If we were to simply divide a ter-
rain map into a single layer of non-overlapping patches, then
reconstruct them with ODETLAP, and join them at their
edges to form the reconstructed image, then we would see
results like the ones in Figure 9. At the patch borders, there
are areas of large error and drastic discontinuities.

To avoid errors at the borders of the patches, we run
ODETLAP on overlapping layers of patches. Figure 2 il-
lustrates an example where instead of dividing an elevation
map into 16 non-overlapping patches, we divide the eleva-
tion map into 49 overlapping patches.

3.2 Merging the Patches
After ODETLAP is calculated on multiple patches, the

Figure 7: In the patch ODETLAP method, we
take the compressed terrain (A), and divide it into
patches (B). Next, we run ODETLAP on each patch
individually, which reconstructs a small portion of
the entire elevation map (C). Finally, we merge all
of the patches into the final approximated solution
(D).

Figure 8: Due to incomplete data, ODETLAP re-
sults in errors near the borders of a patch when we
compare the results from the non-patch ODETLAP
method with the results from running ODETLAP
on a small patch. The error plot on the right shows
correct results in blue, and elevation differences of
5 or more units (meters) in red.

patches are merged into the final result. The basic idea is
shown in Figure 3. There are many possible ways to go
about merging the patches. The overly simple method of
uniformly averaging the values of all contributing patches
will still contain discontinuities and large errors at the patch
edges as seen in Figure 10. However, because we are running
ODETLAP redundantly for each pixel, we have the option
to ignore the erroneous edge pixels by selecting those values
from the center of a different patch.

In order to accomplish this, we use bilinear interpolation
which weights pixels near the center very strongly, and the
weight falls off to zero for pixels near the edges. A visualiza-
tion of the weights can be seen in Figure 11. The image on
the left shows the bilinear interpolation weighting pattern
for a single patch. The solid green image on the right shows
the weighting pattern using simple averaging. Blue pixels
represent a weight of 0.0, and red pixels represent a weight
of 1.0. In both weighting methods, when four patches are
merged, the sum of all of the weights for a given pixel is
one. Using bilinear interpolation, we are able to merge the
patches such that the pixels at the patch’s borders are ig-
nored, but the correct pixels near the center contribute most
of the value. This results in a reconstructed elevation map
that has very small errors, and no visible discontinuities, as
seen in Figure 12.

Figure 9: We get poor results if we naively merge
the patches. A) shows discontinuities in the naively
merged elevation map, and B) shows the errors.

Figure 10: A simple averaging of overlapping
patches reduces some of the border error of the re-
constructed terrain. A) shows the image that has
been merged by averaging, and B) shows the errors.
Notice the visible discontinuities where patch edges
are averaged.

Because non-patch ODETLAP is prohibitively slow on
large data sets, the error analysis and plots shown in Fig-
ures 8, 9, 10, and 12 were performed on 400 × 400 terrain
data. The elevations for this DEM range from 1105 to 1610
meters, and are represented as integer values with units of
one meter.

4. IMPLEMENTATION
We implemented the patch version of ODETLAP using

MPI, which allows us to run the software on parallel and dis-
tributed platforms. When MPI starts, the first process is as-
signed the task of waiting for reconstructed patch data from
the rest of the processes, which are designated as worker pro-
cesses. All of the workers are pre-assigned a set of patches
to process. For each assigned patch, the process does the
following:

• Load the patch

• Run ODETLAP on the patch

• Send the reconstructed patch to the central process

Figure 11: We use bilinear interpolation (left) in-
stead of a simple averaging (right) to do a weighted
averaging of four pixels to merge four patches. Note
that the corners and edges form special cases where
only one and two patches contribute to the result.

Figure 12: We use bilinear interpolation to do a
weighted average such that border values fall off
to zero. This results in a visibly continuous recon-
structed image (A), and small error values (B), when
compared with results from running the non-patch
version of ODETLAP on the same terrain.

As the patches are collected by the first process, the values
are weighted and merged into the full reconstructed eleva-
tion map, which is then saved to the hard disk.

A simple direct linear system solver would have required
cubic time to execute. However, in our implementation we
built ODETLAP on the QR solver from the CSparse li-
brary [3]. We have found the execution time to be nearly
quadratic with respect to the number of points in a single
patch, and in the case of the non-patch ODETLAP version,
with respect to the number of points in the entire input
elevation map.

We implemented the parallelized patch ODETLAP on a
cluster of 2.6 GHz AMD Opteron machines running Red Hat
Enterprise Linux 4.5. We have also tested the program on
the Blue Gene/L supercomputer. The Blue Gene presents
additional challenges because each processor can optimally
access only 512MB of memory. Also, running ODETLAP
on a very large number of processors requires extra care
to ensure that the slowness of disk access does not cause
bottlenecks that prevent the worker processes from working
at full capacity. We will discuss the Blue Gene further in
Section 6.

Figure 13: This 16000×16000 elevation matrix can be
processed by parallelized ODETLAP in 28 minutes
and 32 seconds.

5. RESULTS
We tested our parallelized ODETLAP on a 16000×16000

DTED Level 2 data set covering roughly 400,000 square
miles primarily occupied by the states of Kansas and Ne-
braska in the USA. The terrain is divided into 101761 patches,
each with a resolution of 100× 100. We used 128 processors
on a cluster of 2.6 GHz AMD Opterons and the entire com-
putation took 28 minutes and 32 seconds. The full terrain is
shown in Figure 13. The range (highest minus lowest) of the
test data is 1013 meters and the standard deviation is 217
meters. We select every 10th sample point in both the x and
y dimensions to generate a set of input points consisting of
1% of the total points. A single 100 × 100 patch consisting
of 10000 points is represented by 100 points.

Compared to the original terrain, the reconstructed ter-
rain has mean absolute error of 1.96, max absolute error
of 50, and root mean square error of 2.76. Note that it is
impossible to run the non-patch version of ODETLAP on
this large data set, so for these results we are comparing to
the original. A comparison of the original and reconstructed
terrain is given in Figures 14, 15, and 16. The two images
in Figure 14 correspond to the 1000× 1000 patch in the top
left corner of the original terrain in Figure 13. We can see
in the figure that the reconstructed terrain is only losing
some high frequency details. A difference map between the
original and the result (Figure 15) shows which areas per-
form well, and where smoothing occurs. Figure 16 presents
a close-up view of the area with the highest error, taken
from the oxbow river flowing from the southeast corner to
the center of Figure 13. The largest errors occur due to the
presence of many extreme variations in elevation within a
small (100 × 100) area. Many of these details are captured
with the more advanced point selection schemes described

Figure 14: The original terrain (A) is compared to
terrain that has been compressed by sampling on a
regular grid, and then reconstructed using the patch
method (B). This terrain corresponds to the north-
western corner of Figure 13. This portion of the
elevation map has a range of 163 meters. Notice
that some smoothing has occurred.

Figure 15: A difference map that shows the error
between (A) and (B) from Figure 14. The error has
a range of 0..29 meters.

in [13], or when a compression by less than a factor of 100
is used.

We also investigate the impact of using different patch
sizes on both running time and reconstruction accuracy. In
Table 2, we use patch sizes from 20 × 20 to 400 × 400, and
record the running time, mean absolute error, maximum
error, and RMS error of the reconstruction. We can see that
using a patch size of 100× 100 gives a nice balance between
accuracy and speed. Table 3 shows the small amount of
error when comparing the patch version of ODETLAP to
the non-patch version. By examining the amount of error
introduced versus the overall speedup that is gained, using
patches that are 100×100 in size produces very good results.

The patch-based ODETLAP algorithm provides two per-
formance improvements. The first is from decomposing large-
scale terrain data into small patches and running ODETLAP
sequentially on each of them, which we call serialized ODET-
LAP. Figure 17 shows the running time comparison of the
non-patch version of ODETLAP and serialized patch-based
ODETLAP. From the figure, we can see that the running
time is greatly reduced even if no parallelism is used.

The second speedup occurs because we are running ODET-

Figure 16: (A) and (B) show a detailed view of a
particularly challenging 100× 100 section taken from
the grid in Figure 14. (C) shows a difference map
with a range of 0 (blue) to 29 (red) meters. (D)
shows the areas with an error larger than 10 in black.

LAP on multiple patches concurrently in a parallel environ-
ment. In Figure 18 we show the total running time for a
test case with 1521 patches when run on various numbers
of processors. We see that parallelism provides an excellent
speedup using up to 127 worker processes. Beyond that,
the overhead of parallelism becomes significant. We have
opportunities to improve the performance even further. We
will need to look closely at ways to optimize disk I/O, which
is currently our primary bottleneck. We will discuss these
improvements in more detail in Section 6.

In Table 4, we present the running time and accuracy in-
formation for all three ODETLAP versions. The size of the
input terrain data is 800 × 800, and the mean elevation is
107. We can see that the patch method only increases errors
by approximately 0.1% when compared with the non-patch
method, and the running time is reduced to about 0.2% of
the original.

6. FUTURE AND ONGOING WORK
In our implementation, the size of the input elevation map

is limited by the the amount of memory required to store the
entire grid while merging it. In order to overcome this limi-
tation, we are working on streaming the output to the disk as
it is merged and freeing the memory for completed patches.
Also, the implementation has a bottleneck when reading the
input data from disk. The input data set is loaded once for
every patch that needs to be calculated. For example, when
calculating ODETLAP on a 16000 × 16000 grid, there are

Patch Size Time Mean Error Max Error RMS Error
20× 20 0m14s 0.6570 13 0.9798
40× 40 0m7s 0.6619 13 0.9594
50× 50 0m8s 0.6640 13 0.9617

100× 100 0m9s 0.6598 13 0.9530
200× 200 0m25s 0.6598 13 0.9527
400× 400 1m28s 0.6598 13 0.9527

Table 2: Comparison of different patch sizes: Start-
ing with original terrain of size 2000 × 2000, input
points are sampled every 10 points in the x and y
directions, thereby selecting a total of 1% of the total
points. A patch size of 100 × 100 gives a good com-
promise between running time and accuracy. Re-
ported errors in these examples are with respect to
the original terrain data set.

Patch Size Mean Error Max Error RMS Error
20× 20 0.1431 2 0.3801
40× 40 0.0532 1 0.2307
50× 50 0.0634 2 0.2519

100× 100 0.0149 1 0.1223
200× 200 0.0039 1 0.0628
400× 400 0.0008 1 0.0291

Table 3: This companion data to Table 2 reports
the errors of Patch ODETLAP with respect to Non-
Patch ODETLAP processing of the same test data
consisting of 800 × 800 points. Note that the parallel
version introduces only a very small amount of error.

101761 patches, and the file is loaded once for each of those
patches. When we use more processors, it means that more
processors are all trying to read the file simultaneously. This
results in limited scalability. We have designed the next ver-
sion so that the input only needs to be accessed by a single
source process. The source process distributes the data to
the worker processes, thereby alleviating the bottleneck. A
further improvement would be to allocate multiple source
processes for larger data sets, allowing us to run ODETLAP
using any number of available processes efficiently.

The patch method described in this paper creates an ar-
tificial coupling of patch size with the amount of overlap
needed for accurate results. The algorithm would gain flex-
ibility if a patch represented an independent square of data
that did not overlap with any other data patches, and the
amount of overlap were represented separately. For exam-
ple, one could specify a patch size of 50×50 with an overlap
of 25 pixels in each direction. ODETLAP would then be
calculated on 100 × 100 blocks except for patches that lie
in the edges and corners of the data set. Abstracting the
overlap this way is described as a “halo” in [6]. The patch
size would be selected to optimize speed, and the amount
of overlap would be selected to ensure an acceptable accu-
racy in the results. Implementing the patch method in this
way would lend itself to a multigrid implementation and to
striding the data set across multiple processes.

As shown in Figure 12, there are still some errors com-
pared with results from the non-patch version of ODET-

Figure 17: Execution time for the non-patch version
of ODETLAP grows quadratically with the number
of pixels, while the patch version of ODETLAP has
a linear growth. This improvement is gained while
running serially.

Method Time Mean Err. Max Err. RMS Err.
Non-P ODETLAP 9m8s 0.6150 7 0.8835
Seri-ODETLAP 0m34s 0.6156 7 0.8846

Patch ODETLAP 0m2s 0.6156 7 0.8846

Table 4: Comparison of three versions of ODET-
LAP: non-patch, serialized, and parallel on an
800x800 data set. Reported errors are with respect
to the original terrain data set.

LAP, which means that we may still be able to improve the
patch merging process to get higher accuracy. We would
need to analyze the results and find out what causes the er-
rors, and choose the most appropriate interpolation scheme
based on our findings. This can be combined with strate-
gies to optimize for elevation maps with irregular sampling
such as point cloud data or Triangulated Irregular Network
(TIN) data. For example, patches with more points should
be weighted more heavily than undersampled patches when
doing interpolation in the overlapped regions. Additionally,
multigrid could be used as a point selection strategy in which
high frequency areas are more densely sampled than flat ar-
eas. Integrating a multigrid approach with the parallel patch
method would lead to interesting research.

We have performed initial test runs on the 32,768 proces-
sor Blue Gene/L system that is part of Rensselaer’s Com-
putational Center for Nanotechnology Innovations (CCNI).
With 32,768 processors, the Blue Gene/L system will en-
able us to get much faster performance than what could
otherwise be possible. The Blue Gene presents a challenge
because each processor is limited to 512 MB of memory in
its optimal configuration. For this reason, we have designed
two running modes for the Blue Gene. The first mode is op-
timized for data sets that are small enough to fit into a single
process’ memory. In this mode, the data is read from disk,
distributed to the workers, and merged in the sink before
being written to the disk. This gives the fastest execution
time, but will not run for very large data sets (16000×16000
and larger). The second mode trades the speed benefits of
the first method for nearly limitless data set sizes by us-

Figure 18: We reconstruct a 2000× 2000 grid from a
subset of 1% of the original points by running ODET-
LAP on a distributed platform consisting of a cluster
of AMD Opterons running at 2.6GHz. We were able
to achieve a linear decrease in running time for up to
128 processors before the overhead of file I/O pre-
vents us from gaining any additional speedup with-
out further optimizations. The algorithm includes a
central process to merge results, but this process is
not included in the x axis.

ing the disk as a cache. This method is quite a bit slower
than the first. In order to get the best of both worlds, we
would need to allocate processes whose only job is to act
as a cache for the merging process. Inter-process communi-
cation on the Blue Gene is incredibly fast compared to the
speed of accessing the file system, so by avoiding disk access
as much as possible we would enable our implementation to
run ODETLAP on huge data sets quickly.

7. CONCLUSIONS
In this paper we have presented our recent progress in par-

allel terrain compression and reconstruction that processes
digital elevation maps of sizes as large as 16000×16000. We
use ODETLAP to reconstruct a terrain map from sparse,
isolated samples. In order to greatly increase the efficiency
of ODETLAP, we divide the original terrain into patches
which are then run on multiple processors in parallel. A
patch size of 100 × 100 provided a very good performance
gain, while minimally impacting the results of output when
compared to the non-patch version of ODETLAP. The re-
sults from experiments show that our method greatly re-
duces the running time and ensures a high quality in the
reconstructed image. This new technique changes the way
that we will approach large terrains in the future.

8. ACKNOWLEDGMENTS
This research was supported by NSF grants CCR-0306502

and DMS-0327634, by DARPA/IPTO/GeoStar, and by CNPq
- the Brazilian Council of Technological and Scientific De-
velopment. We thank Chris Stuetzle and Metin Inanc for
valuable discussions on terrain representation and compres-
sion. We also thank Professor Christopher D. Carothers for
introducing us to parallel computing, and for his assistance
with the parallelization of our algorithm.

9. REFERENCES
[1] A. Clematis, B. Falcidieno, and M. Spagnuolo. Parallel

Processing on Heterogeneous Networks for GIS
Applications. International Journal of Geographical
Information Science, 10(6):747–767, 1996.

[2] A. Clematis, M. J. Mineter, and R. Marciano. High
performance computing with geographical data.
Parallel Computing, 29(10):1275–1279, 2003.

[3] T. A. Davis. Direct Methods for Sparse Linear
Systems (Fundamentals of Algorithms 2). Society for
Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2006.

[4] W. R. Franklin, M. Inanc, Z. Xie, D. M. Tracy,
B. Cutler, M. V. A. Andrade, and F. Luk. Smugglers
and border guards - the geostar project at rpi. In 15th
ACM International Symposium on Advances in
Geographic Information Systems (ACM GIS 2007),
Seattle, WA, USA, Nov 2007.

[5] M. Griebel and G. Zumbusch. Parallel multigrid in an
adaptive pde solver based on hashing and space-filling
curves. Parallel Comput., 25(7):827–843, 1999.

[6] R. G. Healey, M. J. Minetar, and S. Dowers, editors.
Parallel Processing Algorithms for GIS. Taylor &
Francis, Inc., Bristol, PA, USA, 1997.

[7] F. Huang, D. Liu, P. Liu, S. Wang, Y. Zeng, G. Li,
W. Yu, J. Wang, L. Zhao, and L. Pang. Research On
Cluster-Based Parallel GIS with the Example of
Parallelization on GRASS GIS. In GCC ’07:
Proceedings of the Sixth International Conference on
Grid and Cooperative Computing, pages 642–649,
Washington, DC, USA, 2007. IEEE Computer Society.

[8] M. Kazhdan and H. Hoppe. Streaming multigrid for
gradient-domain operations on large images. ACM
Transactions on Graphics, 27(3):21:1–21:10, Aug.
2008.

[9] M. J. Mineter. A software framework to create
vector-topology in parallel GIS operations.
International Journal of Geographical Information
Science, 17(3):203–222, 2003.

[10] J. E. Mower. Developing Parallel Procedures for Line
Simplification. International Journal of Geographical
Information Science, 10(6):699–712, 1996.

[11] S. C. Roche and B. M. Gittings. Parallel Polygon Line
Shading: The Quest for More Computational Power
from an Existing GIS Algorithm. International
Journal of Geographical Information Science,
10(6):731–746, 1996.

[12] Y. F. Shuichi Ichikawa. Iterative Data Partitioning
Scheme of Parallel PDE Solver for Heterogeneous
Computing Cluster. In Proceedings of IASTED Int’l
Conf. Applied Informatics: Int’l Symp. Parallel and
Distributed Computing and Networks, pages 364–369,
Seattle, WA, USA, Nov. 2002. ACTA Press.

[13] Z. Xie, W. R. Franklin, B. Cutler, M. A. Andrade,
M. Inanc, and D. M. Tracy. Surface compression using
over-determined laplacian approximation. In
Proceedings of SPIE Vol. 6697 Advanced Signal
Processing Algorithms, Architectures, and
Implementations XVII, San Diego CA, 27 August
2007. International Society for Optical Engineering.
paper 6697-15.

