
To appear in Proceedings of Graphics Interface 2007

Constrained Planar Remeshing for Architecture

Barbara Cutler
Department of Computer Science
Rensselaer Polytechnic Institute

Emily Whiting
Departments of Architecture and Computer Science

Massachusetts Institute of Technology

a) b) c) d)

Figure 1: Beginning with a) an architect’s complex curved design for a rooftop greenhouse, a planar remeshing of the surface is generated using
the techniques described in this paper. Using automated milling equipment, b) the panels can be fabricated out of planar plywood sheets and
c) assembled with simple hardware fasteners to d) create a unique and inspiring outdoor sculpture.

ABSTRACT

Material limitations and fabrication costs generally run at odds with
the creativity of architectural design, producing a wealth of chal-
lenging computational geometry problems. We have developed an
algorithm for solving an important class of fabrication constraints:
those associated with planar construction materials such as glass or
plywood.

Starting with a complex curved input shape, defined as a NURBS
or subdivision surface, we use an iterative clustering method to
remesh the surface into planar panels following a cost function that
is adjusted by the designer. We solved several challenging con-
nectivity issues to ensure that the topology of the resulting mesh
matches that of the input surface.

The algorithm described in this paper has been implemented
and developed in conjunction with an architectural design semi-
nar. How the participants incorporated this tool into their design
process was considered. Their important feedback led to key algo-
rithmic and implementation insights as well as many exciting ideas
for future exploration. This prototype tool has potential to impact
not only architectural design, but also the engineering for general
fabrication problems.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling

Keywords: Curve, surface, solid, and object representations; Ge-
ometric algorithms, languages, and systems

1 INTRODUCTION

Physical limitations of construction materials and fabrication con-
straints can place undesirable restrictions on the freedom of archi-
tectural design. Usually the basic building materials are selected
early in an architectural design process and can have significant im-
pact on the shapes and styles that may be considered.

One particularly challenging construction material is glass. Al-
though glass can be bent into curved panels (e.g., an automobile

windshield or a grocery display case), flat planar sheets are more
cost effective to manufacture [2]. This essentially limits all-glass
construction to planar meshes. Furthermore, as a brittle material,
glass is also susceptible to cracking when cut at extreme acute an-
gles. Glass atriums, greenhouses, and other curtain wall buildings
are typically made in simple, symmetric, planar shapes so these
constraints can be satisfied by hand with pen and paper using rect-
angular panels. Examples of these shapes include the classical
groin vault (the intersection of two cylindrical vaults) and the spher-
ical lens shown in Figure 2a&b. Stephan et al. [21] describe a spe-
cial subclass of surfaces that are common in architectural design
that may be fit with a regular quadrilateral network through a series
of homothetic and dilative translation transformations.

In general, any arbitrary surface can be represented by a trian-
gle mesh and thus constructed from triangular panes of glass. One
example of a regular triangular mesh applied to a gently curved
surface is the modern roof of the British Museum in London (Fig-
ure 2c). This mesh can be simply parameterized by projecting it to
a horizontal plane and is tiled with a valence-six, regular triangula-
tion of near-equilateral triangles. Similar techniques were used in
the structures shown in Figure 2d&e.

For more complex surfaces where a minimal distortion param-
eterization is not possible, an irregular triangulation can be used.
This approach has created fantastic structures, such as the Fiera Mi-
lano (Figure 2f). This work by Jörg Schlaich uses the flexibility of
an irregular network not only to allow arbitrary geometry, but also
to define the building’s structure. The edges between the triangular
facets have been carefully arranged to form solid continuous ribs
that carry the forces from the roof down to the foundation [10, 19].

Although current meshing techniques can produce visually strik-
ing results, designers are still limited by the basic triangular (or
quadrilateral) primitive used in faceting. Creative opportunities still
exist in the exploration of new patterns and shape variations. We
provide a tool to enable such explorations.

1.1 Structural and Fabrication Considerations

Beyond an aesthetic desire to break from a triangular network, there
are several disadvantages from the structural analysis and fabrica-
tion perspective. To analyze the forces carried by a network of struts
and pinned joint connections, an engineer writes a force equation
requiring the forces at each node to sum to zero [26]. Each strut
carries an unknown tensile or compressive force to the node. If

1



To appear in Proceedings of Graphics Interface 2007

a) b) c) d) e) f)

Figure 2: Examples of several stunning architectural designs for curved forms from glass: a) Chadstone Shopping Center; Melbourne, Australia;
RTKL Associates Inc, 1999. b) Lens Ceiling, U.S. Courthouse; Phoenix, Arizona; James Carpenter Design Associates, 2000. c) The Great
Court; London, England; Norman Foster and Partners, 2000. d) Swiss Re Building (Gherkin); London, England; Normal Foster and Partners,
2004. e) DG Bank Building; Berlin, Germany; Gehry Partners and Schlaich, Bergermann and Partner, 2000. f) Fiera Milano; Milan, Italy;
Schlaich, Bergermann, and Partner, 2005.

more than three struts meet at a joint the problem becomes over-
determined and the actual forces cannot be computed. Analogously,
a three-legged stool is stable, but a four-legged stool will wobble
with the slightest manufacturing imprecision. If one leg is short-
ened by just a millimeter the amount of weight it carries will go
from one quarter of the object weight to zero. To ensure a stable
structural analysis that matches the forces in the constructed pinned
frame, it is advantageous to have nodes with exactly three struts;
i.e., a valence-three mesh.

If a thick construction material such as plywood is used, design-
ing the connection between panels of material is challenging. The
edges of the panels will be chamfered so they form the appropriate
angle when joined. The exact chamfer angle is defined per edge
as one half the angle between the pair of panels. We can compute
the vertices of the interior face of each panel by intersecting the
planes parallel to the panels but offset inward by the thickness of
the material. If four or more panels meet at a node in our remeshed
model we must examine how the offset planes intersect. If not con-
strained to be a conical mesh [15], these planes will not intersect
at a single interior point, and thus the panels will require additional
chamfering as seen in Figure 3. This extra chamfering is expensive
and aesthetically undesirable.

Thus it is often preferable to have joints with exactly three pan-
els. Depending on the specific material chosen some of these issues
are less important or irrelevant. In practice, fabrication and struc-
tural considerations are not tightly coupled with architectural de-
sign. We have been working closely with a structural engineering
firm to finalize the details for a sculpture designed with this system.
We will learn from this analysis and incorporate these constraints

Figure 3: In the top image we show a detail where four panels meet
crisply at a single exterior vertex. The panels have been pulled apart
slightly to show the chamfer detail. The bottom image is shown from
the inside of the model and one of the panels has been removed for
clarity. Because the inwardly offset planes do not intersect at a single
point, additional chamfering (of the center panel) is necessary.

in the system as part of a tighter feedback loop in future work.

1.2 Voronoi Cell Remeshing

An example of a prototype valence-three structural system is shown
in Figure 4. In this architectural student design project, a complex
curved surface was first texture-mapped with a pattern of Voronoi
cells. Voronoi cells are attractive as a design tool because they typi-
cally result in meshes where exactly three facets meet at a joint and
the angles within each cell are greater than 90◦. A modular frame-
work consisting of struts and three-way joint connectors was then
applied to the corners and edges of the cells. The construction sys-
tem was completed by stretching a rubber sheet over the network of
struts and joints.

Because the Voronoi cells are not constrained to be planar, the
lingering question from the student’s project was how the structural
system could be extended for use with a rigid planar infill material,
such as glass or plywood. The student needed a modeling tool that
could solve for vertex positions that resulted in planar facets. It
was uncertain whether a simple post-process of the geometry could
move the vertices such that the facets were planar. These very ques-
tions motivate the research described in this paper.

1.3 Related Graphics and Geometry Research

The problem this paper addresses is inherently a task of remesh-
ing, a well-studied area of computational geometry. For example,
to construct uniform triangulations similar to those in Figure 2c&f

Figure 4: Images of the scale model built by seminar participant and
architecture student Mike Powell as a prototype structural system.
In this early model the facets are not planar, and a flexible rubber
sheet is necessary to skin the strut and joint framing system.

2



To appear in Proceedings of Graphics Interface 2007

the work by Turk [23], Alliez et al. [1], and Surazhsky et al. [22]
(among others) would be very applicable.

The work of Cohen-Steiner et al. [6] was particularly motivating
to us, and on first glance is the exact tool to solve the non-planarity
issues that challenged the project described in the previous section.
In their work a pre-specified number of face clusters are fit to the
original surface geometry using Lloyd’s relaxation (a k-means clus-
tering technique). Then planar proxies are fit to these clusters and
connected to create a polygonal mesh. This work is effective for
simplification and working with polygons rather than triangles re-
duces the number of vertices that must be sent to the graphics hard-
ware. Unfortunately, the final polygon vertices are computed by av-
eraging the projection of an original mesh vertex onto each proxy
as illustrated below and in general the final vertex position does not
lie on the proxy planes. Thus, facets which have more than three
vertices will likely be non-planar.

Furthermore, for any but the simplest shapes the vertices from
this remeshing cannot simply be moved such that the all facets are
planar. Attempting to do so for non-trivial inputs will require vertex
and neighborhood shuffling (discussed in Sections 2.2 & 2.3 and il-
lustrated in Figures 6 & 7). Furthermore the positions cannot be
trivially optimized to be planar since the solution space is highly
discontinuous. The neighborhood of a particular facet is not stable
from iteration to iteration preventing the incorporation of optimiza-
tion terms to constrain the vertices appropriately.

Alternatively, we could view this planar remeshing task as an
incremental simplification problem and attempt to use an edge or
face collapse technique [8, 11, 12, 20] to incrementally converge
on a polygonal model. This strategy has the advantage of creat-
ing a continuum of legally constructable intermediate meshes, but
may quickly become stuck in a local minimum due to complica-
tions with the polygonal planarity requirement. We plan to explore
this avenue in future work.

The planar quadrilateral meshing work of Liu et al. [15] shares
many challenges with our project. Their solution involves de-
termining an appropriate local parameterization along which they
align a regular quad mesh. Their mesh is further constrained to also
fit an offset surface suitable for fabrication (avoiding the chamfer
problem discussed earlier). Furthermore, their work extends nicely
to generate developable surfaces which are of significant interest
for architectural applications.

Other research projects have tackled various fabrication chal-
lenges. Chen et al. [5], Mitani et al. [16], and Haeberli [9] examine
how to subdivide a target shape into strips or patches that are well
approximated by a developable surface, which can be formed from
a material such as sheet metal or paper that allows bending but not
stretching. Branco and Soares [3] modify a developable surface
by cutting and separating or overlapping the material (similar to
a tailor’s darts) to build surfaces with double curvature. Julius et
al. [13] generate quasi-developable patches within a specified tol-
erance for applications where minor stretching is allowed. Wu and
Kobbelt [25] further generalize the cluster based remeshing strat-
egy to fit portions of the model to spheres and cylinders. A com-
plex blend operation is required to fuse the different elements of the
model together.

The area of dimensionality reduction, and specifically the Lo-
cally Linear Embedding framework [4, 18], contains interesting
parallels to our project. The work of Kirasanov and Gortler [14]
can be used to obtain a piecewise planar approximation of an arbi-
trary mesh, but the memory usage and performance could be pro-
hibitively high. Furthermore, the output of these techniques are

irregular triangular meshes that do not meet the requirements dis-
cussed earlier and lack the user control that is necessary for appli-
cations in architectural design.

1.4 Overview

The contributions of this paper are:

• An algorithm to fit planar polygonal panels to arbitrary input
geometry;

• A user-controllable metric for clustering the surface that con-
trols the distribution and shape of the resulting panels;

• Control of relative panel shape and density through a paint
brush metaphor or procedural scripting;

• Consideration of important structural and fabrication issues
including offset planes for chamfering; and

• A full-featured prototype system implementation that was
used in an architectural design seminar and integrated into a
fabrication pipeline.

2 PLANAR REMESHING ALGORITHM

The reluctant acceptance of non-planar facets by the architects for
the project described in Section 1.2 emphasizes the challenges of
fabrication remeshing. In general it is not possible to simply adjust
the facet vertices in a post-process. We illustrate some of these
difficulties in images throughout this paper. Instead, we approach
the problem by choosing planes and place vertices where the planes
intersect. The initial stages of our method closely follow that of
Cohen-Steiner et al. [6] to select a good distribution of planes using
the randomized optimization method. Here is the basic pipeline of
the system:

Planar

Cluster Metric Parameters

TriangulateInput PanelsPlanes
IntersectFit

PlanesCluster

Initially we choose n random seed triangles on the surface of
the mesh, where n is the target number of planes specified by the
user. Then we divide the remaining triangles in the model into clus-
ters around these seeds, ensuring that the triangles in each cluster
are contiguous. The clustering step is iterated by computing a new
center/seed for each cluster and then re-clustering. For an initial
configuration of well-distributed random seeds, ten to twenty itera-
tions is generally sufficient for convergence and to evenly distribute
the triangles across the surface and into clusters of similar area (Fig-
ure 5).

In the following sections we describe our contributions; in par-
ticular, how to intersect the resulting proxy planes and form a closed
model. If the intersection fails, it is necessary to pipe this informa-
tion back into the clustering stage and try again.

2.1 Determining the Local Neighborhood

Once the clustering has reached a fixed point (or converged suffi-
ciently), we must intersect the planes with their neighbors to find a
planar polygonal remeshing. For convex shapes we could use any
standard O(n logn) algorithm to compute the half space intersec-
tion [7]. Since the neighborhood information is available in our
data structure, we can actually do this in O(n) time by walking the
boundary of each cluster and intersecting it with the proxy planes
corresponding to neighboring clusters. This method works for both

3



To appear in Proceedings of Graphics Interface 2007

a) b) c) d) e) f)

Figure 5: The basic algorithm begins by a) selecting random seed triangles from the original mesh. Next the mesh is b&c) iteratively clustered
about these seeds and the seeds are repositioned; d) shows a visualization of the original mesh triangles projected onto the corresponding proxy
planes; e) using the vertices and neighbors from the clusters we render non-planar polygons, similar to Cohen-Steiner et al. [6]; and f) the proper
intersection of the neighboring planes.

convex and non-convex objects. In convex portions of the model
the result is identical to a half-space intersection. In areas of neg-
ative curvature, the concept of a cluster center and the local neigh-
borhood facilitates the construction of a corresponding polygonal
remeshing.

However, since the cluster neighborhoods are a function of both
the underlying triangular mesh and the cluster metric, this method
is not robust and often requires some cleanup. This is due to the
fact that the set of cluster neighbors is not necessarily the same
as the set of neighbors that define consistently intersected panels.
Figure 6 shows an example where the polygonal boundary of a facet
self-intersects, we call this geometric error a flipped edge.

2.2 Complex Curvature and Panel Shape

Trying the basic algorithm on non-convex target surface shapes un-
covers a key challenge in this fabrication problem. To mesh the
neighborhood at a saddle point (or generally, areas with negative
curvature) we must either a) allow concave panels or b) have more
than three panels meeting at some vertices. A simple non-convex
shape is shown in Figure 8. Depending on the material to be used
for construction, one of these two solutions may be more desirable.
For example, it is impractical to make concave inner corner cuts in
glass; thus, non-convex facets must be split at the concave corners.

If we choose to allow four or more planes at these vertices, we
must ensure that all planes intersect at a single point (within the
required construction tolerance). Furthermore, we will encounter
an interesting offset problem in fabrication. The panels will have
non-zero thickness and we need to make sure that not only do the
four planes intersect at the single surface vertex, but that the four
offset planes also intersect cleanly. If this offset problem is not
solved, the construction process will require extra chamfering and

a) b) c)

Figure 6: In the initial clustering of this object, a) four patches
meet at a single original mesh vertex. The proxy intersection rou-
tine randomly chooses how to structure the local neighborhood to
define vertices at the intersection of three planes. b) In this exam-
ple, the random choice is incorrect, causing self-intersection of the
polygon boundaries for the pink and gray facets. This is detected as
a mis-oriented or flipped edge and visualized with a red triangle. c)
Once detected, this problem is easily fixed by switching the neighbor
assignments.

be more complicated and expensive (Figure 3).
In our system we allow concave facets. This decision made the

implementation of various tasks from rendering to area computation
far more challenging. We do restrict all panels to be star-shaped
(that is, have a non-null kernel). By comparing the orientation of
each facet edge relative to a point in the kernel, we can quickly
detect geometric anomalies such as flipped edges (Figure 6). We
have not found this restriction to limit the surfaces we are able to
remesh with planar panels. Furthermore, with the implementation
of alternate methods for rendering and detection of flipped edges
this restriction can be lifted to allow general concave facets.

2.3 Challenging Proxy Plane Configurations

The largest challenge for the algorithm is that not every clustering
of the original triangles will lead to a legal planar remeshing. In
some cases the problem is simply that too few clusters were spec-
ified by the user to solve the target geometry. For example, it is
impossible to intersect three planes to achieve a closed remeshing
that approximates a genus zero shape. Some of these cases could
be resolved by analyzing the surface (or a portion of the surface)
to determine the minimum number of panels necessary to match
the topology and genus of the input shape. However, this will not
handle all cases. Consider the configuration below in cross section.
The red curved input shape has been approximated by three blue
planar proxy surfaces that happen to be parallel. Since these planes
do not intersect, we cannot use them to find a planar remeshing.

Also consider the more general case below where the planes do
intersect, but not where they are supposed to intersect. The intersec-
tion is on the wrong side of the patch and though the algorithm can
successfully compute vertices for each facet, the facets will have
many flipped edges and will be rendered inconsistently.

We detect this “spike” problem vertex (Figure 7b) by computing
the distance between the cluster boundary vertex and the planar in-
tersection vertex. An intersection vertex is flagged if this distance is
greater than a reasonable threshold (we use 0.2 * the average cluster
diameter). The algorithm attempts to resolve these problems with
two different techniques.

First, the three proxy planes defining a flagged vertex are tilted
to bring the intersection closer to the cluster boundary vertex. Typ-
ically, the normal of a planar proxy is computed for a collection
of triangles as the eigenvector of the smallest eigenvalue (L2) OR
the average of the triangle normals weighted by area (L2,1) [6]. For

4



To appear in Proceedings of Graphics Interface 2007

a) b) c) d) e) f)

Figure 7: One way to detect potential problems in the a) triangle clustering is to b) study the difference vector from the vertex where three
or more clusters meet (green) to the vertex found when the corresponding proxy planes are intersected (red). When this vector is relatively
large, we may have c) difficulty resolving this particular set of planes into a topologically consistent mesh. This information is used to refine the
solution and create d) a constructable planar remeshing. To simplify rendering we require that all panels be star-shaped, i.e., that they have e)
a non-null kernel. Any point within the kernel can be used to f) draw the star-shaped panels and easily detect flipped edges (Figure 6).

planes surrounding a flagged vertex we average this result with the
plane that passes through the proxy center and the cluster bound-
ary vertex. We do not include this term for non-spike intersection
vertices because it could inappropriately bias the solution.

Second, we shuffle the planes (Cohen-Steiner et al. [6] refer to
this as teleportation). We split a plane (seed a new cluster) near the
problem area and merge two planes elsewhere in the model where
perhaps the extra detail is less important. To ensure that the new
cluster does not float away immediately, we flag the new cluster
seed and its immediate neighbors as sticky and restrict its move-
ment for several iterations. Figure 9 shows examples of challenging
surfaces which require these techniques.

The detection and correction of these problems bound the error
of our planar approximation, although we have not formalized the
error bounds.

2.4 Multiple Clusters per Proxy Plane

Occasionally the optimal partitioning by a particular cluster met-
ric suggests an impossible facet neighborhood. While the cluster-
ing method ensures contiguous clusters, it does not guarantee that
a cluster is not completely surrounded by another cluster, or that
a cluster does not have a hole, etc. Examples of neighborhoods
that cannot be resolved are shown in Figure 10. These issues can-
not always be corrected simply by adjusting or changing the clus-
ter metric. It is necessary to automatically detect these conditions
and break the cluster into separate pieces. As above, we make this
change sticky to prevent it from being un-done immediately.

To prevent numerical issues when computing the intersection of
nearly coplanar proxies, neighboring clusters whose normal differs
by less than an angular threshold (we use 1◦) will be snapped to the
same master plane, as shown in Figure 11.

2.5 Boundary Conditions

Our prototype implementation also handles non-closed shapes, as
shown in many of the examples in this paper. Normally, a panel
vertex is defined where three clusters intersect. The boundary is
treated as a special NULL cluster object. Thus, where two clusters

Figure 8: For non-convex input geometry, the intersection of proxy
planes becomes more challenging. At the saddle point in the center
of this example we must have either three facets of which at least
one is non-convex (left) or four or more convex facets (right).

meet at the boundary, we define a panel vertex. This point is placed
on the intersection line between the two neighboring planes and
closest to the boundary. Each cluster that touches the boundary is
assigned one or more extra vertices along the border to ensure that
the chamfered edge detail of the boundary is planar. More than one
extra vertex is used as necessary to ensure that the overall area of
the polygonal remeshing closely matches the area of the input shape
(Figure 11).

3 USER CONTROL

The algorithms described above were implemented in parallel with
an architectural design seminar consisting of a half dozen design
students. The participants applied the software and the various visu-
alization tools for developing designs with complex curved geome-
try. They were exposed to and struggled with real-world fabrication
constraints as they tried to coax their visions into shapes that could
be constructed within the projected budget. Their experiences were
critical in pushing the limits of the algorithm’s robustness.

3.1 Surface Preparation

The input NURBS or subdivision surface must first be discretized:
in our system the discrete mesh elements are triangles. Further-
more, the input geometry should be re-triangulated as necessary to
ensure an appropriate resolution and density for the target shape
and the number of panels that will be fit to its surface. The max-
imum edge length of the triangulated mesh bounds the quality of
the iterative clustering optimization. This algorithm is a discrete
optimization both in partitioning triangles into clusters and in deter-
mining the local neighborhood of the panels. Longer edge lengths
reduce the number of possible discrete partitionings and possible

Figure 9: Computing a proper planar remeshing of surface twists like
the helix example on the left is challenging. In particular, note the
sharp, non-convex, bowtie-shaped facets created where the surface
has double curvature.

5



To appear in Proceedings of Graphics Interface 2007

Figure 10: In the left image, the dark purple cluster is contiguous,
but has a hole in the center. This cluster cannot be resolved with
a single panel in our system and will be broken into multiple panels.
In the right image, we see an alternate partitioning (using a greater
number of seeds) that requires the blue, orange, and green clusters
to intersect at two different points, which is impossible unless the
planes are degenerate.

solutions. The total number of triangles dictates the performance.
A single iteration of the clustering stage runs in O(m logm) time to
assign m triangles, using a priority queue containing as many as m
elements.

3.2 Clustering Metric Parameters

The designer using the tool has significant influence over the ul-
timate planar remeshing. First and foremost the user controls the
number of panels, which is the dominating factor in the cost of
the physical object. Using more panels will result in a surface that
more accurately matches the original surface, but will most likely
cost more to machine and assemble.

The designer also controls the general shape of the panels using
the cluster metric. This is done by offering the designer a selec-
tion of simple metrics that can be used singly or combined into a
larger function by weighting the different terms. The first metric we
implemented was the Euclidean distance measured from the center
of each triangle to the proxy centroid. This metric results in clus-
ters that are generally round with uniform size, similar to the early
Voronoi cell remeshing project (Section 1.2). We also implemented
the two metrics demonstrated by Cohen-Steiner et al. [6]: the L2

and L2,1 metrics, which orient cells along the surface based on lo-
cal curvature. With the fourth metric, the user can paint a density
map over the surface to control the relative size of the panels. These
four terms are applicable during all clustering iterations. Once the
neighborhood of a cluster has been determined and the boundaries
of a facet have been computed, our fifth metric is available. We
project the centroid of a triangle to the target proxy plane and com-
pare it to the boundary of the corresponding facet. If this point lies
within the boundary the value of the final metric is zero. If it lies
outside, the value is the distance to the boundary.

In order to combine these separate terms into a single useful met-
ric, it is crucial that we normalize the terms so they can be compared
appropriately. The L2,1 metric is unit-less and can be used as is, but
the other four metrics must be scaled relative to the anticipated av-
erage cluster diameter.

3.3 Procedural Scripting

Simple procedural scripting can be used to control the patterns
formed through clustering. Figure 12 shows examples of patterns
in nature one might wish to reproduce. In Figure 13 we demon-
strate one such script that controls the density procedurally. We
plan to expose this scripting interface to our users to allow proce-
dural modeling, similar in spirit to the Renderman language [24].
Our architectural collaborators make heavy use of several modeling
packages including the Rhino NURBS modeling system [17]. The

Figure 11: Although the wide band of triangles surrounding the bump
in this model match very well using the L2 and L2,1 metrics, they
cannot all be grouped together to form a single panel in our system,
which requires that the planar facets be star-shaped. To ensure
numerical stability, neighboring proxy planes with similar normal are
snapped to a single master plane. Also, note that panels on the
boundary of the geometry are assigned one or more extra vertices to
ensure adequate coverage (Section 2.5).

algorithms described in this paper could be packaged as a plug-in
to this modeling program and its companion scripting language.

4 ALGORITHM SUMMARY AND PARAMETERS

The following pseudo-code summarizes our algorithm:

main
place n seeds
for i = 1→ k1 initial distribution phase

lloyd iter
for i = 1→ k2 planar intersection phase

determine facet neighborhood (Section 2.1)
intersect neighbors
“fix” neighborhood (Section 2.2)
lloyd iter

sub lloyd iter
assign triangles to clusters (Section 3.2)
fit proxy plane to each cluster
choose new seed
snap/unsnap facets to master planes (Section 2.3)
split/merge planes (Section 2.4)

The clustering parameters (Section 3.2) and n are set by the user.
In our examples for this paper we have weighted the available met-
rics equally. The parameters k1 and k2 dictate the number of it-
erations of Lloyd’s relaxation to be performed. For input models
with larger polygon counts, larger values of these numbers should
be used. Typically we find that 10-20 iterations for each loop is
sufficient. If time is not a factor, these parameters can be removed
and each loop is simply run until convergence (i.e., the assignment
of each triangle to a cluster is constant).

5 RESULTS

The performance of the system is primarily dependent on the num-
ber of triangles used to represent the original geometry. The surface

6



To appear in Proceedings of Graphics Interface 2007

Figure 12: Organic patterns in nature such as the elephant and snake
skins above inspired the architecture students participating in the
seminar. The varying cell size in the left image can be achieved
by varying a scaling term on the Euclidean distance cluster metric.
The directional quality in the right image can be achieved with an
anisotropic scaling that is specified procedurally or relative to surface
properties such as curvature.

needs sufficient resolution to allow an even distribution of clus-
ters. We recommend that architects aim for roughly 20-100 times as
many triangles as desired clusters. For simple shapes the solver is
quite efficient and can produce a mesh with 30 planar faces (shown
in Figure 5) in seconds on a standard desktop machine. For complex
geometry like that shown in Figures 15 & 16, where the solver must
perform many iterative feedback loops, it can take several minutes
to fully resolve the surface. The entire process remains quite in-
teractive, allowing the user to adjust the total number of facets, the
cluster metric, and the painted surface density as the possible sur-
face tilings are explored.

When the designer is satisfied with the planar remeshing, the
output of the program is passed through several additional scripts
to prepare a parts list for the automated milling equipment. We
have prototyped several scale test models of the fabrication system
(Figure 14) and we are preparing for a large commissioned outdoor
sculpture installation.

6 LIMITATIONS AND FUTURE WORK

Determining if a particular target shape can be remeshed with n pla-
nar elements, with matching topology and genus, and within some
specified error, remains an open problem. Due to the nature of
the randomized and iterative optimization process, the program is
not deterministic or entirely predictable. For the participants of the
architectural seminar, this was both an advantage and a disadvan-
tage. To address this issue and give more control to the designer, we
would like to expand the controls and make them more intuitive. In
some instances the user would like to add, remove or adjust individ-
ual panels within the model. As we further develop the procedural

Figure 13: This patterning, which utilizes two distinct element sizes
to mimic the left image of Figure 12, demonstrates the power of a
procedural interface to control panel shape and structure.

Figure 14: Photograph of a physical prototype to evaluate the edge
connection detail. In this piece the facets were constructed from
machine-milled plywood. A large hoop of material has been removed
from the middle of each panel to emphasize the uniqueness of this
remeshing, and the corners of each facet have been rounded to echo
the curvature of the hoops.

scripting capabilities we will learn what level of control is possible
within the tight material constraints.

Additionally, architects must adhere to certain practical con-
straints such as maintaining open interior space and building within
the foot print specified by the site conditions. We have only begun
to investigate the range of fabrication and structural challenges and
geometry problems they generate. For example, an engineer may
specify varying panel thickness based on a structural analysis of the
form. To maintain a crisply defined interior surface, the chamfer
angles between panels of different thicknesses must be adjusted.

7 DISCUSSION AND CONCLUSIONS

Our planar remeshing system is of great interest within the archi-
tecture community, and can be used not only to generate geometry
or the final surface of a construction project, but can also be used to
design the form-work for poured concrete, etc. The key for this and
other interdisciplinary collaborations is to solve the hard computa-
tional problems while leaving appropriate controls in the hands of
the designer.

Traditionally, there are significant construction cost savings to be
gained when a design is modified so it can be realized with a series
of tileable, identical, modular components. Now that computer-
controlled milling machine technology (Figure 1b) has improved
and is more affordable and available, it is more practical to con-
sider designs composed of entirely unique and custom components.
It is not unrealistic to imagine being able to design custom furniture
on the internet and have it automatically machined and delivered to
your door. The tools to do this must consider material and fabri-
cation constraints while still allowing creative design. The work
described in this paper is a significant step in that direction.

ACKNOWLEDGMENTS

Much thanks and credit go to workshop organizer Professor Mark
Goulthorpe and the workshop participants, including Michael Pow-
ell, John Rothenberg, Dennis Michaud, Matt Trimble, and Jeff An-
derson, all from MITs Department of Architecture.

7



To appear in Proceedings of Graphics Interface 2007

Figure 15: Additional designs created by workshop students to explore complex curvatures.

REFERENCES

[1] Pierre Alliez, Mark Meyer, and Mathieu Desbrun. Interactive geome-
try remeshing. ACM Transactions on Graphics, 21(3):347–354, July
2002.

[2] Joseph S. Amstock. Handbook of Glass in Construction. McGraw
Hill, 1997.

[3] J. N. Rodrigues Branco and C. Guedes Soares. Mapping of shell plates
of double curvature into plane surfaces. Journal of Ship Production,
21(4):248–257, November 2005.

[4] Matthew Brand. Charting a manifold. Neural Information Processing
Systems (NIPS), December 2002.

[5] H.-Y. Chen, I.-K. Lee, S. Leopoldseder, H. Pottmann, T. Randrup, and
J. Wallner. On surface approximation using developable surfaces. In
Graphical Models and Image Processing, 1998.

[6] David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Variational
shape approximation. ACM Transactions on Graphics, 23(3):905–
914, August 2004.

[7] Mark de Berg, Otfried Schwarzkopf, Marc van Kreveld, and Mark
Overmars. Computational Geometry: Algorithms and Applications.
Springer-Verlag, 2 edition, 1997.

[8] Michael Garland and Paul S. Heckbert. Surface simplification using
quadric error metrics. In Proceedings of ACM SIGGRAPH 97, Com-
puter Graphics Proceedings, Annual Conference Series, pages 209–
216, 1997.

[9] Paul Haeberli. Lamina Design LLC, 2005.
http://laminadesign.com/contact.html.

[10] Alan Holgate. The Art of Structural Engineering: The Work of Jörg
Schlaich and his Team. Edition Axel Menges, 1997.

[11] Hugues Hoppe. Progressive meshes. In Proceedings of SIG-
GRAPH 96, Computer Graphics Proceedings, Annual Conference Se-
ries, pages 99–108, August 1996.

[12] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald,
and Werner Stuetzle. Mesh optimization. In Proceedings of SIG-
GRAPH 93, Computer Graphics Proceedings, Annual Conference Se-
ries, pages 19–26, August 1993.

[13] Dan Julius, Vladislav Kraevoy, and Alla Sheffer. D-charts: Quasi-
developable mesh segmentation. In Computer Graphics Forum,
Proceedings of Eurographics 2005, volume 24(3), pages 581–590,
Dublin, Ireland, 2005. Eurographics, Blackwell.

[14] D. Kirasanov and S. J. Gortler. A discrete global minimization algo-
rithm for continuous variational problems. Technical report, Harvard
Computer Science Technical Report: TR-14-04, July 2004.

[15] Yang Liu, Helmut Pottmann, Johannes Wallner, Yong-Liang Yang,
and Wenping Wang. Geometric modeling with conical meshes and de-
velopable surfaces. ACM Transactions on Graphics, 25(3):681–689,
July 2006.

[16] Jun Mitani and Hiromasa Suzuki. Making papercraft toys from
meshes using strip-based approximate unfolding. ACM Transactions
on Graphics, 23(3):259–263, August 2004.

[17] Rhino. Rhinoceros: NURBS modeling for Windows, 2005.
http://www.rhino3d.com/.

[18] Sam Roweis and Lawrence Saul. Nonlinear dimensionality reduc-
tion by locally linear embedding. Science, 290(5500):2323–2326, Dec
2000.

[19] Hans Schober and Kai Kuerschner. Meraviglioso. Civil Engineering
Magazine, 75(12), December 2005.

[20] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen.
Decimation of triangle meshes. Computer Graphics, 26(2):65–70,
1992.

[21] S. Stephan, J. Sanchez-Alvarez, and K. Knebel. Reticulated structures
on free-form surfaces, 2003.
http://www.mero.de/bausysteme/downloads/artikel/

free ret stru e.pdf.
[22] Vitaly Surazhsky, Pierre Alliez, and Craig Gotsman. Isotropic remesh-

ing of surfaces: a local parameterization approach. In Proceedings of
the 12th International Meshing Roundtable, pages 215–224, Septem-
ber 2003.

[23] Greg Turk. Re-tiling polygonal surfaces. In Proceedings of ACM
SIGGRAPH 92, Computer Graphics Proceedings, Annual Conference
Series, July 1992.

[24] Steve Upstill. The Renderman Companion : A Programmer’s Guide
to Realistic Computer Graphics. Addison-Wesley, 1990.

[25] Jianhua Wu and Leif Kobbelt. Partitioning to hybrid surfaces. In
Computer Graphics Forum, Proceedings of Eurographics 2005, vol-
ume 24(3), pages 277 – 284, Dublin, Ireland, 2005. Eurographics,
Blackwell.

[26] Waclaw Zalewski and Edward Allen. Shaping Structures: Statics.
John Wiley & Sons, Inc., 1998.

Figure 16: The freeform geometry of the glass rooftop greenhouse
design from Figure 1a remeshed with planar panels.

8


