
Slope Accuracy and Path Planning on
Compressed Terrain

W. Randolph Franklin1, Daniel M Tracy1, Marcus A Andrade12, Jonathan
Muckell1, Metin Inanc1, Zhongyi Xie1, and Barbara M Cutler1

1 Rensselaer Polytechnic Institute
Troy, New York, 12180–3590, USA
frankwr@rpi.edu – http://wrfranklin.org/, tracyd@rpi.edu,
marcus.ufv@gmail.com, muckej@rpi.edu, inancm@rpi.edu, xiez@rpi.edu,
cutler@cs.rpi.edu

2 DPI - UF Viçosa - Brazil

Abstract

We report on variants of the ODETLAP lossy terrain compression method
where the reconstructed terrain has accurate slope as well as elevation. Slope
is important for applications such as mobility, visibility and hydrology. One
variant involves selecting a regular grid of points instead of selecting the most
important points, requiring more points but which take less space. Another
variant adds a new type of equation to the overdetermined system to force the
slope of the reconstructed surface to be close to the original surface’s slope.
Tests on six datasets with elevation ranges from 505m to 1040m, compressed
at ratios from 146:1 to 1046:1 relative to the original binary file size, showed
RMS elevation errors of 10m and slope errors of 3 to 10 degrees. The recon-
structed terrain also supports planning optimal paths that avoid observers’
viewsheds. Paths planned on the reconstructed terrain were only 5% to 20%
more expensive than paths planned on the original terrain. Tradeoffs between
compressed data size and output accuracy are possible. Therefore storing ter-
rain data on portable devices or transmitting over slow links and then using
it in applications is more feasible.
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1 Introduction

As ever larger quantities of higher resolution terrain data become available,
such as using IFSAR and LIDAR, more efficient compression techniques be-
come more important. This is especially true when it is desired to store
the data on portable devices or to transmit the data over slow links. High-
resolution data may also compress differently when it is qualitatively different
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from the older data produced by interpolating contour maps derived from
aerial photographs, since the latter are often artificially smooth.

Compression may be either lossless, where the restored data is identical
to the original data, or lossy, where an error is introduced. This choice is not
unique to terrain; audio data is also usually compressed lossily. Lossy com-
pression is appropriate when the increased efficiency (i.e., the decreased size
of the resulting file) is worth it, or when the original data is imperfect. That
is, if the original data has an RMS error of 5 meters (m), then a compression
algorithm introducing an average error of 0.5m is overkill.

The desired application for the terrain data influences the appropriate met-
ric for evaluating the compression. The easy metric is RMS elevation error,
Franklin and Said (1996). However, some parts of the terrain may be more im-
portant than others. For example, sharp points in the profile along the skyline
are what viewers recognize. This author has had the experience of looking at a
mountain range on the horizon while simultaneously looking at a commercial
rendition of that same scene, and being unable to correlate the real world
with the computer model. The problem resides in the computer model’s lack
of high spatial frequencies. This may be caused by using calculus tools such
as Fourier or Taylor series that assume that the terrain is differentiable many
times, and that high frequencies are less important than low frequencies. Both
assumptions are false. Not only does nothing in the physics of terrain forma-
tion select for smoothness, but rather the reverse. Erosion causes undercutting
and slumping leading to cliffs, that is, elevation discontinuities.

Slope is one terrain property that is important to represent accurately.
The slope of terrain influences mobility (it is difficult to drive up a cliff),
accessibility by air (aircraft cannot land on a slope), hydrology (steeper slopes
erode more quickly) and visibility (changes in slope are recognizable, and
observers sited on a break in the slope may be able to see more).

Slope is often ignored because the assumption is that it comes for free once
the elevations are represented sufficiently accurately. However, differencing
any imprecise function amplifies the errors. Also, from math analysis we know
that approximating a function f(x) more accurately, i.e., lim supi→∞|(fi(x)−
f(x))| → 0, gives no guarantees about lim supi→∞|(f ′i(x) − f ′(x))|, which
may increase without bound. Indeed, it was such paradoxes that motivated
the formalization of calculus in the 19th century.

The compression methods introduced here are extensions of ODETLAP,
Franklin et al. (2007), and summarized in Figure 1. Briefly, ODETLAP solves
a sparse overdetermined system of linear equations for the elevations zij in an
array where a few points’ elevations hij are known. Each known point has an
equation

zij = hij (1)

Every non-border point, known or not has an equation

4zij = zi−1,j + zi+1,j + zi,j−1 + zi,j+1 (2)
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Border points form a messy special case of no deep theoretical interest, but
with the following practical difficulties. Not including equations for border
points may lead to the system being underdetermined. A careless choice of
equation may bias the surface to being horizontal at the borders, without
physical justification.

Since there are more equations than unknowns, the system is overdeter-
mined; we solve for a best fit. The two classes of equations are weighted dif-
ferently, depending on the relative importance of accuracy versus smoothness.
Weighting Equation 1 more highly relatively to Equation 2 makes the resulting
surface more accurate but less smooth. A small degree of inaccuracy enables a
large degree of smoothness. Indeed, a design requirement for ODETLAP was
that, when interpolating between contour lines, that the contour lines not
be visible in the resulting surface. Also, broken contours and even isolated
points may be processed. These desirable properties are not always shared by
competing surface fitting techniques.

400× 400 ma-
trix of eleva-
tions

ODETLAP point
selection

contour
lines

any user-supplied points,
even inconsistent

Small point
set, perhaps
1000

ODETLAP ter-
rain reconstruc-
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Fig. 1. ODETLAP Process

There is little prior art on compressing slopes, apart from some descriptions
of fundamental limits. A resolution of 25m or lower cannot identify steep slopes
correctly Kienzle (2004). A resolution of 30m with elevations in meters results
in a precision of slope calculations no better than 1.9◦, Hunter and Goodchild
(1997).
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Hill1 Hill2 Hill3
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Fig. 2. Sample level-II Datasets

Table 1. ODETLAP TIN+Greedy Results

Hill1 Hill2 Hill3 Mtn1 Mtn2 Mtn3

Elevation range 505m 745m 500m 1040m 953m 788m
Original size 320KB 320KB 320KB 320KB 320KB 320KB

Compressed size 2984B 5358B 1739B 9744B 9670B 9895B
Compression ratio 107:1 60:1 184:1 33:1 33:1 32:1

(Compressed/Orig size), %. 1.68% 1.33% 1.66% 0.91% 1% 1.23%
# pts selected 1040 2080 520 4160 4160 4160

RMS elevation error 8.49m 9.93m 8.31m 9.48m 9.55m 9.68m
RMS slope error 2.81◦ 5◦ 1.65◦ 8.34◦ 8.36◦ 7.87◦

2 Terrain Data Structures

The underlying terrain data structure for the research presented in the paper is
a matrix or array of elevations. There are other possibilities. One alternative
would be high-order spherical harmonics as used in geopotential modeling.
However, they are not as applicable to terrain, if only because their com-
plexity grows quadratically with their accuracy. Wavelets of various types are
used somewhat, and may become more popular in the future. The major al-
ternative to an array of elevations is a Triangulated Irregular Network (TIN).
Franklin (1973) did the first implementation (under the direction of Douglas
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and Peucker) of the TIN in Geographic Information Science. In the next sec-
tion we use an updated version of that program, Franklin (2001). In contrast
to Isenburg et al. (2006), Franklin (2001) operates incrementally, in the spirit
of the Douglas-Peucker line generalization algorithm, Douglas and Peucker
(1973) (independently discovered by Freeman and Ramer, Ramer (1972)). In
each iteration, it greedily inserts the point that is farthest from the current
surface. It can process arrays of up to 104 × 104 points in core. The time to
completely TIN a level-I DEM with 12012 points (until the max error is un-
der 0.5m) is under 30 CPU seconds on a laptop. Also in contrast to Isenburg,
it imposes no restrictions on the size of the generated triangles. However,
because it operates out of core, Isenburg can process much larger datasets.

One disadvantage of a TIN compared to an array is the increased complex-
ity of storing the data compactly, since in a naive implementation, most of the
storage will be devoted to the topology. Also, rendering the terrain without
producing a triangular appearance can require either very many triangles or
a smoothing operator. Finally, representing slope accurately, one topic of this
paper, appears problematic with a TIN. On the other hand,, unlike an array
a TIN is not tied to a particular coordinate system and can better represent
large regions of the earth.

3 ODETLAP TIN+Greedy

The first question is, how well does ODETLAP represent slopes? Slope is
qualitatively somewhat different from elevation: its autocorrelation distance
is smaller, but it requires fewer significant bits.

We used six 400 × 400 test datasets, three hilly and three mountainous,
extracted from level-2 DEMs. 400 × 400 is a resolution that we can easily
process using the default sparse linear equation solver in Matlab; larger reso-
lutions are possible with other techniques, such as the Paige-Saunders method
used by Childs (2003, 2007). ODETLAP TIN+Greedy, the basic version
of ODETLAP, selects points with the following two stage process.

1. Use our incremental triangulated irregular network (TIN) program to se-
lect P, an initial set of important points.

2. Fit a surface S to P.
3. If S is sufficiently accurate then stop.
4. Otherwise, find the 10 to 30 points of the original 400×400 points that are

farthest from S. When forming this batch of points to insert, we assume
that very close points are redundant, and require points to be at least a
couple of pixels apart. Increasing this forbidden zone beyond that confers
no additional advantage. Points are inserted in batches because of the
time to recompute the surface in step 2.

5. Insert the new points into P.
6. Go back to step 2.
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The (x, y) are compressed by forming a 400 × 400 bitmap showing the
points’ locations, then compressing it with a runlength code. The resulting size
is not much worse that the information-theoretic limit. The z are compressed
with various methods such as bzip2.

ODETLAP’s running time depends greatly on the input elevation matrix’s
sparsity. Basic ODETLAP on a 400 × 400 terrain took about 4.6 minutes
when 5.4% of the elevations were known, and about 7.5 minutes on a 2.2GHz
processor when 7.5% of the elevations were known. Denser input matrices
required over 15 minutes.

Table 1 summarizes the results. ODETLAP TIN+Greedy compressed
these terrains by factors ranging from 30:1 to 100:1 compared to the original
binary file, with RMS elevation errors less than 10m and a slope error ranging
from 1.7◦to 8.4◦, depending on the terrains’ ruggedness. The next question is,
what is the tradeoff of size versus accuracy? Figures 3 and 4 answer this.

Fig. 3. ODETLAP Tin+Greedy Size – Elevation Accuracy Tradeoff

A major advantage of ODETLAP TIN+Greedy is that it selects the
points in order of importance, and so permits progressive transmission of the
points. However there will be a size penalty since compressing points incre-
mentally is less efficient than compressing them in one set. Indeed, the former
method stores the order of the points, which the latter does not. Therefore, for
N points, the penalty will be at least N lgN bits (the information content of
selecting one permutation from N ! permutations), but will probably be more.
A larger storage cost of this method compared to the following one is caused
by these points’ positions being irregular.
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Fig. 4. ODETLAP Tin+Greedy Size – Slope Accuracy Tradeoff

Table 2. ODETLAP Regular grid w/o DCT Results

Hill1 Hill2 Hill3 Mtn1 Mtn2 Mtn3

Elevation range 505m 745m 500m 1040m 953m 788m
Original binary size 320KB 320KB 320KB 320KB 320KB 320KB

Compressed size 619B 1591B 315B 4710B 4659B 4777B
Compression ratio 517:1 201:1 1016:1 68:1 68:1 67:1

# pts selected 529 1369 256 4489 4489 4489
RMS elevation error 8.4m 9.2m 9.1m 9.1m 8.9m 8.8m

RMS slope error 4.2◦ 6.5◦ 3.0◦ 9.9◦ 9.9◦ 9.4◦

4 ODETLAP-Regular Grid

With this alternative, instead of greedily selecting the N most important
points, we select points on a regular grid uniformly spaced, say 40 × 40, or
every 10th point in x and y. The first advantage is that the points’ locations
(x, y) do not need to be stored. Second, since the z form a regular array,
using any image processing compression technique becomes easy. However,
since ODETLAP-Regular grid does not adapt to changes in the spatial
complexity of the terrain, it will require more points and it may miss small
features. Is this tradeoff worth it?

Table 2 shows the results. For each dataset, the number of points was
increased, keeping a square grid of points but selecting more points equally
spaced in columns and rows, until the RMS elevation error was under 10m.
For the same number of points, the compressed size varied slightly because
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Table 3. ODETLAP Regular grid with DCT Results

Hill1 Hill2 Hill3 Mtn1 Mtn2 Mtn3

Elevation range 505m 745m 500m 1040m 953m 788m
Original binary size 320KB 320KB 320KB 320KB 320KB 320KB

Compressed size 306B 807B 172B 2194B 2027B 2013B
Compression ratio 1046:1 397:1 1860:1 146:1 158:1 159:1

# pts selected 529 1600 225 4489 4489 4489
RMS elevation error 9.6m 10.0m 9.7m 9.7m 10.0m 9.9m

RMS slope error 4.3◦ 6.5◦ 3.0◦ 10.◦ 10.◦ 9.9◦

different sets of z compress differently. After achieving an RMS elevation error
smaller than 10, the z coordinate of the selected points are compressed using
bzip2. Comparing with the ODETLAP TIN+Greedy results, the compres-
sion ratio is about 2 times better. On the other hand, the RMS slope error is
a little worse.

As an extension, we lossy compressed z as follows. The selected z val-
ues were rounded off while preserving an RMS error less than 10 and then
transformed with a Discrete Cosine Transform (DCT). A DCT, widely used
in image compression, is similar to a Fourier series, but uses a set of higher
and higher frequency square waves instead of sines and cosines to approx-
imate a function. The more square waves are used, the more accurate the
approximation is, but the more space it takes, Wikipedia (2008).

Then the resulting sequence was compressed using bzip2. For a given ele-
vation or slope error, this method compresses better. See Table 3.

5 Path Planning

The next test of our compression algorithm was for path planning on terrain,
where the traveler is hiding from a set of observers who have been optimally
positioned, Franklin and Vogt (2006); Franklin (2002). That is, if we use the
compressed terrain to plan a path, how good is that path? We chose the
following metric, designed to incorporate several factors affecting real paths.

C =
√
∆x2 +∆y2 +∆z2 ·

(
1 + max

(
0,

∆z√
∆x2 +∆y2

))
· (1 + 100v) (3)

The first term says that shorter paths are better. The second says that
moving uphill is expensive. The third term says that being seen by an observer
is very expensive (v = 1 if the traveler is in sight, 0 otherwise). Note that the
uphill term means that this metric is not symmetric; the optimal path from
a to b has a different cost, and is not simply the reverse of, the optimal
path from b to a. Therefore some other path planning algorithms will fail.
Further, since a 400×400 dataset has 4002 points, graph traversal algorithms
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Fig. 5. Many optimal paths avoiding viewsheds on Mtn3

employing an explicit cost matrix are infeasible. Finally, some search strategies
that climb hills in parameter space (unrelated to climbing hills on the terrain)
stop at local optima, which is undesirable. To address all these concerns,
we created a modified A* search procedure, Tracy et al. (2007), and used
it to plan paths between many pairs of sources and destinations on each
dataset. Figure 5 shows many paths plotted on the mtn3 dataset. Each little
white lighthouse represents an observer. The surrounding colored region is the
observer’s viewshed. Gaps in the viewsheds are caused by ridges hiding the
terrain behind them. The dark regions of the figure are invisible to all the
observers. Figure 5 also shows choke points in the terrain, which are traversed
by many paths. Those would be candidates for siting future observers.

How to evaluate the path computed on the compressed terrain is also
important, and the obvious choices may be wrong. For example, the cost of
the path computed on the compressed terrain is meaningless. Indeed, if the
terrain were compressed to be flat, then paths computed on it would have no
cost for moving uphill and so would be artificially cheap, which is wrong. Even
comparing the distance between two paths is meaningless for evaluating them.
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Table 4. Increased cost of paths computed on compressed terrain

Compressed Compression Cost
Data size ratio increase

Hill1 1763 182 5.5%
Hill2 1819 176 6.1%
Hill3 1607 199 4.4%
Mtn1 1925 166 19.2%
Mtn2 1884 170 18.2%
Mtn3 1946 164 17.0%

Original ter-
rain dataset

Compress Compressed dataset

Compute optimal path Compute optimal path

Optimal path on original
dataset

Optimal path on com-
pressed dataset

Compute path cost

Cost of optimal path on
original dataset

Transfer path back onto
original dataset

Compute path cost

Cost of this suboptimal pathCompare costs

Cost of suboptimal path due to compression

Fig. 6. Compressed path evaluation algorithm

Indeed, two paths may be legitimately quite different but have the same cost;
we don’t care. Our metric recognizes that the purpose of computing a path on
any terrain, compressed or original, is to use it in the real world. Therefore,
we transfer the path back to the original terrain dataset, and evaluate it there,
as shown in Figure 6.
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Table 4 shows the path inefficiency when our six terrains are compressed
by factors of at least 164:1. Paths computed on these very compressed terrains
were suboptimal by only 6% to 19%.

6 ODETLAP+Slope

With ODETLAP TIN+Greedy, we insert points with the greatest absolute
elevation error. Since the goal is to represent slopes accurately, one obvious
improvement would be to insert points with large slope errors. Another pos-
sibility would be to insert groups of close points since fixing the elevations
of a set of close points should also fix the slope in that neighborhood. Both
these ideas, and many other experiments not detailed here, had disappointing
results. It was time to extend the ODETLAP equations themselves.

Three different representations of the terrain need to be distinguished in
order to understand this section.

Original representation This is the original 400× 400 matrix of elevation
posts that we wish to compress.

Compressed representation This compact version is what would be trans-
mitted or stored on portable devices.

Reconstructed terrain The compressed representation would be reconsti-
tuted into this new 400× 400 matrix in order to be used.

For ODETLAP+Slope, we supplement the two existing types of equa-
tions, 1 and 2 with a new type of equation designed to force the slope in x
and y to be more accurate.

zi+1,j − zi−1,j = hi+1,j − hi−1,j (4)
zi,j+1 − zi,j−1 = hi,j+1 − hi,j+1 (5)

This sets the ∆z between the northern and southern neighbors equal to its
known value, and sets the ∆z between the western and eastern neighbors equal
to its known value. The elevation of the center point is not used. It was done
this way because these two∆zs are the values used by the Zevenbergen-Thorne
method, Zhou and Liu (2004), a common method for computing slopes, Zeven-
bergen and Thorne (1987). (The cross product of the two vectors becomes the
normal to the surface.) Our system permits the indices to be chosen arbi-
trarily, to allow for pairs of nonadjacent points to be used; this is a topic of
potential future research.

Since the system is overconstrained, the relative weights of the different
types of equations can be set depending on the relative importance of slope
accuracy, elevation accuracy, or smoothness. The idea for this addition is that
the extra freedom of allowing elevations to drift somewhat, provided that the
slopes remain accurate, may allow greater slope accuracy.
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Either ODETLAP TIN+Greedy or ODETLAP Regular grid may
serve as the basis for adding equations 4 and 5. In the former case, we iterate
the process of greedily inserting the points whose reconstructed slopes are the
worst. ODETLAP TIN+Greedy requires fewer points but ODETLAP
Regular grid requires less space to store each of the points on the grid
(though any extra irregular points off the grid will take the same space as in
ODETLAP TIN+Greedy. As before, we add points in batches for efficiency,
and use forbidden zones around the points to prevent close pairs of points to
be added in the same iteration, although a point P added in one iteration may
be adjacent to a point added in an earlier iteration, if P’s error is sufficiently
large.

Fig. 7. Slope accuracy vs number of points for Mtn2

Figure 7 shows how three variants of this idea perform on the Mtn2 dataset.
They are: selecting points in a regular grid, greedily selecting irregular points,
and greedily selecting irregular points using an 11×11 forbidden zone. The x-
axis is the number of points in the compressed representation (out of a total of
160000 points). The y-axis shows the average and maximum slope errors (the
three max curves are the higher ones). The best method is greedily selecting
irregular points using a forbidden zone.
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7 Conclusions and Future Work

Representing terrain, including slope, with ODETLAP has great potential.
We are now exploring some of its variations, and applying it to high resolution
urban data. The major problem to be addressed is the computation space
and time required. We are also extending our path planning algorithm for
road construction. Here, we are allowed to modify the terrain with cuts and
fills when planning the path. Another application of ODETLAP is terrain
smoothing, which might be applied to any other terrain representation. Indeed
that ODETLAP was created to smooth or interpolate between contours so
that those contours would not be visible in the resulting surface.

One problem with all compression techniques is that they do not preserve
Hydrology. Regions of the world where the terrain was formed by erosion
caused by surface water flow have distinctive properties. There are almost
no actual local minima (basins, depressions), because they become lakes. In
the few depressions in the coterminous USA, such as the Great Salt Lake,
Salton Sea, and Crater Lake, the water either evaporates or percolates away.
However, there are many fictitious depressions caused by errors in measuring
the terrain or by insufficiently fine sampling, Maidment et al. (1997). That
is, the water may exit a depression via a canyon that is so narrow that it fits
between two adjacent elevation posts, and so is missed. We are now studying
how the hydrological properties of the terrain under compression. This is an
instance of the general problem of compressing multiple layers of cartographic
data where preserving the relationships between the layers after reconstruction
is at least as important as preserving the individual layers’ accuracy.

The most general problem is to construct the terrain from a set of mathe-
matical operators that force the resulting terrain to have the desired proper-
ties. For instance, suppose that we carved the terrain out of a block of earth
with a shovel, with repeated applications of the following operation. Place
the shovel touching the earth at a some point. Move the shovel along any
trajectory ending at the edge of the earth, provided that the shovel always
gets lower and lower. Then, repeat with another shovel path, etc. The terrain
that is created will never have an interior local minimum. That is, it will be
hydrologically “correct”. Can we reduce this idea to practice?
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