
FOCLASA 2002 Preliminary Version

Toward a Programming Model for Building
Reliable Systems with Distributed State

John Field

IBM T.J. Watson Research Center
jfield@watson.ibm.com

Carlos Varela

Department of Computer Science
Rensselaer Polytechnic Institute

cvarela@cs.rpi.edu

Abstract

We present the preliminary design of a programming model for building reliable sys-
tems with distributed state from collections of potentially unreliable components.
Our transactor model provides constructs for maintaining consistency among the
states of distributed components. Our intention is that transactors should sup-
port key aspects of both traditional distributed transactions, e.g., for electronic
commerce, and systems with weaker consistency requirements, e.g., peer-to-peer
file- and process-sharing systems. In this paper, we motivate the need for language
support for maintenance of distributed state, describe the design goals for the trans-
actor model, provide an operational semantics for a simple transactor calculus, and
provide several examples of applications of the transactor model in a higher-level
language.

1 Introduction

Many distributed systems must maintain distributed state. By this, we mean
that the states of several distributed components in a network-connected sys-
tem are interdependent on one another. The classical example of such a sce-
nario is a bank transaction involving the transfer of money from one account
to another, where we must ensure that it is not possible (even in the presence
of a system failure) for one account to be debited without a corresponding
credit being made to the other account, and vice-versa.

Ensuring that these interrelated states are maintained in a consistent way
in a wide-area network—where transmission latencies may be high, and where

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Field and Varela

node and link failures are relatively common occurrences—is difficult. Tradi-
tionally, distributed state maintenance has been viewed primarily as a systems
or “middleware” [5] problem, in which, e.g., system infrastructure for message-
passing provides guaranteed message delivery on an unreliable network sub-
strate [6,25], or where distributed databases or transaction systems support
the illusion of shared, atomically-updatable state across multiple nodes [17,22].
However, in an open and heterogeneous world—where software components
are designed and implemented independently, and where they connect to one
another fluidly—it is unrealistic to assume the existence of common system
infrastructure for distributed state maintenance. While a system-neutral API
for distributed transaction management exists [21], it provides support only
for a single, rigid consistency model.

Consider a collection of distributed components that engage in a protracted
negotiation toward some mutually-desirable outcome (e.g., an auction). The
negotiation process will entail sending messages among the components, and
updating each component’s state in various ways during that time. If the
negotiation is successful, that subset of the components that have reached an
agreement will want to ensure that each of their states consistently reflects
the agreed upon outcome; if the negotiation fails, there is typically no need
to ensure that the states are mutually consistent at the end of the negotiation
process, provided that each participant has reached a satisfactory local state.

Distributed transaction management systems typically require that all of
the participants in the transaction coordinate their work with a pre-designated
transaction manager, and that every transaction has well-defined beginning
and end points. These properties make it difficult to build open distributed
systems where the topology of the system is determined dynamically, where
the scope of—and even the need for—a transaction is situation-dependent, and
where transactional and non-transactional components can easily interact.

In this paper, we present preliminary work on what we will call the trans-
actor programming model. The transactor model allows separately-developed
distributed components to be dynamically combined, but supports mainte-
nance of consistent distributed state for those components that require it. The
transactor model is based on the actor model introduced by Hewitt [15], and
further refined and developed by Agha et al. [4,3,24]. Actors are inherently
independent, concurrent, and autonomous which enables efficiency in parallel
execution [16] and facilitates mobility [2,1]. The actor model and languages
provide a very useful framework for understanding and implementing open
distributed systems.

Transactors can be regarded as a coordination model [12,13,26,8,14,9], in
the sense that they are intended primarily to express the semantics of the
interactions among various distributed components, rather than to describe
the computations local to a node in the system.

2

Field and Varela

1.1 Design Desiderata

The design desiderata for the transactor model are as follows:
• The model should allow arbitrary collections of concurrent processes, which
may be interconnected in a dynamically-updatable topology.

• The model should expose the possibility of network link and node failures
to the programmer, and thus allow the component’s responsibilities and
guarantees in the presence of failure to be made explicit.

• The model should not require an omniscient central coordinating entity to
implement.

• Communication should be based on message-passing, not shared memory.
• The model should incorporate explicit support for stable state checkpoints
and rollback, to allow computations that have become inconsistent, have
failed, or have resulted in a runtime error to recover in a consistent state.

• The model should incorporate a mechanism for discovering and reacting to
state inconsistency.

An important transactor design principle is to avoid requiring that any
component of a system implement more than a minimal set of primitives
needed to allow composite systems to be built at all. For example, we would
like to avoid requiring that every component of a composite system necessarily
be able to participate in a distributed 2-phase commit protocol, yet we would
like to be able to take advantage of components that provide such guaran-
tees. Moreover, we wish to be able to combine both high- and low-reliability
components, reason about the behavior of the composite system, and supply
additional software layers to improve its reliability if desired.

By exposing key semantic concepts related to maintenance of distributed
state in a common, well-founded language, rather than relegating these issues
to system or middleware, composite distributed applications can reason about
the failure semantics of their components, and, if appropriate, supply extra
protocol layers (e.g., logging, rollbacks, retries, replication, etc.) to add ad-
ditional reliability. Use of a common interconnection language also facilitates
testing, porting, and simulating of internet-scale software, something that is
currently extremely difficult to do without deploying a full-blown production
system.

1.2 Related Work

While there is much existing foundational work on languages for concur-
rent, and to a lesser extent, distributed systems (e.g., actors [4,3], the π-
calculus [18], the join calculus [11], and mobile ambients [7]), we are not aware
of formalisms that provide primitives for reasoning about the consistency of
distributed state in the presence of failures. At the other end of the spectrum,
distribution in “industrial” languages or language models, e.g., Java RMI [23]

3

Field and Varela

and Jini [27], CORBA [19], and COM+, is generally based on remote proce-
dure call models that have limited mechanisms for dealing with failure, and
are best suited for tightly-coupled, centrally-managed applications.

Liskov’s Argus language [17], is the work closest in spirit to ours. It incor-
porates constructs for maintenance of distributed state (via nested transac-
tions). Liskov introduced two principal abstractions: guardians and actions.
A guardian is an abstract object whose purpose is to encapsulate a resource
or resources. Special procedures, called handlers, can be used to access a
guardian. An action is essentially a nested atomic transaction. Argus pro-
vides a programming interface onto centrally-managed nested transactions.
By contrast, with transactors, we intend to uniformly model a variety of
failure-management techniques, including transactions and applications with
weaker consistency semantics.

1.3 Outline

The remainder of this paper is organized as follows: First, Section 2 gives a
high-level description of the transactor model, and illustrates the model using a
simple persistent Counter example with synchronized access. Next, Section 3
provides an operational semantics for a lambda-based functional transactor
language. Following, Section 4 describes an electronic commerce example
involving a distributed transaction. Finally, we conclude with a discussion of
open questions and future work.

2 The Transactor Model

Transactors are defined using the following core primitives and assumptions:
• Transactors can respond to asynchronous messages by creating new transac-
tors, sending messages to other known transactors, or changing their internal
state (these are the core concepts of the actor model [4]).

• Messages are not guaranteed to arrive to target transactors. However, if a
message arrives, it does not arrive corrupt.

• A transactor may decide to commit its current state to a stable state. When
a transactor becomes stable, its state will not change in future communica-
tions. The transactor may fail to respond to messages if its node is down,
or the network is partitioned; however, when the node comes back up, or
the network gets reconnected, the transactor will appear at its stable state.

• When an unstable transactor decides to roll-back, or is required to roll-
back by its run-time system, new messages from that transactor will trigger
roll-back behavior for transactors whose state depended on the state of the
unstable transactor.

An important characteristic of our reasoning framework is its layered ar-
chitecture. We do not assume that the network is reliable. That is, we do not

4

Field and Varela

assume guaranteed message delivery, or synchronous channel name passing.
Libraries that provide stronger semantic guarantees that the basic transactor
model can be defined if required.

The goal is to provide a completely decentralized and distributed weak
consistency protocol. Applications requiring stronger semantic properties will
trigger validation algorithms to reach the desired consistency semantic guaran-
tees. Locally persistent state is provided as a primitive to transactors wishing
to stabilize. Roll-back behavior is also supported by persistent intermediate
checkpoints, transparent to applications.

The transactor model admits a number of programming language real-
izations. In examples in the sequel, we will use a realization that has an
object-based flavor.

2.1 A Transactor Example

Figure 1 depicts the definition of Counter, a very simple transactor. While
this example does not illustrate the full power of the transactor model in a
distributed setting, it does cover several of the ideas underlying transactors.
The Counter transactor implements synchronized and persistent access to a
counter value. It is synchronized, in the sense that the counter is incremented
atomically. It is persistent, in the sense that readers of the counter will never
read a value that may be subsequently rolled back or corrupted by failure,
although the counter may become inaccessible due to network failures, and
other writers may subsequently update it.

Like conventional objects, the Counter transactor has fields representing
the current state of the transactor. However, unlike regular objects, access is
implicitly protected and synchronized:
• a transactor’s state may only be accessed via a message processor (which
resembles a method, but is invoked asynchronously and therfore does not
explicitly “return”).

• only one message processor may be active at a time, and must complete
before another message may be processed.

• multiple message processor invocations (i.e., “message sends”) on the same
transactor are implicitly queued, and processed one at a time.

Since message processors are not methods, a message processor such as
read that is intended to return a value must take as an argument a transactor
(which here is deemed to have type CounterReader) to receive the returned
value. Message sending is asynchronous, that is, the sender does not wait for
any acknowledgment before continuing processing. Furthermore, there is no
guarantee of message delivery. Both synchronous invocation and guaranteed
delivery can be provided as higher-level abstractions.

The most notable aspect of Counter is the fact that it maintains a chain
of stable (i.e., committed) transactor values, rather than a single value. While

5

Field and Varela

// Counter:
//
// Implements synchronized and persistent access to a counter
// value as a chain of stable (committed) transactors. All read or write
// requests are forwarded to the last stable transactor in the chain.
// All writes are required to be ‘‘stabilizable’’, in the sense
// that the sender of the write request must itself be stable, thus
// assuring permanence of the written value. A write request by
// an unstable transactor will fail.
//
transactor Counter (int init_value) {

int current_value = init_value;
Counter next_val = Null; // non-Null if this counter is stable (i.e., has

// been committed); end of chain of transactors
// rooted at next_val yields last committed
// value

// read (requester):
//
// sends a message to requester with latest stable (committed)
// value for counter
//
read (CounterReader requester) {
if (volatility == stable) then

// this value is stable (committed);
// see if other committed values exist
next_val.read(requester);

else
// first non-committed value, which (by convention) must
// be equal to last committed value
requester.returnedVal(current_value);

}

//
// incr ():
//
// increments latest stable (committed) value of counter by incr_value
// and attempts to commit by stabilizing; stabilization will only
// succeed if sender is itself stable; otherwise, the transactor will
// roll back.
//
incr(incr_value) {

if (volatility == stable) then
// this value has been committed - can’t update;
// find uncommitted value in chain
next_val.incr(incr_value)

else {
// this value is uncommitted; attempt to update and commit
current_value = current_value + incr_value;

// spawn new transactor to handle subsequent requests
next_val = new Counter (current_value);

// attempt to stabilize; if stabilization fails because sender
// is unstable, rollback to previous value
stabilize;
if (volatility != stable)

rollback;
}

}

Fig. 1. A simple transactor implementing synchronized, persistent access to a
counter.

6

Field and Varela

this may seem to be an egregious waste for such a simple example, it illustrates
a general transactor programming principle: each distinct transactional “unit
of work” (here, a single invocation of the incr message processor) corresponds
to a distinct transactor.

The stabilize keyword in the incr message processor requires some elab-
oration: this construct “commits” a transactor’s state by ensuring that each
sender of a message to the transactor that has updated the transactor’s state
(in the Counter example, this would be any invocation of the incr message
processor) is itself stable. Once a transactor is stable, attempts to invoke
any message processor that can mutate the transactor’s state are ignored. In
general, an attempt to stabilize a transactor may fail, since it requires that
the set of all senders of mutating messages must also be stable. In the case of
Counter, failure to stabilize results in rollback of the transactor. In general,
such rollbacks may trigger rollbacks in other transactors with which a trans-
actor has communicated. In the case of Counter, however, such cascading
rollbacks cannot occur.

In order to support stabilization of mutually dependent transactors, we
introduce a quiesce primitive. A transactor in the quiescent state can still
send and receive messages, but it makes a promise not to change its state unless
it is forcibly rolled-back by a cohort. The state is also persistent in the sense
that it can be recovered after a hardware reboot. This intermediate state
is an alternative to a group stabilization primitive. Higher-level transactor
languages may not provide explicit programming language support for this
state, but rather hide it as the first phase of a two-phase commit protocol as
necessary.

3 Toward a Formal Operational Semantics

The example in 2.1 was written in a loosely defined language with an object-
oriented flavor. To make the concepts of the transactor model precise, we
modify the formal semantics of actors formulated by Agha, Mason, Smith and
Talcott [3]. The following two subsections introduce a transactor calculus and
its operational semantics. In this paper, we will not define a formal translation
from the high-level language used in the examples to the lower-level calculus;
doing so would be tedious but not difficult.

3.1 A Simple Lambda Based Transactor Calculus

Our transactor calculus is a simple extension of the call-by-value lambda calcu-
lus that includes—in addition to arithmetic primitives and structure construc-
tors, recognizers, and destructors—primitives for creating and manipulating
transactors. A transactor’s behavior is described by a closure which embodies
the code to be executed when a message is received. In general, this clo-
sure will be computed anew for each message received, and thus embodies the

7

Field and Varela

current state of the transactor. The transactor primitives are:

new(v) creates a new transactor with behavior v and returns its name.
send(t , v) creates a new message with receiver t and contents v and passes it
to the message delivery system.

ready(v) indicates that the transactor has completed processing the current
message, and is ready to process the next message with behavior v .

quiesce(e) causes the transactor to enter the quiescent volatility state, in
which all future messages are processed with “immutable”, behavior e. A
quiescent transactor may however still roll back due to dependencies on
other transactors. This state is similar to the first phase in a two-phase
commit protocol.

stabilize() attempts to change the transactor’s volatility state from qui-
escent to stable; a stable transactor not only has “immutable” behavior,
but will never roll back. This transition is only successful if all transactors
on which the current transactor is dependent are themselves stable. The
primitive yields the value true if the transition is successful, nil otherwise.

rollback() rolls the transactor back to its initial behavior.
volatility() returns the transactor’s volatility state: volatile, quiescent, or
stable.

3.2 Operational Semantics

We give the semantics of transactor expressions by defining a transition re-
lation on configurations—global snapshots of a set of transactors. We first
define values, expressions, messages, volatility values, dependence maps, and
stability states. Then, we define a set of operations on transactor dependence
maps. Finally, we define configurations and the single-step transition relation
among configurations.

LetMω[M] be the set of (finite) multi-sets with elements in M, X0
f→ X1 be

the set of partial finite maps from X0 to X1, and Dom(f) be the domain of f. For
any function f , f {x → x′} is the function f ′ such that Dom(f ′) = Dom(f)∪
{x}, f ′(y)=f (y) for y�=x, y ∈ Dom(f), and f ′(x)=x′. Let ∅, where appropriate,
be the function f such that Dom(f) = ∅, {x → x′} be ∅{x → x′}, and f {x →
x′, y → y′} be f {x → x′}{y → y′}.

3.2.1 Values, Expressions, Messages, Volatility Values, Dependence Maps,
and Stability States

We take as given countable sets At (atoms), X (variables), and N (natural num-
bers). We assume At contains true, nil for booleans, V , Q, and S for volatility
values, as well as integers. Fn is the set of primitive operations of rank n, which
includes arithmetic operations, branching, pairing and transactor primitives
new, send, ready, quiesce, stabilize, rollback, and volatility (ranks
1,2,1,1,0,0, and 0).

8

Field and Varela

Definition (V, E, M, W, D, S): The set of values, V, the set of expressions,
E, the set of messages, M, the set of volatility values, W, the set of dependence
maps, D, and the set of stability states, S, are defined inductively as follows:

V = At ∪ X ∪ W ∪ λX.E ∪ pr(V, V)

E = V ∪ app(E, E) ∪ Fn(En)

M = <X ⇐ V>D

W = {V , Q, S}
D = X f→ 〈 W, N 〉
S = 〈 W, N, E, E, D, D 〉

We use variables for transactor names. A transactor can be either ready
to accept a message, written ready(v), where v is a lambda abstraction de-
noting its behavior; or busy executing an expression, written e. A message
to a transactor with name t , contents v , and dependence map δ, is written
<t ⇐ v>δ. We let w range over {V , Q, S} for transactor volatility values,
representing volatile, quiescent, and stable, respectively. It will be convenient
to assume that volatility values are ordered by V < Q < S. We use natural
numbers for a transactor incarnation—the number of times the transactor has
rolled-back. A dependence map specifies the dependencies for a given trans-
actor: for each transactor that it is dependent on, it maps the name, t , into
〈w , i 〉, which contains its last-known volatility value, w , and its last-known
incarnation value, i . A transactor’s stability state, 〈w , i , ei , eq , δ0, δ1 〉, rep-
resents a volatility value w , an incarnation value i , an initial behavior ei , a
quiescent/stable behavior eq , a creation dependence map δ0, and a behavior
dependence map δ1.

3.2.2 Dependence Maps
Dependence maps carry information regarding a transactor’s creation and
subsequent behavior changes induced by message reception. An empty depen-
dence map, ∅, represents no dependencies on external transactors. Non-empty
dependence maps carried along with messages enable transactors to determine,
in a lazy manner, when cohorts have rolled-back, potentially causing a local
rollback behavior; when cohorts have become quiescent, potentially enabling
local stabilization; when cohorts have become stable, effectively eliminating
dependencies on such cohort; when messages are invalid, due to previously
received messages with a larger cohort incarnation value; or when the sender
transactor is a previously unknown cohort effectively creating a new behavior
dependence.

In order to facilitate reasoning about dependencies, we require the following
operations on dependence maps:

δ0 ⊕ δ1: union of dependence maps

9

Field and Varela

(δ0 ⊕ δ1)(t) =




δ0(t) if t /∈ Dom(δ1) ∨
(δ0(t) = 〈w0, i0 〉 ∧ δ1(t) = 〈w1, i1 〉 ∧ i0 > i1)

δ1(t) if t /∈ Dom(δ0) ∨
(δ0(t) = 〈w0, i0 〉 ∧ δ1(t) = 〈w1, i1 〉 ∧ i0 < i1)

〈 max(w0,w1), i 〉 if δ0(t) = 〈w0, i 〉 ∧ δ1(t) = 〈w1, i 〉 ∧ max(w0,w1) < S
undefined otherwise

consis(δ0, δ1) ⇔ ∀t : (δ0(t) = 〈w0, i0 〉 ∧ δ1(t) = 〈w1, i1 〉) ⇒ i0 = i1

inval(δ0, δ1) ⇔ ∃t : (δ0(t) = 〈w0, i0 〉 ∧ δ1(t) = 〈w1, i1 〉) ⇒ (i0 > i1 ∧ w1 < S)

stable(δ) ⇔ ∀t : δ(t) = 〈w , i 〉 ⇒ w > V

Fig. 2. Definitions of dependence map operations.

consis(δ0, δ1): tests if δ0 is consistent with δ1, i.e., it represents a valid in-
coming message
inval(δ0, δ1): tests if δ0 invalidates δ1, i.e., it implies a rollback must happen
in the receiving transactor.
stable(δ): tests if δ enables transactor stabilization, i.e., there are no pending
dependencies on other transactors.

Definition (⊕ , consis(·, ·), inval(·, ·), stable(·)): Given dependence maps
δ, δ0, δ1 ∈ D, we define the dependence map union, δ0 ⊕ δ1, the consistency
test, consis(δ0, δ1), the invalidating test, inval(δ0, δ1), and the stability test,
stable(δ) as depicted in Fig. 2.

Dependence map union is an associative and commutative operator with ∅
as identity. It represents the new dependence map resulting from combining its
two operands in such a way that the most up-to-date dependence information
is kept; in particular, notice that if a transactor is known to be stable by
either of the original dependence maps, the union does not define a mapping
for such stable transactor since by definition a stable transactor introduces no
new dependencies. The consistency test determines whether two dependence
maps are consistent; inconsistencies could arise from communications with
either older or newer incarnations of a transactor, representing either invalid,
out-of-order messages or transactor rollbacks respectively. The invalidating
test determines whether the first dependence map renders the second invalid.
A non-stable transactor is invalidated when it receives a message from a cohort
with a new incarnation value. Finally, the stability test succeeds when all
dependencies in a map represent non-volatile transactors.

3.2.3 Transactor Configurations
A transactor configuration models a transactor system with a transactor state
map, messages in transit, and a transactor stability information map. We
define transactor configurations as follows.

10

Field and Varela

Definition (Transactor Configurations): A transactor configuration
with transactor state map, τ , multi-set of messages, µ, and stability infor-
mation map, σ, is written

〈
τ µ σ

〉
, where τ ∈ X f→ E, µ ∈ Mω[M],

σ ∈ X f→ S, and Dom(σ) = Dom(τ).

3.2.4 Single-step Transition Relation
There are three kinds of transitions between transactor configurations:

(i) Local transitions model transactor behavior as in sequential functional
programs

(ii) Transactor transitions model transactor primitive operations - trans-
actor creation, message sending and reception, stabilization, rollback and
quiescence.

(iii) Failure transitions model failures in the computing environment.

The local transition fun is inherited from the purely functional fragment
of our transactor language. The transition represents progress inside a single
transactor.

The transactor transitions are:

new: creation of a transactor, returning its name.
send: message send, passes the message to the mail delivery system.
receive: message reception by a transactor.
quiesce: enters a quiescent state—it becomes ready with self-immutable,
and persistent behavior. It may still rollback due to dependencies from
other transactors.
stabilize: attempts to become ready with immutable, persistent, and con-
sistent behavior.
rollback: rolls the transactor back to its initial behavior.
volatility: returns the transactor’s volatility state

The failure transitions represent unreliable nodes and networks:

lose: loss of a message due to unreliable communication.
reset: recreation of a transactor state from persistent storage after a hard-
ware reboot.

To describe the transactor transitions between configurations other than
message receipt, a non-value expression is decomposed into a reduction context
filled with a redex. Reduction contexts are expressions with a unique hole, and
serve the purpose of identifying the subexpression of an expression that is to
be evaluated next. Reduction contexts correspond to the standard reduction
strategy (left-first, call-by-value) of Plotkin [20] and were first introduced by
Felleisen and Friedman [10]. We use the symbol ‘ ’ to denote the hole occurring
in a reduction context, and call such holes redex holes.

11

Field and Varela

Definition (Erdx, R): The set of redexes, Erdx, and the set of reduction
contexts, R, are defined by:

Erdx = app(V, V) ∪ Fn(Vn)

R = { } ∪ app(R, E) ∪ app(V, R) ∪ Fn+m+1(Vn, R, Em)

We let R range over R and r range over Erdx.
An expression e is either a value or it can be decomposed uniquely into a

reduction context filled with a redex. Thus, local transactor computation is
deterministic.
Lemma (Unique decomposition): Either e ∈ V, or (∃!R, r)(e = R[r]).
Proof : An easy induction on the structure of e.

The purely functional redexes inherit the operational semantics from the
purely functional fragment of our transactor language. The transactor redexes
are: new(e), send(t , v), ready(v), quiesce(e), stabilize(), rollback(), and
volatility().
Definition (�→): Figures 3 and 4 depict the single-step transition relation
�→ on transactor configurations.

The rules depicted in Fig. 3 describe the behavior of transactors in an ide-
alized world where both networks and processors are perfectly reliable. These
transition rules reflect a transactor model with support for global consistent
states by tracking dependencies induced by message passing. Notice that the
semantics does not enforce any particular locking or stabilization algorithm. It
is up to higher-level application layers to provide efficient locking and stabiliza-
tion protocols. The semantics does enforce, however, that once a transactor
becomes stable, its state is consistent with other transactors’ states, and it
becomes immutable and persistent. The semantics also guarantees that once
a transactor becomes quiescent, its state becomes self-immutable and persis-
tent. Furthermore, to quiesce is a local decision and the transactor’s state can
only be rolled back by other transactors’ invalidating messages.

The rules depicted in Fig. 4 model an unreliable network—a network where
messages may get lost, or actors may fail due to computer reboots and crashes.
The <lose> transition represents the loss of a message in the message delivery
system. The <reset> transition represents the loss of a transactor due to
hardware failures. Notice that stable and quiescent transactors recover their
state from persistent storage, while volatile transactors completely disappear.

4 Distributed Transaction Example

Figures 5 and 6 describe a somewhat more realistic and complete transactor
example than that given in Figure 1. In this example, there are two types
of transactors: A BuySell transactor, depicted in Fig. 5 represents an agent
that can either buy or sell a commodity. Typically, two or more BuySell
transactors will interact with one another to complete a sale. The Broker

12

Field and Varela

<fun>

e λ�→ e′ ⇒
〈

τ{t → e} µ σ

〉
�→

〈
τ{t → e′} µ σ

〉

<new>〈
τ{t → R[new(e)]} µ σ{t → 〈w , i , ei , eq , δ0, δ1 〉}

〉
�→

〈
τ{t → R[t ′], t ′ → e} µ σ{t → 〈w , i , ei , eq , δ0, δ1 〉, t ′ → 〈 V, 0, e, nil, {t �→ 〈w , i 〉}, ∅ 〉}

〉
t ′ fresh

<send>〈
τ{t → R[send(v0, v1)]} µ σ{t → 〈w , i , ei , eq , δ0, δ1 〉}

〉
�→

〈
τ{t → R[nil]} µ, <v0 ⇐ v1>δ0⊕δ1{t �→〈 w,i 〉} σ{t → 〈w , i , ei , eq , δ0, δ1 〉}

〉

<receive>〈
τ{t → ready(v)} <t ⇐ v1>δ , µ σ{t → 〈w , i , ei , eq , δ0, δ1 〉}

〉
�→




〈
τ{t → app(v , v1)} µ σ{t → 〈 V, i , ei , eq , δ0, δ1 ⊕ δ 〉}

〉
if w = V, and consis(δ, (δ0 ⊕ δ1{t �→ 〈w , i 〉}))〈

τ{t → app(eq , v1)} µ σ{t → 〈 Q, i , ei , eq , δ0, δ1 〉}
〉

if w = Q, and consis(δ, (δ0 ⊕ δ1{t �→ 〈w , i 〉}))〈
τ{t → app(eq , v1)} µ σ{t → 〈 S, i , ei , eq , ∅, δ 〉}

〉
if w = S, and consis(δ, (δ0 ⊕ δ1{t �→ 〈w , i 〉}))〈

τ{t → app(ei , v1)} µ σ{t → 〈 V, i + 1 , ei , eq , δ0, δ 〉}
〉

if w �= S, and inval(δ, δ1) (rollback)〈
τ µ σ

〉
if w �= S, and inval(δ, δ0) (reset)〈

τ{t → ready(v)} µ σ{t → 〈w , i , ei , eq , δ0, δ1 〉}
〉

otherwise (ignore)

<quiesce>〈
τ{t → R[quiesce(e)]} µ σ{t → 〈w , i , ei , eq , δ0, δ1 〉}

〉
�→




〈
τ{t → R[true]} µ σ{t → 〈 Q, i , ei , e, δ0, δ1 〉}

〉
if w = V〈

τ{t → R[true]} µ σ{t → 〈w , i , ei , eq , δ0, δ1 〉}
〉

otherwise

<stabilize>〈
τ{t → R[stabilize()]} µ σ{t → 〈w , i , ei , eq , δ0, δ1 〉}

〉
�→




〈
τ{t → R[true]} µ σ{t → 〈 S, i , nil, eq , ∅, ∅ 〉}

〉
if w �= V, and stable(δ0 ⊕ δ1)〈

τ{t → R[nil]} µ σ{t → 〈w , i , ei , eq , δ0, δ1 〉}
〉

otherwise

<rollback>〈
τ{t → R[rollback()]} µ σ{t → 〈w , i , ei , eq , δ0, δ1 〉}

〉
�→




〈
τ{t → ei} µ σ{t → 〈 V, i + 1 , ei , eq , δ0, ∅ 〉}

〉
if w = V〈

τ{t → R[nil]} µ σ{t → 〈w , i , ei , eq , δ0, δ1 〉}
〉

otherwise

<volatility>〈
τ{t → R[volatility()]} µ σ{t → 〈w , i , ei , eq , δ0, δ1 〉}

〉
�→

〈
τ{t → R[w]} µ σ{t → 〈w , i , ei , eq , δ0, δ1 〉}

〉

Fig. 3. The single-step transition relation �→ on transactor configurations (assuming
perfectly reliable networks and processors).

13

Field and Varela

<lose>〈
τ <t ⇐ v1>δ , µ σ

〉
�→

〈
τ µ σ

〉

<reset>〈
τ{t → e} µ σ{t → 〈w , i , ei , eq , δ0, δ1 〉}

〉
�→




〈
τ µ σ

〉
if w = V〈

τ{t → eq} µ σ{t → 〈w , i , ei , eq , δ0, δ1 〉}
〉

otherwise

Fig. 4. Additional rules of �→ modeling potentially unreliable networks and proces-
sors.

transactor depicted in Fig. 6 serves to bring two BuySell participants together.
Note that the existence of a “middleman” is not essential; we could have
designed a similar application with direct communication between buyer and
seller, at the cost of some clarity in the specification.

The idea of using a chain of transactors to model sequences of committed
states as described in the Counter example of Section 2.1 is used again here
for the committed states of BuySell participants.

A sales transaction is initiated with a participant using the initiate(...)
message processor. As in the Counter example, initiate(...) chains
through a sequence of committed transactors until a volatile transactor is
reached. At this point, the code checks whether the requested inventory and
price adjustments are feasible. If not, the participant rolls back its state and
informs the broker that the sale cannot complete, then rolls back. If the trans-
action is feasible, the participant updates its state appropriately, creates a
new transactor to handle subsequent updates, and then executes the quiesce
primitive. Once a transactor is quiescent, it may neither update its state nor
roll back; in our high-level transaction language, this is ensured simply by
treating any statements that attempt to do either as no-ops. Also, should a
quiescent transactor fail, if it ever recovers, it is guaranteed to recover with
the state it had prior to failure. Although a quiescent transactor t1 cannot
change its own state, if it receives a message from another transactor t2 that
is inconsistent with messages t1 received from t2 prior to quiescing (because
t2 has rolled back), t1 will roll back. The quiescent state is thus similar to the
“prepared” state of a 2-phase commit protocol: it indicates that the quiescent
transactor is prepared to commit its current state in a recoverable way, but
is also able to roll back if its cohort transactors are unable to complete the
transaction.

The Broker transactor in Fig. 6 serves to bring two participants together,
and checks whether both are capable of completing through on the transaction
before allowing the participants to commit. To make the example slightly more
realistic, it also spawns off an auxiliary Timer transactor, whose sole purpose

14

Field and Varela

is to call the Broker back after a predetermined length of time has elapsed. If
the two BuySell participant transactors do not communicate back with the
Broker before Timer sends the Broker a timeout() message, Broker will roll
back and abort any active participants.

After a BuySell transactor is quiescent, it waits for a complete sale() or
an abort() message from the broker. In the former case, the broker indicates
that all participants are committed to completing the transaction. The partici-
pant then executes the stabilize statement and sends the parent complete()
message to its volatile child. The dependence information piggybacked on this
otherwise vacuous message informs the child transactor that the parent is sta-
ble, which is a necessary prerequisite to the child’s stabilization.

There are a few other aspects of BuySell and Broker that are worth
noting:
• There is nothing to prevent multiple Broker transactors from sending mes-
sages to the same BuySell participant. Thus, e.g., a Broker b1 could ini-
tiate a transaction, while a second Broker b2 could call, e.g., abort() or
complete sale(). We could explicitly prevent this in various ways, e.g.,
by ensuring that the identity of a participant is only made available to one
broker at a time, or recording the identity of the Broker that initiates a
transaction, recording the Broker’s identity in the participant’s state, then
adding an extra Broker argument to the other message processors as an
authentication mechanism to ensure that the only one Broker can partic-
ipate in a transaction at a time. However, the basic transactor semantics
will automatically prevent certain egregious forms of misuse; for example, if
a Broker b2 sends the abort() message to a participant involved in a trans-
action with another Broker, the result will be a no-op since abort() only
rolls back the participant’s state if called from a transactor in a state incon-
sistent with the dependence information captured by a previous interaction
with the participant.

• As written, Broker is somewhat resilient to a failure to receive messages
from participants, due to the timeout mechanism. However, if a BuySell
participant fails to receive a complete sale() message from a broker, it
could remain in a quiescent, but not stable state indefinitely. A timeout
or message retry mechanism could be added to BuySell to make it more
resilient to failures.

• In general, transactors provide no predefined protocols for stabilization, syn-
chronization, or recovery from message or node failure. Instead, the primi-
tives ensure that interacting transactors never reach mutually inconsistent
states, and provide sufficient information to allow a variety of protocols to
achieve consistent (stable) states when needed (but not until needed).

15

Field and Varela

// BuySell:
//
// Participant transactor in a sales transaction.
// Assumes that only one broker instance will send the participant messages
// while a transaction is being negotiated, and that all messages
// sent will be received.
BuySell(int init_inventory, int init_cash_balance) {

int inventory = init_inventory;
int cash_balance = init_cash_balance;
BuySell next_val = Null; // non-Null if this value is committed (stable);

// end of chain of transactors rooted at
// next_val yields last committed value

// initiate(broker, inv_adj, cash_adj)
//
// initiate a sales transaction brokered by broker, in which a cohort
// requests that the partipant’s inventory be incremented by
// inv_adj, and its cash balance be incremented by cash_adj
//
initiate(Broker broker, int inv_adj, int cash_adj) {

if (volatility == stable)
// this is a commited (stable) value; find first uncommited value in chain
next_val.initiate(broker, inv_adj, cash_adj);
} else if (inventory + inventory_adj < 0 || cash_balance + cash_adj < 0) {
// inventory and/or cash_balance inadequate to complete transaction
broker.no_sale(this);
rollback;
}
else {

inventory += inventory_adj;
cash_balance += cash_adj;
next_val = new BuySell (inventory, cash_balance);
quiesce;
broker.ready(this);
}

}
// complete_sale()
//
// broker uses this message to indicate that all parties have agreed
// to complete the sale
//
complete_sale() {

stabilize;
// the stabilization attempt should always succeed when BuySell
// is used with Broker
next_val.parent_complete();

}
// parent_complete()
//
// informs child in transactor chain that parent is stable (prerequisite
// to child stabilizing); body is trivial since it is used only to
// communicate stability information.
//
parent_complete() {}
// abort()
//
// aborts the transaction if called from a Broker that has
// rolled back (has no effect if state is already committed)
//
abort() {

rollback;
}

}

Fig. 5. Participant in a sale transaction.

16

Field and Varela
// Broker:
//
// Brings buyer and seller together to perform a sale transaction.
// Assumes that all messages sent will be received.
//
Broker (BuySell buyer, BuySell seller, num_items, sale_price)

bool buyer_ready = false;
bool seller_ready = false;

// do_sale()
//
// initiate sale transaction
//
do_sale() {

buyer.initiate(this, num_items, -sale_price); seller.initiate(this, -num_items, sale_price);
// timer ensures that broker doesn’t wait indefinitely for
// participants to complete their part of the transaction
(new Timer()).callBackIn(10, this);

}
// ready(cohort)
//
// sent by cohort to indicate that it is committed to completing
// its part of the transaction
//
ready(BuySell cohort) {

if (cohort == buyer) buyer_ready = true;
if (cohort == seller) seller_ready = true;
if (buyer_ready && seller_ready) {

// stabilization should succeed at this point, because
// participants are quiescent
stabilize;
buyer.complete_sale(); seller.complete_sale();
system.print("sale successful");

}
}
// no_sale(cohort)
//
// sent by cohort to indicate that it is unable complete its part of
// the transaction
//
no_sale(BuySell cohort) {

if (cohort = buyer) {
seller.abort();
system.print("buyer aborted sale");
rollback;

if (cohort = seller) {
buyer.abort();
system.print("seller aborted sale");
rollback;

}
}
// timeout()
//
// called by auxiliary timer transactor when time to complete transaction
// has elapsed
//
timeout() {

if (! (buyer_ready && seller_ready)) {
// abort sale if participants haven’t responded

buyer.abort(); seller.abort();
system.print("timeout before sale complete");
rollback;

}
}

}

Fig. 6. Broker for a sale transaction.

17

Field and Varela

5 Discussion and Future Work

While the transactor semantics of Section 3 is useful for defining key transactor
concepts, it has several shortcomings that we wish to address:
• The structure of dependence information is too coarse for many applica-
tions. For example, when sending a message consisting of a pair of values,
we could in principle decompose the message’s dependence information into
a corresponding pair. If the receiving transactor’s message processor only
reads one element of the pair, no dependences need to be induced on the
unread element. The state of a transactor could also be broken down into
finer-grained elements, with dependences for each element tracked sepa-
rately.

• While we found it convenient for design purposes to base our semantics on
the actor semantics of Agha et al. [3], this semantics does not clearly dis-
tinguish the immutable “program” controlling a particular transactor from
the “state” of the actor, which can evolve as each message is processed.
Both of these logically distinct concepts are encoded in the same lambda
expression. By adopting a semantics that makes the distinction between
these concepts clearer, we can among other things distinguish “stateless”
transactors, whose state does not change with each message processed, from
stateful ones. This distinction can in turn eliminate certain spurious depen-
dences.

• In general, our model may require that dependence sets of unbounded size
be maintained in a transactor’s volability state. We conjecture that type
systems or similar annotations could be used to ensure that only bounded
dependence sets need be maintained in many realistic cases.

A number of questions remain open regarding the proposed transactor
model:
• Should a transactor be able to explicitly inspect its dependence information?
• Should a transactor (as opposed to a transactor reference) be a “first-class”
value?

• Does a kernel coordination language require explicit support for authenti-
cation (note that the possession of a transactor reference constitutes a sort
of “capability”)?

• Should selective disablement of message processors be supported [13]? (e.g.,
as a locking mechanism for sequences of operations)

• What is the right set of high-level “reliable” programming abstractions to
build on top of transactors?

18

Field and Varela

Acknowledgments

The authors would like to thank James Leifer for detailed comments on pre-
vious drafts of this paper.

References

[1] Agha, G., N. Jamali and C. Varela, Agent Naming and Coordination: Actor
Based Models and Infrastructures, in: A. Ominici, F. Zambonelli, M. Klusch
and R. Tolksdorf, editors, Coordination of Internet Agents, Springer-Verlag,
2001 pp. 225–248.

[2] Agha, G. and N. Jamali, Concurrent programming for distributed artificial
intelligence, in: G. Weiss, editor, Multiagent Systems: A Modern Approach to
DAI., MIT Press, 1999 .

[3] Agha, G., I. A. Mason, S. F. Smith and C. L. Talcott, A foundation for actor
computation, Journal of Functional Programming 7 (1997), pp. 1–72.

[4] Agha, G., “Actors: A Model of Concurrent Computation in Distributed
Systems,” MIT Press, 1986.

[5] Bernstein, P. A., Middleware: A model for distributed system services,
Communications of the ACM 39 (1996), pp. 86–98.

[6] Birman, K. and R. Renesse, Reliable distributed computing with the isis toolkit
(1994).

[7] Cardelli, L. and A. Gordon, Mobile ambients, in: Foundations of System
Specification and Computational Structures, LNCS 1378, Springer Verlag, 1998
pp. 140–155.

[8] Ciancarini, P. and C. Hankin, editors, “First International Conference on
Coordination Languages and Models (COORDINATION ’96),” Springer-
Verlag, Berlin, 1996.

[9] Ciancarini, P. and A. Wolf, editors, “Third International Conference on
Coordination Languages and Models (COORDINATION ’99),” Springer-
Verlag, Berlin, 1999.

[10] Felleisen, M. and D. Friedman, Control operators, the secd-machine, and the λ-
calculus, in: M. Wirsing, editor, Formal Description of Programming Concepts
III, North-Holland, 1986 pp. 193–217.

[11] Fournet, C. and G. Gonthier, The reflexive cham and the join-calculus (1996).

[12] Frølund, S. and G. Agha, A language framework for multi-object coordination,
in: Proceedings of ECOOP 1993, Springer Verlag, 1993 LNCS 707.

[13] Frølund, S., “Coordinating Distributed Objects: An Actor-Based Approach to
Synchronization,” MIT Press, 1996.

19

Field and Varela

[14] Garlan, D. and D. L. Metayer, editors, “Second International Conference
on Coordination Languages and Models (COORDINATION ’97),” Springer-
Verlag, Berlin, 1997.

[15] Hewitt, C., Viewing control structures as patterns of passing messages, Journal
of Artificial Intelligence 8-3 (1977), pp. 323–364.

[16] Kim, W. and G. Agha, Efficient Support of Location Transparency in
Concurrent Object-Oriented Programming Languages, in: Proceedings of
Supercomputing’95, 1995.

[17] Liskov, B., Distributed programming in argus, Communications of the
Association of Computing Machinery 31 (1988), pp. 300–312.

[18] Milner, R., J. Parrow and D. Walker, A calculus of mobile processes, parts I-II,
Information and Computation 100 (1992), pp. 1–77.

[19] Object Management Group, CORBA services: Common object services
specification version 2., Technical report, Object Management Group (1997),
http://www.omg.org/corba/.

[20] Plotkin, G., Call-by-name, call-by-value and the lambda calculus, Theoretical
Computer Science 1 (1975), pp. 125–159.

[21] Specification, X. C., Distributed transaction proceesing: The XA specification,
X/Open Company Limited, xO/CAE/91/300.

[22] Spector, A., R. Pausch and G. Bruell, Camelot: A flexible, distributed
transaction processing system, in: Proc. IEEE Computer Society International
Conf. (1988), pp. 432–437.

[23] Sun Microsystems Inc. – JavaSoft, Remote Method Invocation Specification
(1996), work in progress. http://www.javasoft.com/products/jdk/rmi/.

[24] Talcott, C. L., Composable semantic models for actor theories, Higher-Order
and Symbolic Computation 11 (1998).

[25] van Renesse, R., K. P. Birman and S. Maffeis, Horus: A flexible group
communication system, Communications of the ACM 39 (1996), pp. 76–83.

[26] Varela, C. and G. Agha, A Hierarchical Model for Coordination of Concurrent
Activities, in: P. Ciancarini and A. Wolf, editors, Third International Conference
on Coordination Languages and Models (COORDINATION ’99), LNCS 1594
(1999), pp. 166–182, http://osl.cs.uiuc.edu/Papers/Coordination99.ps.

[27] Waldo, J., JINI Architecture Overview (1998), work in progress.
http://www.javasoft.com/products/jini/.

20

	Introduction
	Design Desiderata
	Related Work
	Outline

	The Transactor Model
	A Transactor Example

	Toward a Formal Operational Semantics
	A Simple Lambda Based Transactor Calculus
	Operational Semantics

	Distributed Transaction Example
	Discussion and Future Work
	References

