

Today's tasks

- HW questions
- Methods for dealing with summations
- Asymptotic notation: big-O and its cousins

 Shameless plug: My friend P.D. Magnus recent published a paper titled <u>On</u> <u>Trusting Chatbots</u>. Worth reading.

An example problem: Subsequence sum

• Given a list of integers...

```
1 -1 -1 2 3 4 -1 -1 2 3 -4 1 2 -1 -2 1
```

- ... find the run of *consecutive* values that produces the largest sum.
- How would you accomplish this?

```
max = -sys.maxsize - 1
for i in range(N):
   for j in range(i+1,N):
     total = sum(A[i:j])
     if total > max:
        max = total
```

Calculating runtime

```
max = -sys.maxsize - 1
for i in range(n):
   for j in range(i+1,n):
     total = sum(A[i:j])
     if total > max:
        max = total
```

- How long does this take to run?
- Can we count the total operations?

$$2 + \sum_{i=1}^{n} \left[2 + \sum_{j=i}^{n} \left(5 + \sum_{k=i}^{j} 2 \right) \right]$$

• Can we do better?

Other possibilities

- Here are the # of operations required for a variety of potential algorithms:
 - $T_1(n) = 2 + \sum_{i=1}^{n} \left[2 + \sum_{i=i}^{n} (5 + \sum_{k=i}^{j} 2) \right]$ (brute force)
 - $T_2(n) = 2 + \sum_{i=1}^{n} (3 + \sum_{i=i}^{n} 6)$ (one fewer for loop)

•
$$T_3(n) = \begin{cases} 3 & n = 1 \\ 2T_3(\frac{1}{2}n) + 6n + 9 & n > 1 \text{ and even} \end{cases}$$

• $T_3(n) = \begin{cases} 3 & n = 1 \\ T_3(\frac{1}{2}(n+1)) + 6n + 9 & n > 1 \text{ and odd} \end{cases}$
• $T_4(n) = 5 + \sum_{i=1}^{n} 10 \text{ (two fewer for loops!)}$

- $T_4(n) = 5 + \sum_{i=1}^{n} 10$ (two fewer for loops!)
- Which is best?

Small cases

- We can plug in some values for n (e.g. 1, 5, 10, 20):
 - $T_1(1) = 11; T_1(5) = 157; T_1(10) = 737; T_1(20) = 4172$
 - $T_2(1) = 11; T_2(5) = 107; T_2(10) = 362; T_2(20) = 1322$
 - $T_3(1) = 3$; $T_3(5) = 123$; $T_3(10) = 315$; $T_3(20) = 759$
 - $T_4(1) = 15$; $T_4(5) = 55$; $T_4(10) = 105$; $T_4(20) = 205$
- The fourth algorithm looks best... on these small cases.
- Rarely do real programs run on such small datasets.
- We need techniques to (a) write these runtimes without summations and (b) quickly compare functions with LARGE inputs.

Dealing with summations

Rule 1: The Constant Rule

•
$$\sum_{i=1}^{5} 7 = 7 + 7 + 7 + 7 + 7 = 7(5)$$

•
$$\sum_{i=1}^{5} k = k + k + k + k + k = k(5)$$

Rule: Multiplicative constants can be pulled out of the sum.

•
$$\sum_{i=1}^{n} k(n^2 + 3n + 8) = k \sum_{i=1}^{n} (n^2 + 3n + 8)$$

• But! Please notice:

•
$$\sum_{i=1}^{5} i = 1 + 2 + 3 + 4 + 5 = \frac{1}{2}(5)(5+1)$$

• If it depends on the *index of summation*, it's not constant!

Rule 2: The Addition Rule

•
$$\sum_{i=1}^{5} (i+i^2) = (1+1^2) + (2+2^2) + \dots + (5+5^2)$$

• =
$$(1 + 2 + 3 + 4 + 5) + (1^2 + 2^2 + 3^2 + 4^2 + 5^2)$$

$$\bullet = \sum_{i=1}^{5} i + \sum_{i=1}^{5} i^2$$

 Rule: If there is an addition inside the summation, we can break this into two separate summations. Also, if there are two or more summations with the same index & bounds, then we can combine them into a single one.

Crib sheet material: Common summations

- $\sum_{i=k}^{n} 1 = n + 1 k$
- $\sum_{i=1}^{n} f(x) = nf(x)$ NOTE: f(x) must not contain i
- $\sum_{i=1}^{n} i = (1/2)(n)(n+1)$
- $\sum_{i=1}^{n} i^2 = (1/6)(n)(n+1)(2n+1)$
- $\sum_{i=1}^{n} i^3 = (1/4)(n^2)(n+1)^2$
- $\sum_{i=0}^{n} 2^i = 2^{n+1} 1$ In binary, 111...111 + 1 = 1000...000
- $\sum_{i=0}^{n} \frac{1}{2^i} = 2 \frac{1}{2^n}$ Each new term gets you halfway to 2.
- $\sum_{i=1}^{n} \log i = \log n!$
- $\sum_{i=0}^{n} r^i = \frac{1-r^{n+1}}{1-r}$ Note: $r \neq 1$; This is called the <u>geometric series</u>.

Example summation breakdown

•
$$\sum_{i=1}^{n} (1 + 2i + 2^{i+2})$$

•
$$\sum_{i=1}^{n} 1 + 2 \sum_{i=1}^{n} i + \sum_{i=1}^{n} 2^{i+2}$$

•
$$n + 2(\frac{1}{2})(n)(n+1) + \sum_{i=1}^{n} 2^{2}2^{i}$$

•
$$n^2 + 2n + 2^2 \sum_{i=1}^{n} 2^i$$

•
$$n^2 + 2n + 2^2(2^{n+1} - 1 - 1)$$

$$2^{n+3} + n^2 + 2n - 8$$

 Expressions without summations are referred to as <u>closed-form</u> expressions – they allow us to make direct calculations.

You try it!

- $\sum_{i=1}^{n} (5i + 2n)$
- $\sum_{i=1}^{n} 5i + \sum_{i=1}^{n} 2n$
- $5\sum_{i=1}^{n} i + 2\sum_{i=1}^{n} n$
- $5\left(\frac{1}{2}\right)(n)(n+1) + 2(n)(n)$
- $\frac{9}{2}n^2 + \frac{5}{2}n$

Rule 3: The Nested Sum Rule

• To compute a nested summation, start with the innermost sum and work outward.

•
$$\sum_{i=1}^{5} \sum_{j=1}^{5} 1 = \sum_{i=1}^{5} 5 = 5(5) = 25$$

•
$$\sum_{i=1}^{5} \sum_{j=1}^{i} 1 = \dots$$
?

•
$$\sum_{i=1}^{5} \sum_{j=1}^{i} 1 = \sum_{i=1}^{5} i = \left(\frac{1}{2}\right)(5)(5+1) = 15$$

A larger example

Remember our runtimes?

•
$$T_2(n) = 2 + \sum_{i=1}^{n} (3 + \sum_{i=i}^{n} 6)$$

•
$$T_2(n) = 2 + \sum_{i=1}^{n} 3 + \sum_{i=1}^{n} \sum_{j=i}^{n} 6$$

•
$$T_2(n) = 2 + \frac{3n}{n} + \sum_{i=1}^n 6 \sum_{j=i}^n 1$$

•
$$T_2(n) = 2 + 3n + 6\sum_{i=1}^{n} (n+1-i)$$

•
$$T_2(n) = 2 + 3n + 6\left(n^2 + n - \left(\frac{1}{2}\right)(n)(n+1)\right)$$

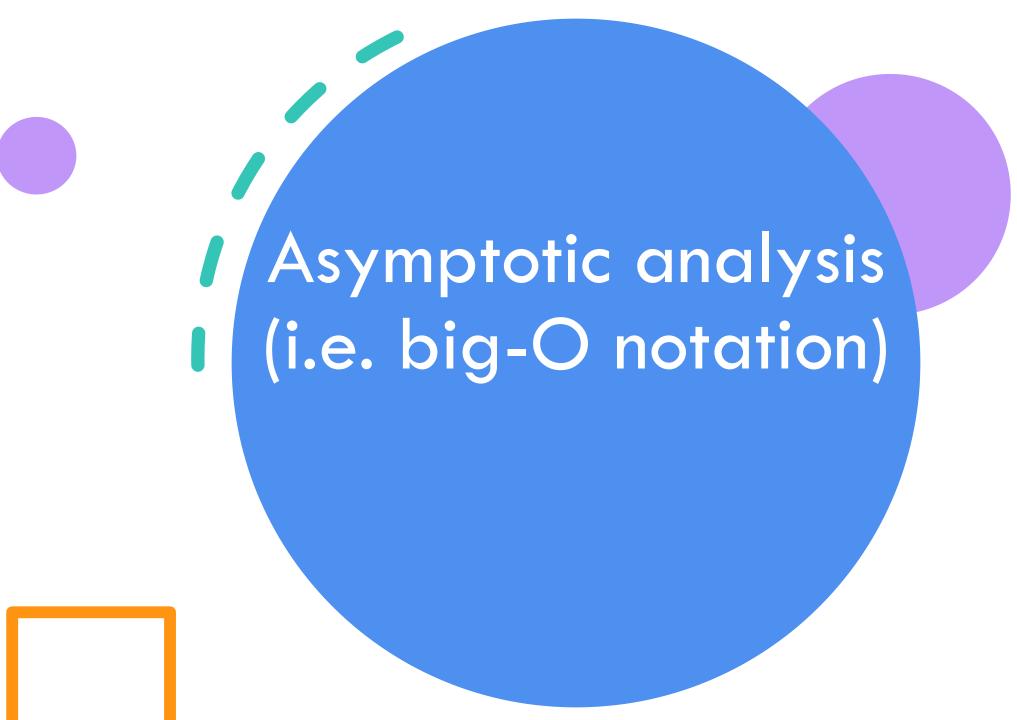
•
$$T_2(n) = 2 + 3n + 6\left(\frac{1}{2}n^2 + \frac{1}{2}n\right)$$

•
$$T_2(n) = 3n^2 + 6n + 2$$

You try it!

•
$$\sum_{i=1}^{n} \sum_{j=1}^{i} ij$$

- $\sum_{i=1}^{n} i \sum_{j=1}^{i} j$ by the Constant Rule! i is unaffected by j
- $\sum_{i=1}^{n} i\left(\frac{1}{2}\right)(i)(i+1)$
- $\sum_{i=1}^{n} \frac{1}{2} (i^3 + i^2)$
- $\frac{1}{2} \left(\sum_{i=1}^{n} i^3 + \sum_{i=1}^{n} i^2 \right)$
- $\frac{1}{2} \left(\frac{1}{4} n^2 (n+1)^2 + \frac{1}{6} n(n+1)(2n+1) \right)$
- $\frac{1}{8}n^4 + \frac{5}{12}n^3 + \frac{3}{8}n^2 + \frac{1}{12}n$



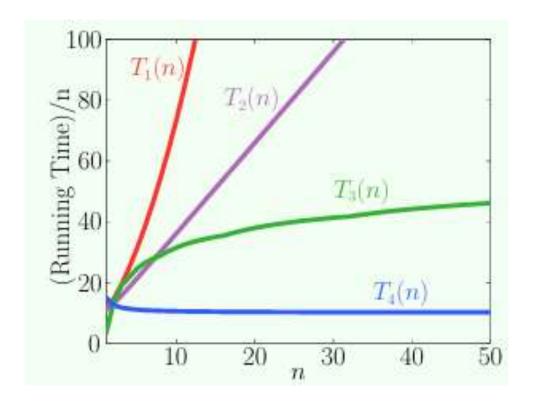
Back to our runtimes

•
$$T_1(n) = \frac{1}{3}n^3 + \frac{7}{2}n^2 + \frac{31}{6}n + 2$$

•
$$T_2(n) = 3n^2 + 6n + 2$$

•
$$T_3(n) \le 12n(\log n + 3) - 9$$

•
$$T_4(n) = 10n + 5$$



- Why is $T_3 \le$ instead of =? Well, it wasn't a sum... Recursions have their own rules, which are mostly not part of FOCS.
- How do these compare for <u>large n</u>?

The big BIG idea

- Big Data is all the rage these days. So our production algorithms need to finish in reasonable time for really, really, \underline{really} large values of n.
 - Terabyte $\approx 2^40$ bytes, or around 1,000,000,000,000 bytes
- For "big enough" n, coefficients are nearly irrelevant the only things that tend to matter are <u>exponents</u>.
 - n to a higher power will <u>always</u> be worse than n to a lower power, no matter what constants we multiply by. $50000n^2$ is less runtime than n^3 eventually.
 - And n in the exponent itself is just ... AWFUL.
- We would like a tool to express this particular concept of "better".

Asymptotic analysis

- Asymptotic analysis looks at the behavior of functions as their input $n \to \infty$.
- The most common tool for this is "big-O notation". It expresses the idea that a runtime is **no worse than** some function in the long run.
- Formally, $T(n) \in O(f(n))$ means that: $\exists \mathcal{C} > 0, \exists n_0 \in \mathbb{N}, \forall n \geq n_0, T(n) \leq \mathcal{C} \cdot f(n)$
 - "Once n is big enough (i.e. $\geq n_0$), T(n) is no worse than f(n) times some fixed constant C."

Practical application

- What this means is that, when performing asymptotic analysis:
 - We generally only worry about the worst-case input.
 - We can ignore constant coefficients. $60n^2 \in O(n^2)$
 - Side note: The bounds for O do not have to be <u>tight</u>. $60n^2 \in O(n^{12})$
 - We can throw out any <u>lower-order</u> terms. $5n^3 + 3n^2 + 1000 \in O(n^3)$
- When looking at sums, every summation (usually) adds a factor of n to whatever is inside the summation.
 - $\sum_{i=1}^{n} \sum_{j=1}^{i} ij \in O(n^4)$ since the inside part (ij) is effectively quadratic.

The big-O menagerie

- The common classes of functions we work with are:
 - O(1) constant (array access)
 - $O(\log n)$ logarithmic (binary search in a sorted array)
 - O(n) linear (search in an unsorted array)
 - $O(n \log n)$ loglinear (good sorting algorithms like mergesort)
 - $O(n^2)$ quadratic (poor sorting algorithms like bubble sort)
 - $O(n^c)$ higher-order polynomials (some parsing algorithms)
 - $O(n^{\log n})$ quasipolynomial (old primality test)
 - $O(2^n)$ exponential (Traveling Salesman Problem)
 - O(n!), $O(n^n)$, $O(n^{2^n})$, and even worse Don't go there.

Thought for the day

- " $O(n^2)$ is the sweet spot of badly scaling algorithms: fast enough to make it into production, but slow enough to make things fall down once it gets there." --Bruce Dawson
- This blog post details a <u>lovely</u> little bug that shipped with Windows 11, in which one of its UI threads would sometimes hang...
 - ... because it used a quadratic-time algorithm to place desktop icons nicely onto a grid ...
 - ... even if those icons weren't being displayed right now!

Siblings of big-O...

- $f(n) \in O(g(n))$ is a "less than or equal to" relation.
- Unsurprisingly, there is also a "greater than or equal to" relation: big- $\!\Omega\!$
 - $T(n) \in \Omega(f(n))$ means that $\exists c > 0, \exists n_0 \in \mathbb{N}, \forall n > n_0, T(n) \geq c \cdot f(n)$
 - If $f(n) \in O(g(n))$, then $g(n) \in \Omega(f(n))$.
- What if $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$? Big- Θ
 - We say that g(n) is an <u>asymptotically tight</u> bound on f(n) they are equals of a sort. We write $f(n) \in \Theta(g(n))$, which means $\exists c, C > 0, \exists n_0 \in \mathbb{N}, \forall n \geq n_0, c \cdot g(n) \leq f(n) \leq C \cdot g(n)$.

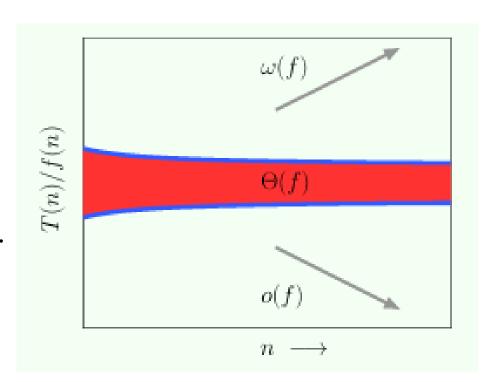
... and their little cousins

- We also have two relations that are comparable to the strict inequalities > and <, but they are not defined formally the same way.
- $f(n) \in o(g(n))$ means that f(n) is of a strictly smaller order than g(n) that is $\forall c>0, \exists n_0 \in \mathbb{N}, \forall n\geq n_0, f(n)< c\cdot g(n)$
 - Note the order of the quantifiers here: First we pick a constant, then define a "big enough" value. The other way wouldn't work.
 - But, importantly, for <u>any</u> constant, there's always "big enough."
- The reverse relation is $f(n) \in \omega(g(n))$, which means f(n) is of strictly greater order than g(n).

Using limits to express the same ideas

$$\lim_{n\to\infty}\frac{T(n)}{f(n)}=\cdots$$

- ... 0, then $T(n) \in o(f(n))$.
- ... any c > 0, then $T(n) \in \Theta(f(n))$.
- ... ∞ , then $T(n) \in \omega(f(n))$.



• In practice, we nearly always just use big-O.

Questions?

