
Path Decomposition under a New Cost Measure

with Applications to Optical Network Design?

Elliot Anshelevich1?? and Lisa Zhang2

1 Department of Computer Science, Cornell University, Ithaca NY.
eanshel@cs.cornell.edu.

2 Bell Laboratories, 600 Mountain Avenue, Murray Hill NJ.
ylz@research.bell-labs.com.

Abstract. We introduce a problem directly inspired by its application to DWDM (dense
wavelength division multiplexing) network design. We are given a set of demands to be carried
over a network. Our goal is to choose a route for each demand and to decompose the network
into a collection of edge-disjoint simple paths. These paths are called optical line systems. The
cost of routing one unit of demand is the number of line systems with which the demand
route overlaps; our design objective is to minimize the total cost over all demands. This
cost metric is motivated by the need to avoid O-E-O (optical-electrical-optical) conversions in
optical transmission as well as to minimize the expense of the equipment necessary to carry
the traffic.
For given line systems, it is easy to find the optimal demand routes. On the other hand, for
given demand routes designing the optimal line systems can be NP-hard. We first present
a 2-approximation for general network topologies. As optical networks often have low node
degrees, we offer an algorithm that finds the optimal solution for the special case in which the
node degree is at most 3. Our solution is based on a local greedy approach.
If neither demand routes nor line systems are fixed, the situation becomes much harder.
Even for a restricted scenario on a 3-regular Hamiltonian network, no efficient algorithm
can guarantee a constant approximation better than 2. For general topologies, we offer a
simple algorithm with an O(logK)- and an O(log n)-approximation where K is the number
of demands and n is the number of nodes. For rings, a common special topology, we offer a
3/2-approximation.

1 Introduction

The constantly changing technology continues to present algorithmic challenges in optical network
design. For example, the SONET (Synchronous Optical NETwork) technology has motivated a rich
body of combinatorial work on rings, e.g. [4, 10, 19, 20]; and the WDM (wavelength division multiplex-
ing) technology has inspired numerous algorithms in coloring and wavelength assignment, e.g. [11, 12,
15, 17]. In this paper we introduce a novel problem directly motivated by its applications to DWDM
(dense WDM) network design. At the essence of this problem, however, lies a fundamental graph
theory question. Our problem involves partitioning a graph into edge-disjoint paths with certain
properties while minimizing a natural, yet so far largely unstudied, cost function.
The state-of-the-art DWDM technology allows more than one hundred wavelengths to be mul-

tiplexed on a single fiber strand and allows signals to travel thousands of kilometers optically. One
design methodology in building an optical network using DWDM technology is to partition the

? Submission to the Design and Analysis Track.
?? Work partially done while visiting Bell Labs.

2

network into a collection of paths which are called optical line systems. Such path decompositions
have many advantages. For example, the linear structure simplifies wavelength assignment [21], en-
gineering constraints [13], and requires less sophisticated hardware components. Therefore line-based
optical networks are quite popular in today’s optical industry.
In a line-based network an optical signal is transmitted within the optical domain as long as

it follows a line system. However, when it switches from one line system to another, an O-E-O
(optical-electrical-optical) conversion takes place. Such conversions are slow, expensive, and defeat the
advantages of optical transmission. Therefore, our first design objective is to avoid O-E-O conversions
as much as possible.
Naturally, our second objective is to design networks of low cost. As is usual in the case of optical

network design, we cannot control the physical layout of the network since optical fibers are already
installed underground. We are given a pre-existing network of dark fiber, i.e. optical fiber without any
hardware for sending, receiving, or converting signals. The hardware cost consists of two parts, the
base cost and the transport cost. The base cost refers to the cost of the equipment necessary to form
the line systems. An optical line system begins with an end terminal, followed by an alternating
sequence of fibers and OADM (optical add/drop multiplexers) and terminates with another end
terminal. Roughly speaking, an OADM is built upon two back-to-back end terminals. Instead of
terminating an optical signal an OADM allows the signal to pass through within the optical domain.
An OADM costs about twice as much as an end terminal [7]. As a result, independent of how the
network is partitioned into line systems, the base cost stays more or less the same. We can therefore
ignore the base cost in our minimization. The transport cost refers to the cost of transmitting signals,
in particular the cost incurred by the equipment needed to perform O-E-O conversions. Once the
signal is formatted in the optical form it is transmitted along a line system for free. The number of
O-E-O converters for a signal is linearly proportional to the number of line systems that the signal
travels through. Therefore, minimizing O-E-O conversions serves the dual purpose of network cost
minimization and providing (nearly) all-optical transmission.

Our Model. Let us describe the model in more detail. We are given a dark fiber network and a
set of demands to be carried over the network. This network is modeled by an undirected graph
G = (V,E). Demands are undirected as well. Each demand is described by a source node and a
destination node and carries one wavelength (or one unit) of traffic. We can have duplicate demands
with the same source-destination pair. Let K be the sum of all demands. There are two design
components, i) partitioning the edge set E into a set of edge-disjoint line systems, and ii) routing
each demand.
A routing path of a demand consists of one or more transparent sections, where each transparent

section is the intersection of the routing path and a line system. It is worth pointing out here that
if multiple units of demand switch from one line system to another, each demand unit requires its
individual O-E-O converter. Therefore, our objective is minimizing the total number of transparent
sections summed over all demands, which is equivalent to minimizing the network equipment cost
and minimizing O-E-O conversions.
Figure 1 gives a dark fiber network and two of the many possible line system designs. Suppose

one unit of demand travels from A to F and three units of demand travel from C to E. The only
possible routing paths are ABCDF and CDE respectively. The solution in the middle results in
1 × 4 + 3 × 2 = 10 transparent sections and the solution on the right results in 1 × 1 + 3 × 2 = 7
transparent sections only.
One complication in routing can arise under the following circumstances. When an optical signal

travels between two nodes on a line system it stays within the optical domain only if it follows the
line system path defined by the orientation of the OADMs. Otherwise, O-E-O conversions may take

3

E

F

DA B C C D E

F

BA

F

EA B C D

Fig. 1. (Left) A dark fiber network. (Middle) Each link is a separate line system. (Right) ABCDF is a line
system and DE is a line system. The arrows stand for end terminals and solid boxes stand for OADMs.

place. For example, the line system path in Figure 2 is ABCFEDCG. To travel between B and
G the direct path BCG is expensive since it does not follow the line system and incurs an O-E-O
conversion at node C; the “free” path BCFEDCG is non-simple since it visits C twice. Naturally,
network carriers avoid expensive demand routes. On the other hand, they also need simple demand
routes for reasons such as easy network management. We therefore restrict ourselves to line systems
that induce simple demand routes only and call such line systems proper. More precisely, a proper
line system corresponds to a path in which each node appears at most once, excluding its possible
appearance(s) as the end points.

B AC

G

FE

D

Fig. 2. An improper line system ABCFEDCG.

We also emphasize that wavelength assignment is not an issue in this context. A feasible wave-
length assignment requires a demand to be on the same wavelength when it stays on one line system.
However, it is free to switch to a different wavelength whenever it hops onto a different line system.
Naturally, for wavelength division multiplexing, two demands sharing a link need to have distinct
wavelengths. Given such constraints, as long as the number of demands per link respects the fiber
capacity, i.e. the number of wavelengths per fiber, a feasible wavelength can be found efficiently
using the simple method for interval graph coloring. (See e.g. [6].) In this paper we assume infinite
fiber capacity, since the capacity of a single fiber strand is as large as one terabit per second. From
now on, we focus on our objective of cost minimization without having to consider wavelengths.

Our Results. In this paper we begin with optimizing line system design assuming demand routes
are given. (We note that for given line systems finding the optimal routing paths is trivial.) We then
focus on the general case in which neither routes nor line systems are given. In the interest of space
we include most of our proofs in the Appendix.

– In Section 2 we assume simple routing paths for all demands are given. For an arbitrary network
with node degree higher than a certain constant c, finding the optimal line systems that minimize
the total number of transparent sections is NP-hard. Fortunately, optical networks typically are
sparse. Perhaps as our most interesting result, when the network has maximal node degree at
most 3, we present an optimal solution based on an elegant greedy approach.

4

For an arbitrary network topology, we also present a 2-approximation algorithm. This 2-approximation
is the best possible with the particular lower bound that we use.

– In Section 3 neither demand routes nor line systems are fixed. We first show that this general
case is much harder. In fact, even for a very restricted case on a 3-regular Hamiltonian network,
no algorithm can guarantee a constant approximation better than 2. We then present a simple
algorithm that guarantees an O(log n)- and O(logK)-approximation for arbitrary networks,
where n is the number of nodes in the network and K is the number of demands.
In Section 3.2 we focus on the ring topology. Rings are of particular interest since often the
underlying infrastructure is a ring for metro-area networks. We give a 3/2-approximation. If
the total demand terminating at each node is bounded by a constant, we present an optimal
solution.

– Finally, in Section 4 we discuss the relation of supereulerian graphs to our problem. A graph is
supereulerian if there is a tour that visits every node but not necessarily every link. If we allow
a line system to visit its nodes multiple times, then for a supereulerian network we can use this
tour as a single spanning line system. For example, 4-edge-connected graphs are supereulerian
which implies that they always have an optimal solution of cost K.

Related Work. Until now, the design of line-based networks has only been studied empirically, e.g. [5,
7]. However, the problem of ATM virtual path layout (VPL) is relevant. VPL aims to find a set of
virtual paths in the network such that any demand route can be expressed as a concatenation of
virtual paths, see e.g. [22, 2]. The model for VPL differs from ours in several aspects. For example,
our line systems form a partition of the network links whereas virtual paths are allowed to overlap.
Also, our demand routes can enter and depart from any point along a line system whereas demand
routes for VPL have to be concatenations of entire virtual paths. This makes a huge difference in
the model, since the extra constraint that all routes must be concatenations of whole line systems
can increase the optimal solution by a factor of K. Finally, we are concerned with minimizing the
total number of transparent sections, while VPL papers are traditionally concerned with minimizing
the maximum hop count, with notable exceptions such as [9].

2 Designing Line Systems with Specified Routing

First we would like to point out that if line systems are given, it is easy to find the optimal route
between any two nodes. The optimal route between any two nodes is the one that goes through as
few line systems as possible and thus results in as few transparent sections as possible. We can find
this route by calculating the shortest path according to an appropriate distance function. Let us
refer to the optimal routes with respect to a set of line systems as the routing induced by the line
systems.
If instead we are given the demand routes, and our goal is to find the optimal set of proper line

systems, the problem becomes NP-hard. In fact, as we show in the Appendix, even for networks with
bounded degree the problem remains NP-hard. Therefore, we consider approximation algorithms.
Indeed, we present a 2-approximation algorithm for arbitrary network topologies.

2.1 A Lower Bound

We describe a configuration at each node, i.e. how the links incident to the node are connected to
one another by line systems. For node u let E(u) be the set of links incident to u. Each link e ∈ E(u)
is matched to at most one other link in E(u). If e is matched to f ∈ E(u) it means e and f are on

5

the same line system connected by an OADM at u. If e is not matched to any link in E(u) it means
e terminates a line system at u. It is easy to see that the node configurations imply a set of paths
that partition the network links. Of course, these resulting paths may not correspond to proper line
systems.
Suppose every demand route is given. We offer a natural algorithm to configure each node. For

every pair (u, v) and (v, w) of adjacent links, we define the through traffic T (uvw) as the number
of demand units routed along u, v and w. For each node v, we match the links incident to v such
that the total through traffic along the matched link pairs is maximized. We refer to this algorithm
as Max Thru. Although Max Thru may define closed loops or improper line systems, it has the
following property.

Lemma 1. For given demand routes, the total number of transparent sections generated by Max

Thru is a lower bound on the cost of the optimal feasible solution.

2.2 2-Approximation for Proper Line Systems

To find proper line systems given simple demand routes, we begin with the Max Thru algorithm
and obtain a set of line systems that are not necessarily proper. If a line system is proper, we leave it
as is. Otherwise, we cut the line system as follows. We traverse the line system from one end to the
other and record every node that we visit in a sequence. If the line system is a closed loop we start
from an arbitrary node and finish at the same node. (For example, the node sequence for the line
system drawn in Figure 2 is ABCFEDCG.) If a node u appears multiple times in the node sequence,
we mark the first appearance of u with an open parenthesis “(”, the last appearance of u with a
closed parenthesis “)”, and every other appearance of u with a closed and an open parenthesis “)(”.
All these parentheses are labelled u. We match the ith open parenthesis labelled with u with the
ith closed parenthesis also labelled with u. Each matching pair of parentheses represents a section
of the line system that would induce non simple routing paths. We put down parentheses for every
node that appears multiple times in the sequence.
We use these parentheses to determine where to cut an improper line system. We say two paren-

theses form an inner-most pair if the left parenthesis is “(”, the right one is “)” and they do not
contain any other parenthesis in between. Note the two parentheses in an inner-most pair do not
have to have the same label. We now find the pair of inner-most parentheses that is also left most,
and cut the sequence at the node v where the closed parenthesis from the selected pair sits. We
remove every matching pair of parentheses that contains v. We repeat the above process until no
parentheses are left. We refer to this algorithm as Cut Paren, which has 2 desirable properties as
stated in Lemmas 2 and 3.

Lemma 2. The Cut Paren algorithm defines a set of proper line systems.

Lemma 3. Given simple routing paths, each transparent section defined by Max Thru is cut into
at most 2 pieces by Cut Paren.

Proof. We first observe that a transparent section of a simple demand path cannot contain any
matching pair of parentheses. Now consider any demand and let T be a transparent section of the
demand defined by Max Thru. Suppose Cut Paren cuts T at node v. We claim that Cut Paren

cannot cut T again. For the purpose of contradiction let us assume that T is cut again at v ′. Let u′

be where the matching open parenthesis sits. Note that u′ and v′ cannot contain v since this pair of
matching parentheses at u′ and v′ would be removed after the sequence is first cut at v. Note also
that v and v′ cannot contain u′ since otherwise T would contain the matching pair of parentheses at
u′ and v′ which contradicts the fact that T is transparent. Therefore, Cut Paren cannot possibly
cut T at v′ after cutting it at v.

6

By Lemma 2 Cut Paren defines a set of proper line systems. By Lemmas 1 and 3 we know that
Cut Paren is at most twice as expensive as any optimal solution. Hence,

Theorem 1. Given simple routing paths, Cut Paren is a 2-approximation algorithm.

Using the lower bound given by Lemma 1, no algorithm can beat the approximation ratio of
2 since the optimal solution can cost twice as much as the infeasible solution generated by Max

Thru. For example, this can happen on a cycle. Suppose there is a unit demand between any two
neighboring nodes u and v and the demand is routed along the “long” path excluding link uv. In
this example, as the number of nodes grows, the gap between the optimal cost and the lower bound
given by Max Thru approaches 2.
So far we have presented an algorithm that can cut an improper line system with a guaranteed

approximation ratio of 2. In fact, we can always cut an improper line system L optimally. For each
node v in the node sequence of the line system, we use a binary variable xv to indicate whether or not
node v is cut. The objective is to minimize

∑

v cvxv where cv is the number of transparent sections
of L that go through node v at this point in the node sequence. In other words, the objective is to
minimize the total number of times that the transparent sections on this line system are cut. The
constraints are

∑

v∈P xv ≥ 1 for every P where P is the set of nodes enclosed by a set of matching
parentheses. In other words, the constraints make sure that each loop in the line system is cut. It
can be shown that the coefficient matrix of the constraints is totally unimodular (TUM). Therefore,
the linear relaxation of the above integer program always has an integral optimal solution [16], and
so we have the following lemma.

Lemma 4. Given a set of transparent sections on an improper line system, we can efficiently cut
the line system so that the transparent sections are cut into as few pieces as possible.

We do not know if Lemma 4 can lead to a better approximation ratio than 2. We know that even
if we cut the improper line systems generated by Max Thru optimally, we can still end up with
a solution that costs 5/4 as much as the optimal solution with proper line systems. An example is
given in the Appendix.

2.3 Networks of Node Degree 3

The situation is far better when the network only has nodes of low degree. In particular, if the
network has maximal degree of at most 3, we can indeed find an optimal set of proper line systems
for any given simple demand routes. This is fortunate since optical networks are typically sparse,
and only have a small number of nodes of degree greater than 3. Again, we begin with Max Thru.
Since the node degree is at most 3, we observe that a resulting line system is improper only if it
is a simple closed loop, i.e. a closed loop that induces simple routes only. We now examine each
node u on the loop, which we call L. Let x and y be u’s neighboring nodes on the loop L and z
be u’s neighboring node off the loop (if such a z exists). Without loss of generality, let us assume
the through traffic T (xuz) is no smaller than the through traffic T (yuz). (If z does not exist, then
T (xuz) = T (yuz) = 0.) An alternate configuration at u would be to cut xuy at u and connect xuz,
and we refer to this operation as a swap. This swap would increase the total number of transparent
sections by I(u) where I(u) = T (xuz)−T (xuy). If node u′ ∈ L has the minimum increase I(u′) then
we perform the swap operation at u′. We swap exactly one node on each closed loop. We refer to this
algorithm as Greedy Swap. Since every node has degree at most 3, Greedy Swap eliminates all
loops and never creates new ones. Therefore, the Greedy Swap algorithm defines a set of proper
line systems.

7

Theorem 2. The Greedy Swap algorithm is optimal for given demand routing on networks with
node degree at most 3.

Proof. We first note that no matter how Greedy Swap breaks ties in decision making the result-
ing solutions have the same total number of transparent sections. Given a solution by an optimal
algorithm Opt, we now show that Greedy Swap produces an identical solution under some tie
breaking. In particular, when executing Greedy Swap let us use the optimal solution for tie break-
ing as follows. When executing Max Thru if multiple configurations maximize the through traffic
at u and if one of these configurations is given by Opt, then Max Thru configures u like Opt.
Suppose Max Thru creates a simple loop L and multiple ways of swapping a node on L yield the
same amount of minimum increase. If some of these swaps result in an identical configuration for
the node u ∈ L being swapped as in the optimal solution, then Greedy Swap executes one of these
particular swaps on L.

xu

z

y

w

xu

z

y

wL

Fig. 3. (Left) OPT. (Right) Result of Greedy Swap.

Now let us compare the line systems produced by Greedy Swap against the optimal solution.
We first examine each node u for whichMax Thru andGreedy Swap have the same configuration.
We claim that Opt has the same configuration at u as well. Let us focus on the case in which u has
three neighbors x, y and z. (The cases in which u is degree 1 or 2 are simpler.) If Max Thru does
not connect xuy, xuz or yuz, Opt must have the same configuration at u since the through traffic
T (xuy), T (xuz) and T (yuz) must be all zero and Opt is used for tie breaking. Otherwise, let us
assume without loss of generality that Max Thru connects xuy. For the purpose of contradiction,
let us assume that Opt connects xuz. By the construction of Max Thru and the tie breaking rule,
we have T (xuy) > T (xuz). If Opt reconfigures node u by connecting xuy instead, a loop L must be
formed or else we would have a better solution than Opt (see Figure 3). On the loop L there must
be a node v 6= u such that Greedy Swap and Opt configure v differently, since otherwise Greedy

Swap would contain this loop L. Let w be the first such node, i.e. all nodes on L between u and w
in the clockwise direction are configured the same by Greedy Swap and Opt.

If w has the same configuration in Max Thru and Greedy Swap, then by the definition of
Max Thru and by the tie breaking rule, the configuration of w with Max Thru must be strictly
better than its configuration with Opt. Hence, by reconfiguring Opt at nodes u and w like Greedy

Swap, we get a better solution than Opt which is a contradiction. Therefore, as shown in Figure 3,
w must be a node that was cut by Greedy Swap on a loop generated byMax Thru that included
u, which implies that I(w) ≤ I(u). In fact, it must be the case that I(w) < I(u) by the tie breaking
rule. Therefore, if we reconfigure Opt at nodes u and w like Greedy Swap, we once again get
a better solution than Opt. This is a valid solution, since we cannot create any loops in Opt by

8

reconfiguring both u and w. Hence, if Max Thru and Greedy Swap have the same configuration
for node u, Opt has the same configuration at u as well.
We finally examine each node u that Max Thru and Greedy Swap configure differently. This

node u can only exist on a closed loop L created by Max Thru and each closed loop can only have
one such node. For every node v ∈ L and v 6= u, Max Thru and Greedy Swap configure v in the
same way by the construction of Greedy Swap. Hence, by our argument above, Opt configures
v in the same way as well. Since Opt contains no loops, it has to configure node u like Greedy

Swap.

3 The General Case

The general case in which neither demand routes nor line systems are given is much harder. Contrary
to Theorem 2, the general case is NP-hard even for the following restricted instance on 3-regular
networks. Suppose there is a unit demand between a common source node r and every other node
in G. Since G is 3-regular, we have a proper line system that visits every node in G if and only if
G has a Hamiltonian path. Since deciding the existence of a Hamiltonian path for 3-regular graphs
is NP-hard [8], deciding whether or not the optimal solution is at most n − 1 is NP-hard as well.
Furthermore, we also have a stronger result as stated in Theorem 3.

Theorem 3. If routes are not specified, no algorithm can guarantee a constant approximation ratio
better than 2 for our problem even if the network is 3-regular and Hamiltonian and even if all
demands originate from the same source node.

3.1 A Logarithmic Approximation

In this section we present a logarithmic approximation for the general case. Let T be any tree that
spans all source nodes and destination nodes. We choose an arbitrary node r in T to be the root of
the tree. We route every demand from its source to r and then to its destination along edges of T .
We arrange the line systems as follows. Consider a node y, and let z be its parent node and C(y)

be the set of child nodes. For every child node x ∈ C(y), let N(x) be the size of the subtree rooted
at x. If x′ is the child node that has the largest subtree then the only line system through node y
is along zyx′. We now bound the number of transparent sections from any node to the root r. Let
f(x) be the maximum number of transparent sections from any node in the subtree rooted at x to
the parent node y of x. Then,

f(y) = max
x∈C(y),x6=x′

{f(x′), f(x) + 1}.

Note that N(y) = 1 +
∑

x∈C(y)N(x). Since N(x
′) ≥ N(x) for any x ∈ C(y) − {x′}, we have

N(x) < N(y)/2. This means whenever the number of transparent sections increases by 1, the size
of the subtree is cut by at least a half. Hence, the maximum number of transparent sections from a
node in T to the root r is at most log n where n is the number of nodes in T . For any demand to go
from its source node to its destination node the number of transparent sections is at most 2 log n.
This is also true because the path decomposition we have formed is a caterpillar decomposition [14].
If we redefineN(x) to be the total number of demands that have either source nodes or destination

nodes in the subtree rooted at x, then the same construction of the line systems as above would
bound the maximum number of transparent sections to 2 log(2K) where K is the total number of
demands. Since the total cost of any solution must be at least K, we have the following theorem.

9

Theorem 4. For the general case where demand routes are not specified, we can find a 2 log n-
approximation and a 2 log(2K) approximation in polynomial time.

Notice that this approximation ratio is tight comparing against the lower bound, K, that we are
using. To see this, consider a balanced binary tree with one unit demand between the root and every
leaf node. The optimal solution costs Θ(K log n) or Θ(K logK).

3.2 Rings

The ring topology is of particular interest since the underlying infrastructure of metro-area networks
is often a ring [18]. In this context, we have a set of core nodes connected in a ring and each core
node is attached to an access node, as in Figure 4(Left). Among other things, the access nodes have
the capability of multiplexing row-rate local traffic streams into high-rate optical signals. Such access
nodes are particularly useful when end users are far away from the core ring. In this ring network,
all demands are between access nodes. It is easy to see that each demand has two routes, each access
node has one configuration and each core node has three configurations which completely determine
the layout of the line systems. Under this constrained scenario, it is reasonable to expect that we can
do much better than the logarithmic approximation of Section 3.1. Indeed, we obtain the following
result.

core node

access node

S1

S2

S3

v v'

Fig. 4. (Left) A ring network. (Right) A possible consistent routing of S and the sets Sj .

Theorem 5. In ring networks, with no multiple demands between node pairs, we can find a 3/2-
approximation in polynomial time.

To prove the above theorem we show that either we can find an optimal solution efficiently or
the following whole ring solution serves as a 3/2 approximation. We denote a core node by variables
such as v and the access node attached to v by v′. If u and w are neighboring core nodes of v then
the three configurations at v are denoted by v′vu, v′vw and uvw. The first two configurations mean
v and its access node v′ are on the same line system; the third configuration means that vv′ is a
separate line system and u, v and w are on a line system. In the whole ring solution, vv ′ is a separate
line system for every v. All the core nodes form a single line system around the ring and it is cut
open at an arbitrary core node. It is easy to see that in the whole ring solution we can route the
demands so that each demand requires 3 transparent sections.
Before we describe our algorithm we begin by describing crossing, non-crossing demands and

their properties. For a demand that starts at v′ and ends at w′, we refer to v and w as the terminals

10

of this demand. We call a pair of demands a crossing pair if the four terminal nodes are distinct and
one terminal of a demand always appears in between the two terminals of the other demand. For a
demand in a crossing pair, if it switches line systems at a terminal node that belongs to its crossing
partner we call this switch a normal jump. Otherwise, the switch is called an extra jump. Because of
the layout of crossing demands, we know that without any extra jumps, a pair of crossing demands
requires 4 transparent sections no matter how it is routed.
Now we consider a pair of non-crossing demands. If their routes do not overlap or overlap at one

contiguous section only, then we say the demand paths are consistent. Note that two routes overlap
even if they share one common node. If the demand paths of all pairs of non-crossing demands are
consistent, we say the solution has consistent routing. We establish the following two properties
about routing non-crossing demands consistently.

Lemma 5. There is an optimal solution that we call OPT, for which the routing is consistent.

Lemma 6. For a set of mutually non-crossing demands S, the number of ways to route the demands
consistently is linear in |S|.

The Algorithm. We now describe our 3/2-approximation algorithm. From the set of demands, we
take out crossing pairs of demands, one pair at a time in arbitrary order, until we have no crossing
pairs left. Let C be the set of crossing pairs of demands that we have removed, and S be the set of
non-crossing demands that are left. By Lemma 5 we know that OPT must use consistent routing,
and by Lemma 6 we can efficiently enumerate all possible consistent routings for demands in S.
Hence, if C is empty we know how to find an optimal solution and we are done. Otherwise, we
assume from now on that we know how OPT consistently routes the demands in S. We also know
that the routing of S results in a collection of disjoint intervals I1, I2, . . . around the ring, where
each interval Ij consists of links that are on the routes of demands of S. Let Sj ⊆ S be the set of
demands whose routes are included in Ij , as illustrated in Figure 4(Right). We denote by c(Sj) the
total number of transparent sections that the demands in the set Sj use in OPT. Each set Sj obeys
the following lemma.

Lemma 7. We have c(Sj) ≥ 2|Sj |− 1. The equality happens only if at each border node s of Ij, the
configuration of s is s′sv where v ∈ Ij. Finally, if Ij is the entire ring, then c(Sj) ≥ 2|Sj |.

If c(Sj) = 2|Sj | − 1 and the interval Ij causes no extra jumps for any demand in C, we call the
set Sj thrifty. Of course, we do not know a priori whether or not a set is thrifty. We consider each
set Sj one by one. Supposing that Sj is thrifty, we show in Lemma 8 that the routes of demands
in C are determined as well. Given the routes of all demands, we can find the optimal line systems
by Theorem 2. If none of the Sj are thrifty, we use the whole ring solution which has a cost of 3K.
Now that we have obtained a total of O(x) solutions where x is the number of sets Sj , we choose
the least expensive one among them. If it is the case that OPT contains no thrifty set, the solution
we have found is no worse than the whole ring solution which guarantees a 3/2-approximation by
Lemma 8. On the other hand, if OPT contains some thrifty set, our solution is guaranteed to find
this set through enumeration and is therefore optimal. This proves Theorem 5.

Lemma 8. If OPT does not contain a thrifty set, the whole ring solution is a 3/2-approximation.
If OPT contains a thrifty set, then we can find the routing of all demands of C in OPT.

Proof. If there are no thrifty sets, consider the total number of transparent sections in OPT. As noted
above, each crossing pair has exactly 4 transparent sections without considering the extra jumps.
Each Sj has either at least 2|Sj | transparent sections in total, or has 2|Sj | − 1 transparent sections

11

and also causes an extra jump of a crossing demand in C on Ij . Therefore, in total the number of
transparent sections in OPT is at least 2K. The whole ring solution requires 3 transparent sections
per demand. Therefore, it is a 3/2 approximation.
Now suppose S1 is thrifty. By Lemma 7, we know the interval I1 is not the whole ring. Consider

a demand d1 in C. Let P1 be its route in OPT, and let d2 be its crossing partner. If both terminals
of d1 are contained in the interval I1, then it must be the case that P1 ⊆ I1. Otherwise, d1 would
jump at both border nodes of I1 by Lemma 7. One of these jumps has to be extra since d1 and d2

are crossing and therefore the two border nodes of I1 cannot both be terminals of d2. Similarly, if
neither terminal of d1 is contained in I1, it must be the case that P1 ∩ I1 = ∅. Otherwise, d1 would
jump at both border nodes of I1. Again, one of these jumps has to be extra. In both cases we know
how d1 is routed.
If exactly one terminal of d1 is contained in I1, then the border node of I1 that is contained in

P1 must be a terminal of d2 in order to avoid an extra jump. If only one border node of I1 is a
terminal node of d2, then we know which route d1 takes. Otherwise, both border nodes of I1 must
be terminal nodes of d2. In this case d1 has two routes to consider. Given that we have assumed
there are no multiple demands with the same terminal pairs, only one demand in C can have two
possible routes if S1 is thrifty. We can easily enumerate both possibilities.

This finishes our 3/2-approximation algorithm for rings. However, if the demand originating at
every node of the ring is bounded by some constant k, we can find the optimal solution in polynomial
time, even if the same source-destination pair can have multiple demands. The proof can be found
in the Appendix.

4 Variations and Open Problems

In this paper, we introduced a new cost metric which measures the cost of routing a demand by
the number of line systems that the demand travels through. We presented a collection of results.
However, many questions remain open and some variations deserve further attention.

Proper Line Systems. The algorithm we have presented for line system partitioning with given
demand routes guarantees a 2-approximation. However, we have no example in which our algorithm
gives an approximation ratio worse than 5/4, or any reason to believe that a different algorithm may
not do even better. If the demand routes are not given, we only have an O(log n)-approximation
that compares against a rather trivial lower bound, K, on OPT. In fact, we know that on a binary
tree OPT can be as much as Θ(K log n). Therefore, a much better approximation seems likely. The
only inapproximability result says that the approximation ratio cannot be better than 2, so even a
small constant approximation may be possible.
It is worth noting that our model makes several simplifications. Most notably, we assume that

optical fibers have infinite capacity and that line systems can have arbitrary length. It would be
quite interesting to introduce one or both of these complications into our model and see if good
algorithms are still possible.

Improper Line Systems and Supereulerian Networks. We have restricted the line systems to be
proper in this paper for reasons discussed in the Introduction. If we relax our requirement so that
each line system may repeat nodes in any manner without repeating any links, this relaxed problem
remains fascinating. In fact, it is closely related to supereulerian graphs, a survey on which can be
found in [3]. See the Appendix for further discussion on this topic.

12

Acknowledgements

We would like to thank Chandra Chekuri, Jon Kleinberg, and Peter Winkler for productive and
illuminating discussions, and thank Steve Fortune for his insight in defining the model.

References

1. C. Bazgan, M. Santha, and Z. Tuza. On the approximability of finding a(nother) Hamiltonian cycle in
cubic Hamiltonian graphs. Journal of Algorithms, 31:249 – 268, 1999.

2. J.-C. Bermond, N. Marlin, D. Peleg, S. Pérennes. Virtual path layouts with low congestion or low diam-
eter in ATM networks. In Proceedings of lère Rencontres Francophones sur les Aspects Algorithmiques

des Télécommunications, 1999, pp. 77-82.
3. P. A. Catlin. Supereulerian graphs: a survey. Journal of Graph theory, 16(2):177 – 196, 1992.
4. S. Cosares and I. Saniee. An optimization problem related to balancing loads on SONET rings. Telecom-

munications Systems, 3:165 – 181, 1994.
5. B. Doshi, R. Nagarajan, N. Blackwood, S. Jothipragasam, N. Raman, M. Sharma, and S. Prasanna.

LIPI: A lightpath intelligent instantiation tool: capabilities and impact. Bell Labs Technical Journal,
2002.

6. P. Fishburn. Interval orders and interval graphs. Wiley and Sons, New York, 1985.
7. S. Fortune, W. Sweldens, and L. Zhang. Line system design for DWDM networks. Submitted.
8. M. R. Garey and D. S. Johnson. Computers and intractability - A Guide to the Theory of NP-

Completeness. W. H. Freeman and Company, New York, 1979.
9. O. Gerstel and A. Segall. Dynamic maintenance of the virtual path layout. In Proceedings of IEEE

INFOCOM’95, April 1995.
10. S. Khanna. A polynomial-time approximation scheme for the SONET ring loading problem. Bell Labs

Technical Journal, 1997.
11. J. Kleinberg and A. Kumar. Wavelength conversion in optical networks. In Proceedings of the 10th

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 566 – 575, January 1999.
12. V. Kumar and E. Schwabe. Improved access to optical bandwidth in trees. In Proceedings of the 8th

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 437 – 444, January 1997.
13. W. Lee. Personal communication. 2003.
14. J. Matoušek. On embedding trees into uniformly convex banach spaces. Israel Journal of Mathematics,

114:221 – 237, 1999.
15. M. Mihail, C. Kaklamanis, and S. Rao. Efficient access to optical bandwidth. In Proceedings of the 36th

Annual Symposium on Foundations of Computer Science, pages 548 – 557, 1995.
16. C. Papadimitriou and K. Steiglitz. Combinatorial Optimization. Dover Publications, Mineola, New

York, 1998.
17. P. Raghavan and E. Upfal. Efficient routing in all-optical networks. In Proceedings of the 26th Annual

ACM Symposium on Theory of Computing, pages 134–143, 1994.
18. R. Ramaswami and K. Sivarajan. Optical networks A practical perspective. Morgan Kaufmann, San

Francisco, CA, 1998.
19. A. Schrijver, P. D. Seymour, and P. Winkler. The ring loading problem. SIAM Journal of Discrete

Math, 11(1):1 – 14, 1998.
20. G. Wilfong and P. Winkler. Ring routing and wavelength translation. In Proceedings of the 9th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 333 – 341, January 1998.
21. P. Winkler and L. Zhang. Wavelength assignment and generalized interval graph coloring. In Proceedings

of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, January 2003.
22. S. Zaks. Path Layout in ATM Networks - A Survey. In Networks in Distributed Computing, M. Mavron-

icolas, M. Merritt, and N. Shavit, Eds., DIMACS: Series in Discrete Mathematics and Theoretical
Computer Science, 1998, pp. 145-160.

i

Appendix

Theorem 6. For networks with node degree bounded by 12 or above, with demand routes given, it
is NP-hard to find the optimal proper line system arrangement.

Proof. The reduction is from 3-SAT. Suppose we are given a 3-SAT formula with variables xi and
clauses Cj , with k clauses. For each pair (i, j), form the following gadget. It is a star with node
v(i, j) at the center, and with 12 legs of length 2. Denote the nodes at the edges of the legs by
t(i, j, 1) . . . t(i, j, 12) and the nodes in the middle of the legs by t′(i, j, 1) . . . t′(i, j, 12). There is a
demand from node t(i, j, `) to node t(i, j, `+1) of size a with the specified route in the gadget going
through v(i, j). There is also such a demand from node t(i, j, 12) to node t(i, j, 1).
Choose a to be really large (larger than all the demands we are going to add later put together).

Notice that for each gadget as described above, exactly half the demands must have to use two
transparent sections. If a solution is optimal, it must not cut any more demands of size a. Therefore,
the configuration of each node t′(i, j, `) must be to link the two edges coming out of it together into a
single line system, and there are only two possible configurations for v(i, j). These are the matching
linking t′(i, j, `) to t′(i, j, ` + 1) for ` odd, and the matching linking t′(i, j, `) to t′(i, j, ` + 1) for `
even (with t′(i, j, 12) linked to t′(i, j, 1)). The first case corresponds to xi being true, and the second
to xi being false.
However, we want to make sure that all gadgets that correspond to xi are in the same configura-

tion in the optimal solution. Therefore, we join each gadget corresponding to (i, j) with the gadget
corresponding to (i, j + 1) as follows. We form many gadgets we call crosses, which is a star with
node v in the center and 4 legs of length 1, which we label legs 1 through 4. There is a demand of
size a from the edge of leg 1 to leg 2, and from the edge of leg 3 to leg 4. Therefore, in the optimal
solution, we know exactly what the configuration of v must be. Add edges (t(i, j, 7), t(i, j + 1, 5))
and (t(i, j, 9), t(i, j + 1, 3)). Also add an edge from t(i, j, 8) to leg 2 of a cross, and an edge from
t(i, j + 1, 4) to leg 3 of the same cross. Form demands of size b between (t′(i, j, 7), t′(i, j + 1, 5)) and
(t′(i, j, 9), t′(i, j + 1, 3)). Also form these demands from t′(i, j, 8) and t′(i, j + 1, 4) to v, the node in
the center of the cross. The routes of these demands are along the newly formed edges. This insures
that if two adjacent nodes v(i, j) and v(i, j + 1) have different configurations, then some demand of
size b must use two transparent sections, otherwise we would have an improper line system. If we
make b larger than the sum of all demands we have not mentioned yet, then in any optimal solution,
the configurations of all v(i, j) for fixed i must be the same.
For each clause Cj , form the following gadget. Suppose the variables that appear in Cj are xi1 ,

xi2 , and xi3 . Take the star gadgets with the nodes v(i1, j), v(i2, j), and v(i3, j) in the center. Also
take a not-yet used cross with v at the center. We add 4 edges to link these 4 gadgets together so
they form a cycle. If xi appears as a positive literal in Cj , we use the nodes t(i, j, 1) and t(i, j, 12)
for this linkage, otherwise we use the nodes t(i, j, 1) and t(i, j, 2). In the cross, we use legs 1 and 3.
For example, if Cj = xi1 ∨ xi2 ∨ xi3 , then we add edges (t(i1, j, 1), t(i2, j, 2)), (t(i2, j, 1), t(i3, j, 2)),
(t(i3, j, 1), leg1), and (leg3, t(i1, j, 12)). For each of these new edges, we also add a demand of size 1
from the corresponding t′ nodes with the route along the newly added edge. In the above example, we
would add demands (t′(i1, j, 1), t

′(i2, j, 12)), (t
′(i2, j, 1), t

′(i3, j, 12)), (t
′(i3, j, 1), v), and (v, t

′(i1, j, 2)).
We know that in any optimal solution, the demands of size a and b each use only one transparent

section, and this is always possible. Therefore, we forget about their cost, since it is a constant, and
consider as the cost of the optimal solution the number of transparent sections used by the demands
of size 1. Now we show that the formula is satisfiable iff the cost of the optimal solution here is 4k,
i.e. if there is an way so that each demand of size 1 only uses one transparent section.
If the formula is satisfiable, and we configure each v(i, j) corresponding to the satisfying assign-

ment (the configurations of all the other nodes are fixed so as not to cut demands of size a and b),

ii

then each demand of size 1 uses only one transparent section. This forms proper line systems, since
the cycle formed by the clause is not a single line system, it is cut by some gadget corresponding to
the literal that is true in the clause.
To the contrary, if there is a solution where each demand of size 1 uses a single transparent

section, then the cycle formed by the clause gadget is a single line system unless there is some
gadget corresponding to a literal in the clause that cuts it. There must be such a gadget for each
clause since otherwise the cycle formed by this clause gadget would not be a proper line system.
Therefore, since the configurations on all literal gadgets must be the same in all clauses, there must
be a literal that is true in every clause, and therefore there is a satisfying assignment.

Proof of Lemma 1. Let T (v) =
∑

uv,vw∈E(v) T (u, v, w) be the total through traffic at v and let

M(v) =
∑

(uv,vw):matching pair T (u, v, w) be the total through traffic along the matched link pairs
of v. The number of demands that have to switch from one line system to another at node v is
T (v) −M(v). Since T (v) is fixed given fixed demand routes and Max Thru maximizes M(v) at
each node, no algorithm can outperform Max Thru. 2

Proof of Lemma 2. The line systems resulting from Cut Paren have had all matching paren-
theses cut in the middle. The cut could be made at the node corresponding to the closing parenthesis.
With the node sequence as above, a node can appear in the node sequence of these line systems
at most once, except the first and last node might be the same. Therefore, Cut Paren generates
proper line systems. 2

Lower bound for optimal cutting of Max Thru. We do not know if Lemma 4 can lead to a better
approximation ratio than 2. We know that even if we cut the improper line systems generated by
Max Thru optimally, however, we can still end up with a solution that costs 5/4 as much as the
optimal solution with proper line systems.

B AC

G

FE

D

H

B AC

G

FE

D

H

Fig. 5. (Left) The improper line systems generated by Max Thru. (Right) The optimal proper line systems.

This is true in the example in Figure 5, with x units of demand along the route FEDCG, x
units of demand along the route ABCFE, and x− 1 units of demand along the route HEFC. Max

Thru generates the line systems in Figure 5(Left), and so the optimal cutting of these line systems
form a solution that costs 5x−2. However, the optimal solution in Figure 5(Right) only costs 4x−1.
Therefore, we get a lower bound of 5/4 as x→∞ for the approximation ratio of the above algorithm.

iii

Notice that if we use an algorithm (like Greedy Swap) that reconfigures an improper line system
instead of just cutting it, we would obtain the optimal solution in this example. However, there are
problems with this approach in general, because it is difficult to determine that we are not forming
new improper line systems while cutting and reconfiguring the old ones.

Proof of Theorem 3. In this proof, we use the following result from [1]:

Theorem [Bazgan-Santha-Tuza] The longest path problem cannot be approximated within a
constant factor in 3-regular Hamiltonian graphs.
As before, we have a unit demand between a common source node r and every other node in the

network. Consider any α-approximation algorithm and the set of line systems that the algorithm
produces. Suppose the line system that contains node r has cn nodes where c ≤ 1. The total number
of transparent sections in this solution is at least (cn − 1) + 2(n − cn), since every demand that is
not terminated in the line system that contains r needs at least 2 transparent sections.
Since the network is Hamiltonian, the optimal solution is n − 1 in which the line system is

the Hamiltonian path and every demand has 1 transparent section. Since the algorithm of interest
guarantees an α-approximation, its solution is at most α(n− 1). Therefore, we have that,

(cn− 1) + 2(n− cn) ≤ α(n− 1).

If α is a constant smaller than 2, then the above inequality implies that c is a constant at least
2 − α. Therefore, we have found a path in the 3-regular Hamiltonian graph whose length at least
a constant fraction of the optimal value of n. This contradicts the inapproximability theorem of
Bazgan, Santha, and Tuza. 2

Proof of Lemma 5. Consider a pair of non-crossing demands AD and BC. Without loss of gen-
erality let us assume the four end nodes appear clockwise on the ring in the order of A, B, C and D.
If the two demands are routed inconsistently, then AD takes the route clockwise from A to D and
BC takes the route counterclockwise from B to C, as shown in Figure 6. We show in the following
that, without reconfiguring the line systems at any node, we can always reroute either AD or BC
so that the cost of the resulting solution is never increased.

A

CD

B

y x

Fig. 6. A pair of non-crossing demands AD and BC that are routed inconsistently.

Suppose that v1, v2, and v3 are consecutive nodes on the ring in clockwise order. We say that v2

is configured “R” if its configuration is v′2v2v1, that it is configured “L” if its configuration is v
′
2v2v3,

and that it is configured “T” otherwise. Let x be the number of nodes between B and C (clockwise
from B to C, excluding B and C) that are configured “R” or “L”, i.e. the number of line system
switches clockwise from B to C. Similarly, let y be the number of nodes counterclockwise from A to
D that are configured “R” or “L”. Without loss of generality let us assume that x ≤ y.

iv

The following table enumerates the 9 possible configurations at nodes B and C and the number
of line system switches that demand BC needs when routed counterclockwise from B to C (column
ccw) and if rerouted clockwise from B to C (column cw). It is easy to see in the first 6 cases that
rerouting BC in the clockwise direction either improves the solution or makes it no worse.

B C ccw cw

1 T T ≥ y + 2 x+ 2
2 L R ≥ y + 2 x
3 L L ≥ y + 1 x+ 1
4 R R ≥ y + 1 x+ 1
5 T R ≥ y + 2 x+ 1
6 L T ≥ y + 2 x+ 1

7 T L ≥ y + 1 x+ 2
8 R T ≥ y + 1 x+ 2
9 R L ≥ y x+ 2

For cases 7 and 8, if y ≥ x + 1 or if column ccw is larger than y + 1 then we can reroute BC
without making the solution worse. Hence, for cases 7 and 8 we consider the situation in which
x = y and column ccw is exactly y + 1. When column ccw is exactly y + 1 the configuration at A
and D must be both “T”. As a result, the number of switchings demand AD needs when routed
clockwise from A to D equals x + 3; the number of switchings equals y + 2 when AD is rerouted
counterclockwise from A to D. We can therefore reroute AD to improve the solution.
For case 9, if y ≥ x+2 we can reroute BC. Hence, we consider x = y and y = x+1. For x = y, we

can reroute AD since when routed counterclockwise AD needs at least x+2 line systems switchings
and when rerouted clockwise AD needs y + 2. For y = x + 1, if column ccw is larger than y we
can then reroute BC. Otherwise, column ccw is exactly y and the configuration at A and D must
be both “T”. We can reroute AD since when routed counterclockwise AD needs at least x+ 4 line
systems switchings and when rerouted clockwise AD needs y + 2 switchings. Therefore, rerouting
AD improves the solution.
In the above argument we have assumed that A and B are distinct nodes and C and D are

distinct nodes. The proof is also applicable if either A = B or C = D holds. 2

Proof of Lemma 6. Let s ⊂ S be any subset of mutually noncrossing demands. We assume
inductively that we can enumerate all consistent routing of s in time linear in |s|. Consider any
demand d ∈ S. By the definition of consistent routing, fixing a route P for d also fixes all routes for
demands for which both terminals are contained in P . Let SP be the set of the remaining demands,
i.e. those for which both terminals are outside P , or for which one terminal is outside and one
terminal is on the border of P . No demands with one terminal inside P and one outside can exist,
since we assumed that all demands are non-crossing. Inductively, we can enumerate all consistent
routings of SP in time linear in |SP |. If P and Q are two routes for d we can enumerate consistent
routings for S in time linear in |SP |+ |SQ|. Since SP and SQ are disjoint, the running time is linear
in |S|. 2

Proof of Lemma 7. Consider a set Sj with a consistent routing and the corresponding interval
Ij . Order the nodes of Ij in clockwise order. We further subdivide Ij into subintervals A1, A2, . . . , Ak

as follows. Each Ai starts at node vi−1 and end at node vi (in clockwise order), with v0 being the
first node of Ij and vk being the last node of Ij . Take the longest route P of the demands of Sj

that starts at the terminal corresponding to the first node of Ij , and make P ∩ Ij be A1. Denote
the demand with route P as d1. Then we take the longest route of the demands that starts at v

′
1

v

and continues clockwise, and then let the intersection of that route with Ij be A2. If we continue in
this manner, we obtain the above decomposition, where each Ai is formed from the route of some
demand di.

I_j

A_1 A_2 A_3

d_1
d_1

d_2

d_2
d_3 d_3

Fig. 7. The division of Ij into subintervals. The terminals of di are labeled with “di”.

Each route of a demand in Sj is contained entirely within one of the intervals Ai. This is because
if a demand route begins at vi−1, it must be contained in Ai since we took the longest route when
we formed Ai. If a demand route begins at a node between vi−1 and vi, then it must also end at
such a node, since otherwise it would form a crossing pair with the route we used to create Ai. Since
the routing is consistent, the demand route must be entirely contained in Ai.
Let Ri be the demands of Sj with routes in Ai. We first show that c(Ri) ≥ 2|Ri|−1. Suppose that

there are x demands of Ri with only one transparent section. Assume di is not one of these, since
then c(Ri) ≥ 1+2(|Ri|−1). These demands must have disjoint routes, since if their routes intersect,
one of the two demands must switch line systems, and therefore form a second transparent section.
The demands cannot have both terminals in common since we assume that there are no multiple
demands between the same terminals. Therefore, all x of these demands have disjoint routes. Then,
di must have at least 2x − 1 transparent sections, since it has to switch line systems every time it
enters and every time it leaves a route of one of these x demands. Moreover, di can only have 2x− 1
transparent sections if the configuration of vi is v

′
iviv with v ∈ Ai and the configuration of vi+1 is

v′i+1vi+1w with w ∈ Ai. Therefore, as desired,

c(Ri) ≥ x+ (2x− 1) + 2(|Ri| − x− 1) = 2|Ri|+ x− 1 ≥ 2|Ri| − 1.

Now consider the cost of the entire set Sj . We know that each set Ri can only cost 2|Ri| − 1 if
the necessary conditions at the border nodes of Ai hold. However, since each Ai and Ai+1 share a
border node, only one of then can have the necessary configuration, so at least one of them must
have higher cost. Each shared border node increases the total cost by 1, since it makes one of the
adjacent sets Ri have 1 higher cost than before (if both border conditions are not met for Ri, then by
the same argument as above, c(Ri) ≥ 2|Ri|+1). There are k−1 shared border nodes, and therefore,

c(Sj) ≥ (k − 1) +
∑

i

(2|Ri| − 1) = (k − 1) + 2(
∑

i

|Ri|)− k = 2|Sj | − 1.

Notice that if Ij is the entire ring, then there are k border nodes, so c(Sj) ≥ 2|Sj |. 2

Solution for ring with bounded demand per node. If the demand originating at every node of the
ring is bounded by some constant k, then we can find the optimal solution in polynomial time, even

vi

if the same source-destination pair can have multiple demands. Suppose OPT partitions the core
nodes into 2 or more line systems. Let us consider the set of core nodes v that are configured in the
form of v′vw. The set has at least two nodes, one of which, say v, has to have through traffic T (uvw)
no higher than k. Otherwise, we can reconfigure v to uvw. The resulting line systems are proper and
better than OPT. We consider the core nodes one by one. For v to have through traffic no higher
than k, a set of at most k demands can be routed through v and there are at most

∑

j≤k

(

K
j

)

such

sets. We can enumerate these O(Kk) possibilities and find the optimal line systems for each possible
routing.
Suppose OPT puts all the core nodes in one line system and one end of the line system is

configured v′vw. In OPT every demand that does not have v as a terminal is routed to avoid v;
every demand that has v as a terminal is routed in the direction of vw.... Therefore, we enumerate all
possibilities of the end of the line system and there are O(n) of them. For each possibility, the routing
is fixed and the optimal solution can be found. Thus, we have enumerated all possible solutions in
polynomial time. We choose the least expensive one.

Discussion on Supereulerian Graphs A graph is supereulerian if it has a spanning Eulerian subgraph,
i.e. if there is a tour that visits every node but not necessarily every link. (A survey of results on
supereulerian graphs can be found in [3]). Therefore, a graph is supereulerian exactly when we can
connect all nodes using a single line system. For the case in which all node pairs have positive
demand, determining if a graph is supereulerian is equivalent to determining if the optimal solution
is K, the total demand. We can draw on results about supereulerian graphs to answer this question
for certain types of networks. For example, all networks that have 2 edge-disjoint spanning trees
are supereulerian, and therefore can be connected by a single line system. This is also true for
4-edge-connected graphs.
Nevertheless, determining if a graph is supereulerian is far from sufficient for our purpose. Even

decomposing a graph into as few Eulerian subgraphs as possible does not reflect our cost function,
which depends on the layout of the line systems, not just how many line systems there are. It would
be interesting to identify sufficient graph conditions for which our problem can be solved optimally
or near optimally.

