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Abstract. How and why people form ties is a critical issue for understanding the fabric of social
networks. In contrast to most existing work, we are interested in settings where agents are neither
so myopic as to consider only the benefit they derive from their immediate neighbors, nor do they
consider the effects on the entire network when forming connections. Instead, we consider games on
networks where a node tries to maximize its utility taking into account the benefit it gets from the
nodes it is directly connected to (called direct benefit), as well as the benefit it gets from the nodes it is
acquainted with via a two-hop connection (called two-hop benefit). We call such games Two-Hop Games.
The decision to consider only two hops stems from the observation that human agents rarely consider
“contacts of a contact of a contact” (3-hop contacts) or further while forming their relationships. We
consider several versions of Two-Hop games which are extensions of well-studied games. While the
addition of two-hop benefit changes the properties of these games significantly, we prove that in many
important cases good equilibrium solutions still exist, and bound the change in the price of anarchy
due to two-hop benefit both theoretically and in simulation.

1 Introduction

How and why people form ties is a critical issue for understanding the fabric of social networks. In vari-
ous models, including public good games (see e.g., [8, 12, 17] and the references therein), stable matching
(see e.g., [6, 16]), and others [5], it is often assumed that people make strategic decisions or form friend-
ships/partnerships based on the benefit they derive from their immediate neighbors, independent of the rest
of the network. On the opposite end of the spectrum, many game-theoretic models such as [15] and its many
extensions (see [7] and references therein) consider players that form a network with the goal of maximizing
their influence over nodes that can be far away from them, i.e., caring not just about their local neighborhood
but about their position in the entire network. In many settings, however, agents are neither so myopic as
to consider only the benefit they get from their immediate connections alone, nor do they form relations
considering the effects on the whole network. For example, one of the aspects people consider when forming a
relationship is the two-hop benefit they can get from the friends of such a friend. This is especially important
in the world of business, but also occurs naturally when forming everyday friendships and collaborations: we
judge people by the company they keep, and become better friends with those whose friends we like as well.
Inspired by such settings, we consider games on networks where a node tries to maximize its utility taking
into account the benefit it gets from the nodes it is directly connected to (called direct benefit), as well as
the benefit it gets from the nodes it is acquainted with via a two-hop connection (called two-hop benefit).
We will call such games Two–Hop Games.

Before formally defining Two–Hop games, we point out a difference between two concepts - one being the
ability to form a relationship with someone, and another being the ability to extract benefit out of a direct or
two-hop acquaintance. The ability to form a relationship indicates whether two agents can interact directly
with each other (due to geographical proximity, etc.) The ability to extract benefit out of a direct or two-hop
acquaintance instead tells us about how compatible the agents are with each other. We distinguish between
these two concepts by having two arbitrary undirected graphs:

– Connection Graph(GC): The edges in this graph denote which pairs of agents are able to form connec-
tions/relationships with each other.
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– Friendship Graph(GF ): The edges in this graph indicate whether two agents are compatible with each
other. If they are compatible, then they can derive benefit if they are connected either directly or via a
two-hop connection. Thus GF governs the utility extracted from acquaintances (the formation of which
is governed by GC).

Two–Hop Games: Now we will formally define Two-Hop games. Each Two-Hop game is defined by the
following: We have a Connection Graph (GC) and a Friendship Graph (GF ) as described above, both having
the same node set. These nodes are the players of the game. We want to model the case where different
friendships and relationships can be of different strength. Thus the strategy of a node, say u, consists
of choosing to contribute to each of its adjacent edges (uv) in GC , with an amount 0 ≤ xuv

u ≤ 1. The
total contribution that a node can make is limited by a constant k. The contribution xuv

u represents the
effort u puts into its relationship with v. Note that we restrict the contributions of u to edges adjoining
u in GC , as those are the nodes that u can connect to directly. We can represent the strategy of u in a
compact way using a vector xu = (xuv

u ) with number of components equal to the degree of u in GC . As
usual, x−u = (x1, · · · ,xu−1,xu+1, · · · ,xn) denotes the strategies of all other nodes except u. We restrict∑

(uv)�u x
uv
u = min(k, du) where du is the degree of u in GC . The limit of k represents the fact that any

person has only finite time/resources at his disposal to form acquaintances, and thus can contribute at most
k effort in total. The objective of a node u is to maximize its utility given by

Uu(xu,x−u) =
∑

(uw)∈GF∩GC

ruw(x
uw
u , xuw

w ) +
∑

(uw)∈GF

(uv),(vw)∈GC

suvw(x
uv
u , xuv

v , xvw
v , xvw

w ) (1)

The function ruw(x
uw
u , xuw

w ) represents the strength of the direct relationship between u and w: this depends
only on the effort that u and w put into the relationship. The function suvw(x

uv
u , xuv

v , xvw
v , xvw

w ) represents
the strength of a bond between u and w formed due to a mutual friend v. The strength of such a two-hop
acquaintance can potentially depend on all the intermediate efforts on the 2-link path. Thus the utility of a
node u is the total strength of its (direct and 2-hop) relationships with all of its neighbors in GF , i.e., the
nodes who actually benefit node u. Note that the two-hop benefit over all two-hop paths between u and w
adds up: a larger number of mutual friends increases how much people can influence each other, a larger
number of internal referrals increases the chances that a job-seeker gets an interview, etc. We are interested
in the following two types of Two-Hop games.

– Sum Two–Hop Games (S2H Games):

ruv(x
uv
u , xuv

v ) = xuv
u + xuv

v (2)

suvw(x
uv
u , xuv

v , xvw
v , xvw

w ) = α · (xuv
u · xvw

v + xvw
w · xuv

v ) (3)

We call 0 ≤ α ≤ 1 the two-hop benefit factor. It represents the intuitive notion that a two-hop acquain-
tance between u and w via v should yield less benefit than a direct acquaintance. Equation 2 defines the
strength of a relationship as the addition of strengths in each direction: strength in the direction u → v
is given by xuv

u , and in the reverse direction given by xuv
v . Similarly the term xuv

u · xvw
v in Equation 3

represents the strength of the two-hop acquaintance between u and w via v in the direction u → v → w
(e.g., how likely information is to pass from u to w via v). The term xvw

w · xuv
v is the strength of this

indirect relationship in the other direction.
If not for the 2-hop effect, S2H Games would be a simple variation of network contribution games [5]
(see Section 2 for further details) and it is not difficult to show that in such a game, a Nash Equilibrium
always exists and its Price of Anarchy is 1. As we show in this paper, however, the addition of 2-hop
benefit changes the properties of this game.

– Min Two–Hop Games (M2H Games):

ruv(x
uv
u , xuv

v ) = min(xuv
u , xuv

v ) (4)

suvw(x
uv
u , xuv

v , xvw
v , xuw

w ) = α ·min(xuv
u , xuv

v ) ·min(xvw
v , xvw

w ) (5)

In M2H games, a relationship is only strong if both participants contribute a lot of effort. As before, the
strength of a 2–hop effect is the product of the strengths of the two relationships in the 2–link path,
attenuated by a factor α ∈ [0, 1].
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Without the 2-hop effect, this game is essentially a fractional version of k-stable matching (see Section 2
for details). As discussed in Section 2, existing work on stable matching immediately implies various
results about the existence and quality of equilibrium for such a game. However, just as with S2H games,
the addition of 2-hop benefit greatly changes the properties of this game.

To assess the quality of a solution M in S2H and M2H games, we will use social welfare, given by
U(M) =

∑
u Uu(xu,x−u). For S2H games, we will focus on the existence and the quality of Nash Equilibria

(NEs). For M2H games, however, using the concept of 2-strong Nash Equilibrium, also called pairwise
equilibrium [21], makes more sense to consider than the concept of Nash equilibrium. A pairwise equilibrium
(PE) is a solution stable with respect to deviations by any pair of players, as well as any single player. This
is consistent with previous work on such games: if we think of integral versions of these games (where xuv

u

is constrained to be in {0, 1}) as network formation games, then S2H corresponds to a game where a node
can unilaterally form a link and reap the benefits of this link, while M2H corresponds to a game in which
both endpoints of a link are needed to form this link. Traditionally pairwise equilibria have been used to
analyze the latter types of games [5,13] simply due to the fact that any single-player deviation would not be
able to create a new link. Similarly, in our fractional version of M2H, it is reasonable to expect for a pair of
people (u, v) to increase the level of their friendship at the same time, thus increasing min(xuv

u , xuv
v ). Thus

for M2H games, we study pairwise equilibria and investigate their quality compared to the optimal solution.
We call the ratio between the quality of the worst pairwise equilibrium and the optimal solution 2-PoA to
differentiate it from the PoA (price of anarchy) with respect to Nash Equilibria.

Our Contribution: We define Two-Hop games, which are natural generalizations of well-studied games. As
mentioned above, S2H games without any two-hop benefit reduce to simple network contribution games;
thus they are potential games, an integral NE always exists for them, and they have Price of Anarchy (PoA)
of 1. As we show in Section 3, despite the introduction of two-hop benefit, a NE always exists for general
S2H games. However, an integral NE may no longer exist, and S2H games are not potential games (except
for some special cases: see Theorem 4).

The introduction of two-hop benefit also changes the behavior of PoA. For the important special cases
of GF ⊆ GC (I can connect to all of my friends) and GC ⊆ GF (I can only connect to friends), we show a
tight PoA bound of 1 + αk, and in the very nice case when GF and GC are complete graphs, the PoA is

1+αk
1+α(k−1) . As we show in Theorem 5, in general for S2H games PoA decreases as the overlap between GF and

GC increases, i.e., PoA decreases as nodes get more opportunities to form acquaintances with nodes they
are compatible with. For example, if every node has at least k/2 nodes which are its neighbors in both GF

and GC , then the PoA is at most 1 + 2αk. Note that for the most reasonable values of α the PoA bounds
above are rather small. For example, we can often assume that a single direct friendship brings more benefit
than connecting to someone solely because of the 2-hop contacts being made; this is quantified by assuming
that α ≤ 1

k since any node can have at most k friends. For this range of α, the above PoA bounds become
merely 2 and 3. We further consider weighted S2H games (See Section 3.2) in which different acquaintances
can potentially yield different intrinsic benefit, and show that the results obtained for S2H games also hold
for weighted games when GF ⊆ GC .

Because of its connection to many-to-many stable matching, it is not difficult to show that for M2H
games without 2-hop benefit an integral pairwise equilibrium (PE) always exists, and 2-PoA is at most 2.
For general M2H games with 2-hop benefit, however, we show that an integral PE may not exist (existence
of a fractional PE for this and related games is an important open question). For the cases when PE does
exist, our main result for M2H games proves that 2-PoA for the important case of GC ⊆ GF is at most
2 + 2αk, which for the “reasonable” range of α ∈ [0, 1/k] mentioned above evaluates to at most 4.

For weighted versions, we also carried out simulations by scattering nodes uniformly in a unit square and
experimented with different classes of weight functions which depend on the distance between the nodes. We
found that although the worst-case PoA bounds could be quite high, the average quality of equilibria was
very close to the optimum. We also found that although integral NE may not exist for S2H games, in our
simulations for majority of the instances it did exist, and simple dynamics converged to it extremely quickly
in almost all instances. Our simulations also showed that as two-hop benefit decreases, nodes transition from
forming small interconnected clusters to forming more of a “backbone” tree-like network.
Remark: Instead of assuming a limit of k on the contributions that each node can make, we can instead
consider the case when the limits are different for each node, say ku for node u. In this case all of our results
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hold with k replaced by maxu ku, except the cases 1 and 3 of Theorem 5, where we will mention the difference
in the bounds in the discussion following the proof.

2 Related Work and Impact of Two-Hop Benefit

Network formation games, and games on networks more generally, have been studied extensively. In many
network formation games, nodes connect to each other with the goal of maximizing their utility, which
depends on their position in the whole network. For example, it may depend on the average distance to the
rest of the nodes, or on various other notions of centrality and node “importance”. [15] studies the setting
where nodes try to minimize their average distance to the other nodes by building network links, however
the fixed link cost for each link they decide to build acts as a damping factor. [15] goes on to analyze how
the existence and the quality (Price of Anarchy) of Nash equilibria varies with respect to the connection cost
of establishing each new link. The authors in [13] analyzed the bilateral connection version (i.e., building a
link requires both endpoints to cooperate) of the above model in [15] and bounded the efficiency of pairwise
(2-strong Nash) equilibria along with the range of link costs to guarantee the existence of such equilibria.
The authors in [22] consider the scenario where each node has a budget for purchasing links and different
preferences for connecting to different nodes, with nodes trying to purchase adjacent edges to connect to the
nodes that matter the most. The version considered in [7] is similar to [22] except that the nodes aim for
maximizing their betweenness centrality. For further examples of the approach where nodes have the goal
of maximizing their utility based on their position in the whole network, see [3, 9, 14, 19] and the references
in [7].

On the other hand, in many models of the network formation games, the agents are concerned only about
the direct benefit they derive from their immediate neighbors. One such class of models is stable matching
and its variants. Stable matching was introduced in [16] under the basic setting of nodes partitioned into
two sets (i.e., a bipartite graph), with each node having preferences over the nodes from the other set, and
each node desiring to get matched (i.e., get assigned) to at most one node from the other set as high as
possible in its preference list. The stable matching problem investigates the possibility of stable outcomes
(called stable matchings) in this setting, where stability corresponds to no two nodes prefering each other
over their present partners. Different variants of stable matching problems have been studied intensively over
the last few decades. On the algorithmic side, existence, efficient algorithms, and improvement dynamics for
stable matchings over bipartite graphs have been of interest (for references, see standard textbooks such
as [18, 23, 25]). Many-to-one and many-to-many versions of stable matching have also been studied in the
literature and it has been shown that stable matchings exist when the underlying graph is bipartite [6,26,27].
Another example of network formation games where the agents are concerned only about the benefit derived
from their immediate neightbours are network contribution games introduced in [5]. Here authors study
2-strong Nash equilibria under the setting of each node having a constraint on the total budget it can invest
on adjoining edges in order to maximize its utility. For more examples, see [2, 4, 8, 11, 12, 17].

However, in this paper we are interested in settings where agents may neither be concerned about the
actions of remote nodes nor be so myopic as to consider only the benefit they derive from their immediate
neighbors. Two-Hop games fall under this category. The decision to consider only two hops stems from the
observation that human agents rarely consider “contacts of a contact of a contact” (3-hop contacts) or further
while forming their relationships. As mentioned above, we distinguish between the ability of a pair of agents
to interact directly (represented by the connection graph GC) and their capability of being able to derive
benefit if they are connected directly or via a two-hop connection (represented by the friendship graph GF ).
The friendship graph GF can be seen as a social context which dictates the benefits obtained by the nodes
by playing a game on the connection graph GC . Some other work which explores different forms of social
context are [10] and [20]. In this work, the cost of a node in a resource-sharing game depends on its own cost
and the costs of its “friends”, where friend nodes are its neighbors in an underlying social network.

Let us describe the impact that introducing two-hop benefit with social context can have. Without
two-hop benefit, the utility of a node u in S2H games becomes

Uu(xu,x−u) =
∑

(uv)∈u
(uv)∈GC∩GF

(xuv
u + xuv

v ) (6)
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This is most closely related to one of the models for network contribution games considered in [5] where the
authors also consider that the utility obtained by a node from contributing an edge is given by cuv ·(xuv

u +xuv
v )

where cuv > 0 is an edge-specific constant. S2H games without two-hop benefit can be seen as a variation of
this game where we have cuv = 1 if (uv) ∈ GC ∩GF and 0 otherwise, however we place an additional upper
bound of 1 on xuv

u ’s along with a limit
∑

(uv)∈u x
uv
u = k. In [5], when the utility function of a node u is given

by
∑

(uv)∈u c
uv(xuv

u + xuv
v ), the authors prove that a (integral) Nash Equilibrium always exists and that the

PoA is 1. Here by integral NE we mean that xuv
u ’s are restricted to {0, 1}. Although we place an additional

constraint of xuv
u ≤ 1, using similar techniques it is easy to show that for S2H games with α = 0 (i.e., no

two-hop benefit) an integral NE always exists and PoA is 1. With addition of two-hop benefit, we can view
S2H games as an extension of such network contribution games: we show that a NE still exists (although it
may not be integral), and that the PoA does not increase by too much.

For M2H games, if we do not have any two-hop benefit then the utility of a node becomes

Uu(xu,x−u) =
∑

(uv)∈GF∩GC

xuv =
∑

(uv)∈GF∩GC

min(xuv
u , xuv

v ) (7)

For k = 1, the version of this with edge weights becomes equivalent to stable matching. More precisely, it
becomes the “correlated” version of stable matching [1] for which a stable matching is known to exist for
arbitrary graphs, and the 2-PoA (quality of stable matching compared to the optimum one) is bounded by
2 [4]. For k > 1, this becomes a many-to-many version of stable matching, where each node is allowed to
match with k partners. Many-to-one and many-to-many versions of stable matching have been studied in the
literature and it has been shown that stable matchings exist when the underlying graph is bipartite [6,26,27].
In fact, many bilateral network formation games can also be interpreted in the stable matching framework.
However, to the best of our knowledge the correlated version of many-to-many stable matching has not been
studied before. Nevertheless, it is easy to show using the techniques from [4] that existence of integral stable
matching and the same bound on 2-PoA still holds. This even holds for fractional stable matching, by which
we mean that a node u is allowed to choose an adjacent edge with a fractional amount 0 ≤ xuv

u ≤ 1 such
that

∑
(uv)�u x

uv
u = k, and an edge (uv) is present in a matching with fraction min(xuv

u , xuv
v ). This is a

precise generalization of the usual notions of stable matching and pairwise equilibrium, since a single node
can destroy or weaken an edge, but both endpoints are required to form or strengthen an edge. With the
introduction of two-hop benefit, an integral pairwise equilibrium may no longer exist; however we show that
the quality of pairwise equilibrium remains good in the instances when they do exist.

3 Sum Two–Hop Games

Recall that in S2H games, the utility Uu(xu,x−u) of a node u is obtained by substituting Equation (2)
and (3) into Equation (1) which gives us

Uu(xu,x−u) =
∑

(uv)∈GC∩GF

(xuv
u + xuv

v ) + α ·
∑

(uv),(vw)∈GC

s.t. (uw)∈GF

(xuv
u · xvw

v + xvw
w · xuv

v ) (8)

We introduce some more notation which will prove useful later. Define Uout
u (xu,x−u) and U in

u (xu,x−u) as:

Uout
u (xu,x−u) =

∑
(uv)∈GF∩GC

xuv
u + α ·

∑
(uw)∈GF

(uv),(vw)∈GC

xuv
u · xvw

v (9)

U in
u (xu,x−u) =

∑
(uv)∈GF∩GC

xuv
v + α ·

∑
(uw)∈GF

(uv),(vw)∈GC

xvw
w · xuv

v (10)

Note that

Uu(xu,x−u) = Uout
u (xu,x−u) + U in

u (xu,x−u) (11)
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Uout
u (xu,x−u) can be interpreted as the share of the utility of node u that u gets by virtue of its own

contributions, i.e., this is the share of utility Uu(xu,x−u) in which the contributions made by u play a
role. Similarly, U in

u (xu,x−u) can be interpreted as the share of the utility Uu(xu,x−u) independent of the
contributions made by u. Let us define Uout(M) for any solution M as

∑
u U

out
u (xu,x−u) and U in(M) as∑

u U
in
u (xu,x−u). Furthermore, it can be observed that

U(M) = 2 · Uout(M) = 2 · U in(M) (12)

Without any two-hop benefit, there always exists an integral pure NE for S2H games (i.e., a NE in
which all the contributions are either 0 or 1) and they are exact potential games. Integral NE’s represent an
important combinatorial case where the contributions of the agents take fixed values, i.e., either I am or I am
not a friend of someone. Such solutions make sense in some applications in which a relationship either exists
or does not (e.g., having a physical network link between two parties), but for less tangible relationships such
as friendships, fractional solutions make sense as well. For our game, even after introducing two-hop benefit
(i.e., α > 0), we can prove that a NE always exists for S2H games using Proposition 20.3 of [24]. However,
all NE may be fractional, and this ceases to be a potential game.

Theorem 1 For S2H games, a pure Nash Equilibrium always exists.

Proof. We begin the proof by defining some notation. Let du denote the degree of node u in GC . If
v1, v2, . . . , vdu are neighbors of u in GC then the strategy space of u is a set of du-dimensional vectors
given by:

Su = {xu : 0 � xu � 1 and
∑

(uvi)�u

xuvi
u = min{k, du}} (13)

where by 0 and 1 we denote the vectors with all components zero and one respectively. Let S denote
S1 × S2 × . . . × Sn. Define a preference relation �u for a node u on the set S as follows: For x,y ∈ S, we
have y �u x whenever the utility of the node u in the outcome y is at least as much as its utility in the
outcome x.

We will prove that a NE exists for S2H games using Proposition 20.3 of [24]. Proposition 20.3 of [24]
states that we have a (pure) Nash Equilibrium whenever the strategy space Su of each node is a non-empty,
compact, convex set and the preference relation �u continuous and quasi-concave on Su for each node u. We
will explain the terms as we will encounter them in the proof. We will prove the existence of NE by showing
that each of these conditions hold for S2H games.

– Su is a non-empty, compact and convex set for each node u:
If there are no isolated nodes in GC , as we have assumed already, then the set Su is not empty as
seen from Equation (13). Since Su is also a closed and bounded set, it is also a compact set. From
Equation (13), we can also see that it is a convex set.

– The preference relation �u is continuous for each node u:
Let {xk}∞k=0 denote a sequence of strategy profiles x1,x2, · · · with each strategy profile in the sequence
{xk}∞k=0 belonging to set S. Now let us define by what is meant by preference relation �u for a node u
being continuous on S (definition taken from Section 1.7 of [24]). Suppose there are two strategy profile
sequences {xk}∞k=0 and {yk}∞k=0 converging to x ∈ S and y ∈ S respectively such that xk �u yk for all
k. If this also implies x �u y for any two such sequences of strategy profiles then the preference relation
�u is said to be continuous. Recall that xk �u yk means Uu(x

k) ≥ Uu(y
k). Now for S2H games, the

utility function Uu(x) is continuous in x. This continuity implies x �u y where x,y ∈ S are limits of
two sequences {xk}∞k=0 and {yk}∞k=0 such that xk �u yk for all k. Thus for any node u, the preference
relation �u is continuous.

– The preference relation �u is quasi-concave on Su: Let us define Bu(xu,x−u) = {yu ∈ Su : (yu,x−u) �u

x}. Informally, if we fix x−u then the set Bu(xu,x−u) is the set of strategies for u for which u gets at
least as much utility as it gets by playing xu. The preference relation �u is said to be quasi-concave on
Su if Bu(xu,x−u) is convex for each x ∈ S. Thus to prove that �u is quasi-concave on Su, we have to
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prove that if (yu,x−u) �u x and (zu,x−u) �u x hold true then (λyu + (1− λ)zu,x−u) �u x holds true
(where 0 ≤ λ ≤ 1). This follows from the linearity of Uu(xu,x−u) in xu given x−u, i.e.,

Uu(λyu + (1− λ)zu , x−u)

=
∑

(uv)∈GC∩GF

(λ(yuvu + xuv
v ) + (1 − λ)(zuvu + xuv

v ))

+
∑

(uv),(vw)∈GC

s.t. (uw)∈GF

[αλ(yuvu · xuv
v + xvw

v · xuw
w ) + α(1 − λ)(zuvu · xuv

v + xvw
v · xuw

w )]

= λ · Uu(yu,x−u) + (1− λ) · Uu(zu,x−u)

≥ λ · Uu(x) + (1− λ) · Uu(x) ≥ Uu(x) (14)

Hence the preference relation �u is quasi-concave on Su for each node u.

Thus we have shown that for each node u, its strategy space Su is a non-empty, compact, convex set and
the preference relation �u is continuous and quasiconcave on Su. Thus by proposition 20.3 of [24], a (pure)
NE exists for S2H games. 
�

Theorem 2 There are instances of the general S2H game which do not admit any integral pure Nash equi-
librium.

Proof. We will describe the construction of an instance of S2H games for arbitrary k such that an integral
NE does not exist for such instances. Figure (1) shows such an instance but for k = 2. To construct an
instance for arbitrary k, consider three nodes u, v, w such that the edges (uv), (vw) and (wu) exist in GC

but not in GF , i.e. (uv), (vw), (uw) ∈ GC \ GF . We will call the triangle formed by (uv), (vw), (uw) as the
central triangle. The node u is further connected to k nodes outside the central triangle in GC , with these
edges also belonging to GF . We will call these nodes as satellite nodes of u (e.g., in Figure 1, nodes u1 and a
are satellite nodes of u). Similarly v and w will have their own k satellite nodes. Among these satellite nodes,
we select nodes u1, · · · , uk−1 and connect them further to k nodes using edges in GC ∩ GF . We will call
these k nodes as subordinate nodes of the satellite node under consideration (e.g., Figure 1, satellite node
u1 has y and z as its subordinate nodes). Each node of the central triangle is connected in GF to all the
subordinate nodes of its satellite nodes, however these edges do not belong to GC . Note that there exists a
special satellite node for each node of the central triangle such that it has no subordinate nodes. For example
satellite node a is such a node corresponding to u. Each vertex of the central triangle is further connected
in GF to satellite nodes of the vertex of the central triangle in clockwise direction. These edges belong to
GF but not in GC . For example, node u is connected to satellite nodes of v (only in GF but not in GC). To
summarize the notation for Figure (1), the solid edges belong to GC ∩ GF , semi-solid edges belong to GC

and dotted edges belong to GF . We choose 1/k < α < 1/(k − 1).
Now let us prove that an integral NE does not exist for such a construction. In this proof, by u → v

we will mean xuv
u = 1. Since we are considering only integral contributions, a satellite node, say u1, has to

choose k edges for its contributions from k+1 adjoining edges. Thus u1 makes a full contribution to at least
k− 1 subordinate nodes of u1. Now we claim that a vertex of the central triangle, say u, always contributes
1 to the edges leading to all its satellite nodes, except a, in any candidate solution for NE. To prove this
claim, we show that if there is any satellite node, say u1 (except a), such that xuu1

u = 0 then u can always
increase its utility by making xuu1

u = 1 by making its contribution to some other edge 0. To see it, notice
that:

– Node u cannot contribute to (ua) and not to (uu1) because in such a case, by making xua
u = 0 node u

can lose utility by 1 and it can more than compensate for this loss by making xuu1 = 1 as it increases
its utility by at least 1 + α(k − 1). This is because now u obtains an additional direct benefit of 1 by
contributing to (uu1) and also gets the two-hop benefit of α(k − 1) obtained from the two-hop paths
of nature u → u1 → p where p is a subordinate node of u1 as u1 contributes 1 to at least k − 1 of its
subordinate nodes.

– Node u would rather prefer contributing to (uu1) instead of (uw) because node u does not obtain any
utility by contributing to (uw) as there is no direct or two-hop benefit to be obtained by contributing
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v

b

c

a

y

z

Edges in GF ∩GC

Edges in GC \GF

Edges in GF \GC

u1

w

u

Fig. 1: An integral NE does not exist for S2H game. Example shown for k = 2. Note 1/k < α < 1/(k − 1).

to (uw). There is no benefit for u in contributing to (uw) because (uw) /∈ GF and no node connected to
w in GF (solid or dotted edges) has a two-hop path from u in GC . Thus u can always make xuu1

u = 1
instead of contributing to (uw) and get the additional utility of 1+α(k− 1) as explained in the previous
case.

– Suppose node u contributes 1 to edge (uv) and not to (uu1). Then in this case by reducing contribution
to (uv) to 0, node u can lose only two-hop benefit as (uv) ∈ GC \GF , thus there being no direct benefit
obtained by contributing to (uv). The two-hop benefit that node u can lose is at most αk because of
destroying paths of the nature u → v → p since there are at most k such paths. Thus, if u removes
its contribution from (uv) and instead contributed to (uu1) then it gets a utility of 1 + α(k − 1) (as
explained in the previous case) which more than compensates for its loss of at most αk utility due to
our assumption that 1/k < α < 1/(k − 1).

Thus node u makes a contribution of 1 to the edges leading to all of its satellite nodes except a in any
candidate solution for NE. Similarly, node v (and node w) makes a contribution of 1 to the edges leading
to all of its satellite nodes except b (except c) in any candidate solution for NE. Thus to examine the
possibility of NE, we only need to examine where the vertices of the central triangle make their remaining
one contribution. In fact, the only choices for the remaining contribution for node u are edges (ua) and (uv)
(and not edge (uw)) because it can always choose to contribute 1 to edge (ua) to get a direct benefit of 1
instead of contributing to edge (uw) from which it gets no utility as argued above. Similarly the only choices
for the remaining contribution for node v (node w) are edges (vb), (vw) (edges (wu), (wc)). Now we will show
that no combination of these choices is possible in a candidate solution for NE. For convenience we will call
edges (uv), (vw), (uw) as the edges of the central triangle. Consider the following cases:

– u chooses (ua), v chooses (vb) and w chooses (wc). In such a case, u would prefer to remove its contribution
from (ua) to contribute to (uv) instead. This is because in this process u gains the two-hop benefit of
αk > 1 from the satellite nodes of v which is more than the utility of 1 that it loses by removing its
contribution to (ua).

– Suppose none of the edges (ua), (vb), (wc) were chosen for the remaining contributions, i.e. u chooses
(uv), v chooses (vw), w chooses (wu). In this situation, by contributing to (vw), node v gets an utility
(only two-hop benefit) of α(k− 1) by virtue of establishing two-hop paths to (k− 1) satellite nodes of w
where w makes its (k − 1) contributions (i.e., nodes w1, ·, wk−1). However, by removing its contribution
to (vw) and instead choosing to contribute to (vb) gets v an utility of 1 which is more than the utility of
α(k − 1) it loses by removing its contribution to (vw). This is because we have assumed α < 1/(k − 1).
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– Other then the above two cases, at least one and at most two edges from (ua), (vb), (wc) are chosen for
the remaining contributions by nodes u, v, w. To cover both these cases, without the loss of generality
assume that (ua) is chosen and (wc) is not chosen whereas (vb) may or may not be chosen. This means
that u chooses (ua) and w chooses (wu) to contribute. Now if v has chosen (vb) then as explained in
the first case above, u can remove its contribution to (ua) and choose to contribute to (vw) instead,
increasing its utility in this process. Otherwise, if v has chosen (vw) to contribute then v can remove
its contribution from (vw) to contribute to (vb) instead to increase its utility as explained in the second
case above.

Thus we have shown that none of the combinations of choices for the remaining contributions of nodes u,v,w
can lead to an integral NE, which was the only step remaining to be proven for non-existence of integral NE
in this construction. Hence we have proven that there may not exist an integral NE for S2H games. 
�

Theorem 3 The general S2H game is not a potential game.

Proof. We give an instance where better-response dynamics can cycle, thus establishing that this is not a
potential game. Figure 2 shows such an instance of S2H games. In this instance, we have k = 2. Now we will
describe the construction and later prove that such a cycle of states exists for this instance.

w

w1

w2

q p

u1

b

a

u2

v1
v2

v

u

Edges in GC \GF

Edges in GF \GC

Fig. 2: Example showing that the S2H game is not a potential game. Example shown for k = 2. Note that this is
a partially drawn figure: not all the adjoining edges of the nodes of the central pentagon are shown except for the
node u. Also, both the nodes p and q have a subgraph attached to them outside the central pentagon, analogous to
subgraph formed by the nodes u1, u2, a, b around the node u.The complete example is a symmetric figure. In this
example, it is possible for the nodes to exhibit a cycle of better responses, thus leading to the conclusion that the
S2H game is not a potential game.

Figure 2 consists a cycle of vertices p—q—u—v—w—p. We call this cycle C1. The total number of vertices
in C1 is 5 (although the proof works with C1 hav+ing any odd number of vertices greater than 3.) We further
stitch one more cycle C2 through these vertices by connecting each vertex to a vertex two positions ahead
of it in C1. Since we have chosen the total number of vertices in C1 as an odd number greater than 3, this
process ensures that connecting this way indeed creates another cycle. All the edges of C1 and C2 are in
GC \GF . Each of the vertices of C1, say u, is connected in GC \GF to two special nodes u1, u2 which we call
as satellite nodes of u. Similarly other vertices of C1 have their own satellite nodes with analogous notation
(not all of these are pictured in the figure). Each satellite node is further connected in GC \GF to another
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node (for example u1 is connected to a) which we will call subordinate nodes of the satellite node under
consideration. So, the total number of nodes in the example is 5 · 5 = 25. Now let us describe the edges in
GF . Each vertex of C1 is connected in GF \GC to subordinate nodes of its satellite nodes. For example, u
is connected to a and b. In addition, each vertex of C1 is connected in GF \ GC to satellite nodes of two
vertices of C1 in clockwise direction, for example, node q is connected to u1, u2, v1, v2 (again, not all such
edges are shown in the figure). In Figure 2, the edges that are in GC \GF are shown in solid pattern and the
edges that are in GF \GC are shown in dotted pattern. Note that since GF ∩ GC = ∅, no node can obtain
any direct benefit from connecting to a neighbor.

Let us choose the initial strategies of the nodes. We choose the strategies of satellite and subordinate
nodes as follows: For the lack of choice, u1 contributes 1 to both (uu1) and (u1a). Let every satellite node
follow analogous strategies. Consider a subordinate node, say a. Again for the lack of choice, a contributes
1 to (u1a). Let other subordinate nodes follow analogous strategies. We choose the initial strategies of the
vertices of C1 as follows: let all the vertices of C1 except p and q contribute 1 to the edges leading to their
satellite nodes. However, let node q contribute 1 to edges (qu), (qv) and let node p contribute to edges (pp1),
(pu). Let us call this initial state as S0. Beginning with S0, we will show that better-response dynamics can
lead to a cycle of states.

– In the first state transition, let u remove its contributions from edges (uu1), (uu2) and contribute 1 to
(uv), (uw) instead. Observe that if u completely removes its contribution from the edge (uu1) then it
loses an utility of α. This is because it loses the two-hop benefit obtained from the path u → u1 → a.
However if u chooses to contribute to (uv) then it increases its utility by 2α because of the the two-hop
benefit obtained from the paths u → v → v1 and u → v → v2. Using this, we conclude that if u removes
its contributions from edges (uu1), (uu2) and contribute 1 to (uv), (uw) instead, then u increases its
utility by 2(2α− α) = 2α. Let us call this state S1.

– However, the transition from S0 to S1 destroys all the benefit node p had been getting in S0 by contribut-
ing to edge (pu). This is because in state S1 node p does not obtain any direct benefit by contributing
to (pu) as (pu) ∈ GC \GF and it also does not obtain any two-hop benefit in S2 by contributing to (pu)
as the node u does not contribute to any edge (ut) s.t. (ut) ∈ GF (See Equation (8) to see how two-hop
benefit is computed). Rather than getting no benefit by contributing to (pu), node p would move this
contribution to edge (pp2). This is because in this process p increases its utility by α due to a two-hop
benefit of α obtained by establishing two-hop path directed to the subordinate node of p2 via p2. For the
similar reason, node q would prefer moving its contribution from edge (qu) to edge (qq1). Thus in the
next transition, nodes p and q move their contributions from the edges leading from them to u to edges
(pp2) and (qq1) respectively. Let us call this state S2.

– Notice that the state S2 is isomorphic to S0 in the sense that in S2 nodes q and u play the roles that p
and q respectively played in S0.

Thus we have shown that better-response dynamics can cycle in S2H games, and thus S2H games are not
potential games. 
�

However, we now give a family of instances for which S2H games are exact potential games and an
integral NE exists. Proving that the total utility changes in a fixed proportion to the change in the utility of
a node u when u changes its strategy is the crucial component of proving that a game has an exact potential
function. Thus to prove that a family of S2H games has an exact potential function, it would be sufficient to
ensure that when a node u changes its strategy, the change in the utility of neighbors is proportional to the
change in the utility of node u. This occurs, for example, if GF is the complete graph, since then all nodes
are affected by all others, and thus the change in utility for me is similar to the change in utility for the
other nodes in the graph. In fact, as we show in the following Theorem 4, it is even enough that GF always
joins all pairs of nodes which have a potential two-hop path in GC . In other words, if we let dC(u, v) denote
the distance between u and v in GC , then the following holds.

Theorem 4 If du ≥ k for all nodes and if the condition dC(u, v) ≤ 2 implies (uv) ∈ GF for all the pairs of
nodes then the S2H game is an exact potential game and an integral NE exists.
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Proof. First we will prove the potential game part of the theorem. The condition “dC(u, v) ≤ 2 implies
(uv) ∈ GF ” tells us that

(uv) ∈ GC ⇒ (uv) ∈ GF (15)

(uv), (vw) ∈ GC ⇒ (uw) ∈ GF (16)

Thus the utility of node u given by Equation (8) takes the following simpler form where the summations
just depend on GC :

Uu(xu,x−u) =
∑

(uv)∈GC

(xuv
u + xuv

v ) + α ·
∑

(uv),(vw)∈GC

w �=u

(xuv
u · xvw

v + xvw
w · xuv

v ) (17)

We have introduced the versions of Uout
u (xu,x−u) and U in

u (xu,x−u) in Equation 9 and 10. The versions
of these quantities after applying the constraints given by Equation (15) and (16) are:

Uout
u (xu,x−u) =

∑
(uv)∈GC

xuv
u + α ·

∑
(uv),(vw)∈GC

w �=u

xuv
u · xvw

v (18)

= min(k, du) + α ·
∑

(uv),(vw)∈GC

w �=u

xuv
u · xvw

v (19)

U in
u (xu,x−u) =

∑
(uv)∈GC

xuv
v + α ·

∑
(uv),(vw)∈GC

w �=u

xuv
v · xvw

w (20)

We have also defined Uout(M) =
∑

u U
out
u (xu,x−u). Note that Equation (18) represents that part of the

utility of u (given by Equation (17)) which depends on the contributions made by u, whereas Equation (20) is
the remaining part which does not depend on contributions made by u. Thus in a NE, a node u must choose
a strategy that maximizes Uout

u (xu,x−u) given the contributions of other nodes. Also, using Equation 12 we
have U(M) = 2 ·Uout(M). Thus in order to look at the behaviour of U(M) after a node changes its strategy,
it is sufficient to look at the behaviour of Uout(M) and in turn at Uout

u (xu,x−u) for every node.
Notice that Uout

u (xu,x−u) depends only on the contributions of u and its neighbors. Thus when the node
p changes its strategy, Uout

u (xu,x−u) changes only for p and for those nodes which are neighbors of p. Let
set N(p) denote the set of neighbors of p. Now let us investigate how Uout

u (xu,x−u) changes for p and the
nodes in N(p):

– First let us consider node p. Suppose p changes its strategy from xp to yp. Using Equation (19), we get
the following:

Uout
p (yp,x−p)− Uout

p (xp,x−p) =
∑

(pv),(vw)∈GC

w �=p

αypvp · xvw
v −

∑
(pv),(vw)∈GC

w �=p

αxpv
p · xvw

v

=
∑

v∈N(p)

αypvp
∑

w∈N(v)
w �=p

xvw
v −

∑
v∈N(p)

αxpv
p

∑
w∈N(v)
w �=p

xvw
v

=
∑

v∈N(p)

α(ypvp − xpv
p ) · (min(k, dv)− xpv

v )

=
∑

v∈N(p)

α(ypvp − xpv
p ) ·min(k, dv) +

∑
v∈N(p)

α(xpv
p − ypvp )xpv

v

Also note that the theorem statement assumes that min(k, dv) = k for every node. Thus the first
summation in the above equation reduces to zero giving us

Uout
p (yp,x−p)− Uout

p (xp,x−p) =
∑

v∈N(p)

α(xpv
p − ypvp )xpv

v (21)
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– Now consider the nodes in N(p). We use Equation (19) to sum the Uout
u (xu,x−u) over all the neighbors

of u before and after p changes its strategy. The terms that change are the terms which depend on
the contributions of p. Hence the cumulative change in the utilities of node in N(p) after p changes its
strategy is given by:

∑
v∈N(p)

αxvp
v

∑
z∈N(p),z �=v

ypzp −
∑

v∈N(p)

αxvp
v

∑
z∈N(p),z �=v

xpz
p

However
∑

z∈N(p),z �=v y
pz
p = k − ypvp and similarly

∑
z∈N(p),z �=v x

pz
p = k − xpv

p . Using this in the above

equation, the change in the value of cumulative Uout
u (xu,x−u) of the neighbors of p is given by

∑
v∈N(p)

αxvp
v (k − ypvp )−

∑
v∈N(p)

αxvp
v (k − xpv

p ) =
∑

v∈N(p)

αxvp
v (xpv

p − ypvp ) (22)

As argued before, Uout
u (xu,x−u) changes only for p and its neighbors. Thus using Equations 21 and 22

we conclude that Uout(M) increases by 2 · (Uout
p (yp,x−p) − Uout

p (xp,x−p)) and thus U(M) increases by
4 · (Uout

p (yp,x−p) − Uout
p (xp,x−p)) using Equation 12. This proves that if du ≥ k for all nodes and if the

condition dC(u, v) ≤ 2 implies (uv) ∈ GF for all the pairs of nodes then the S2H game is a potential game
and U(M) and Φ(M) = U(M)/4 is an exact potential function.

Now we will prove how the existence of potential function implies the existence of an integral NE in this
case. Notice that the above analysis also applies verbatim if we restrict the contribution variables xuv

u to
take the values only from the set {0, 1}. Hence a potential function exists and implies the existence of an
integral NE for the integral version of the game. Let us denote this integral NE by M . We will now show
that this integral NE is also a NE if we allow the contributions to be fractional. To prove this, we show that
in the fractional case, given x−u, there exists at least one strategy xu for node u such that the contributions
of u are integral and choosing xu maximizes the utility of node u. Thus in M , if u could improve its utility
when fractional contributions are allowed then in fact u could have also improved its utility by choosing a
strategy in which contributions are integral. This would contradict our initial assumption of M being an NE
for the integral version of the game and in turn prove that M is also an NE when fractional contributions
are allowed. Thus now the only part that is to be proved is to show that in the fractional case, given x−u,
there exists at least one strategy xu for node u such that the contributions of u are integral and choosing
xu maximizes the utility of node u.

As mentioned before, in a NE M , a node u must choose a strategy that maximizes Uout
u (xu,x−u) given

x−u. From Equation (18), Uout
u (xu,x−u) can alternatively be expressed as

Uout
u (xu,x−u) =

∑
(uv)∈GC

xuv
u · (1 +

∑
(vw)∈GC

w �=u

xvw
v ) (23)

Let us denote
∑

(vw)∈GC ,w �=u x
vw
v by cv. Notice that since x−u are fixed, the terms cv’s are constants. Thus

applying the constraints of S2H games, the problem of maximizing Uout
u (xu,x−u) for u becomes a problem

of choosing a strategy xu which solves the following optimization problem

maximize
∑

(uv)�u,(uv)∈GC

xuv
u · cv

s.t. 0 ≤ xuv
u ≤ 1 and

∑
(uv)∈u

xuv
u = min(k, du)

It is easy to see that if we sort the elements in {cv : (uv) ∈ u, (uv) ∈ GC} in descending order and choose the
top min(k, du) terms from the sorted array and set the contributions xuv

u ’s of node u corresponding to these
terms as 1, with other contributions set to 0 then this strategy solves the above problem. Note that this
strategy is integral, i.e., the contributions are chosen from the set {0, 1}. As argued before, given fixed x−u,
the strategies that maximize Uu(xu,x−u) are exactly the strategies that maximize Uout

u (xu,x−u), and thus
we have shown that there exists a strategy xu that maximizes Uu(xu,x−u) such that all the contributions
of u are integral. As discussed before, this was the remaining step to be proven in order to show that M is
also an NE when fractional contributions are allowed, and hence we have proved our claim. 
�
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3.1 Price of Anarchy

To begin with, we give a quick overview of the results of this section. We know that without any two-hop
benefit, the PoA of S2H games is 1. We will first show that with two-hop benefit, PoA can become unbounded
for arbitrary GF and GC if GF ∩GC = ∅. However we will later prove that as the overlap between GF and
GC increases then the PoA for S2H games decreases and for the interesting cases of GF ⊆ GC and GC ⊆ GF ,
PoA becomes 1 + αk. Increasing the overlap between GF and GC can be interpreted as nodes getting more
opportunities to become directly acquainted with the nodes they are compatible with.

Claim: For S2H games, PoA can be infinite if GF ∩GC = ∅.

u v

z

Edges in GC \GF

Edges in GF \GC

w

Fig. 3: The example showing that the PoA for S2H games can be infinite when GC ∩GF = φ.

Proof. Figure 3 shows an instance of S2H games such that GF ∩ GC = ∅ and the PoA is infinite. In this
instance, we have k = 1, and three nodes u, v, w are connected to a central node z in GC . However, GF

consists of only (uv). Thus GF ∩GC = ∅. For analyzing this example, we will take p → q to mean xpq
p = 1.

It can be verified that whenever we have z → w, u → z and v → z then it is a NE and has zero utility.
However an optimum solution is u → z, z → v, w → z which has utility 2α. Thus the PoA is infinite for this
instance. 
�

Now we will show that as the overlap between GF and GC increases then the PoA for S2H games decreases
and for the interesting cases of GF ⊆ GC and GC ⊆ GF , PoA becomes 1 + αk. First, we formally quantify
what we mean by overlap between GF and GC . Let Fv denote the degree of v in GF ∩GC . We define overlap
between GF and GC as ρ(GF , GC) = minv Fv. We now give PoA bounds for several interesting cases:

Theorem 5 For the S2H game,

1. For arbitrary GF and GC , PoA ≤ 1 + αk · k
min(k,ρ(GF ,GC)) . Thus when there is a large overlap between

GF and GC , say ρ(GF , GC) ≥ k/2 then we have PoA ≤ 1 + 2αk.

2. Furthermore, if GC⊆GF or GF⊆GC then PoA ≤ 1 + αk.

3. For the special case of GF = GC = Kn, we have PoA = 1+αk
1+α(k−1) .

First, we give a brief outline of the proof of Theorem 5. For arbitrary GF and GC , the PoA bound will
follow by simple observations on the minimum utility obtained by a node in a NE and its maximum attainable
utility. This PoA bound can be large for a small overlap because even if a node is capable of getting little
direct benefit because of its small degree in GF ∩GC (which is a lower bound on minimum utility obtained by
it in a NE), it can still get a large two-hop benefit (hence large maximum attainable utility) by connecting to
a lot of its friends via GC \GF . However this changes in GC ⊆ GF because GC \GF = ∅. This also changes
with GF ⊆ GC because here if a node can get a large two-hop benefit by connecting to a lot of friends in
GC then it must have a lot of frinds, and therefore its degree in GF ∩ GC must be high. Thus these cases
result in a much improved bound on PoA regardless of the overlap size. Now we will proceed to prove each
of the above cases in details.
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Proof (Theorem 5). Using Equation 12, PoA can be expressed as

PoA = max
M is a NE

Uout(OPT )

Uout(M)
(24)

Recall that we have defined Fu as |{(uv) ∈ u : (uv) ∈ GF ∩ GC}|, i.e. Fu quantifies the degree of u in
GF ∩GC . Let us define qu as min(k, Fu). Since Fu is at least as much as the overlap ρ(GF , GC), we have:

qu = min(k, Fu) ≥ min(k, ρ(GF , GC)) (25)

Lemma 1 In any NE, Uout
u (xu,x−u) ≥ qu.

Proof (Lemma 1). Notice from Equation (10) that U in
u (xu,x−u) is independent of the strategy chosen by

u. Thus a node u in a NE must choose a strategy which maximizes Uout
u . Now if Uout

u (xu,x−u) < qu in
some NE M then u can simply make xuv

u = 1 for any qu edges from the set {(uv) � u : (uv) ∈ GF ∩ GC}
to increase Uout

u (xu,x−u) and in turn increasing its utility. This contradicts M being an NE, hence proving
that Uout

u (xu,x−u) ≥ qu in any NE.

Having proved Lemma 1, now let us continue the proof of Theorem 5. Let us consider the first case, i.e.,
suppose GF and GC are arbitrary. Consider a NE M . We already have Uout

u (xu,x−u) ≥ qu in any NE M .
Now let us calculate the maximum value that Uout

u (xu,x−u) can take in any solution. An upper bound on
the value of the two-hop benefit component of Uout

u (xu,x−u) in any solution is given by

α
∑

(uw)∈GF

(uv),(vw)∈GC

xuv
u · xvw

v ≤ α
∑

(uv)∈GC

[xuv
u

∑
(vw)∈GC

xvw
v ] ≤ α

∑
(uv)∈GC

xuv
u · k ≤ αk2 (26)

Thus the two-hop benefit component of Uout
u (xu,x−u) in any solution can be at most αk2. We also know

that the direct benefit component of Uout
u (xu,x−u) in any solution can be at most qu using the definition

of qu. Thus we get Uout
u (xu,x−u) ≤ qu + αk2 in any solution. We already know that Uout

u (xu,x−u) ≥ qu in
a NE using Lemma 1. The ratio of these two bounds is 1 + αk · k/qu. Using Equation 25, we get that this
ratio is less than 1 + αk · k/min(k, ρ(GF , GC)). Using this in Equation 24, we get

PoA ≤ 1 + αk · k

min(k, ρ(GF , GC))
(27)

Now suppose we have GC⊆GF . Let us compute an upper bound on the value of Uout
u (xu,x−u) in any

solution. When GC⊆GF , an upper bound on the two-hop benefit component of Uout
u (xu,x−u) in any solution

is given by

α
∑

(uw)∈GF

(uv),(vw)∈GC

xuv
u · xvw

v ≤ α
∑

(uv)∈GC

[xuv
u

∑
(vw)∈GC

xvw
v ] ≤ αk ·

∑
(uv)∈GC

xuv
u (28)

But since GC⊆GF , every adjoining edge of u in GC is also in GF . Thus
∑

(uv)∈GC
xuv
u ≤ qu. Using this in

Equation (28), we conclude that the value of two-hop benefit component of Uout
u (xu,x−u) in any solution

can be at most αk · qu. We already know that direct benefit component of Uout
u (xu,x−u) ≤ qu using the

definition of qu. Thus U
out
u (xu,x−u) ≤ qu(1 + αk) in any solution (in particular an optimum solution). We

also know that Uout
u (xu,x−u) ≥ qu in a NE from Lemma 1. Combining these observations, we have

PoA ≤ 1 + αk (29)

Now suppose GF⊆GC . Let us compute an upper bound on the value of Uout
u (xu,x−u) in any solution.

Now the value of the two-hop benefit component of Uout
u (xu,x−u) in any solution can be bounded as follows:

α
∑

(uw)∈GF

∑
(uv),(vw)∈GC

xuv
u xvw

v ≤ α
∑

(uw)∈GF

∑
(uv),(vw)∈GC

xuv
u ≤ α

∑
(uw)∈GF

k = αFuk (30)

14



Combining this with Equation (26), we get that whenGF ⊆ GC the two-hop benefit component of Uout
u (xu,x−u)

in any solution is upper bounded by min(αk2, αkFu) which can also be expressed as αkqu using Equation (25).
We already know that direct benefit component of Uout

u (xu,x−u) ≤ qu in any solution using the definition
of qu. Thus we have Uout

u (xu,x−u) ≤ qu(1 + αk) in any solution (in particular an optimum solution). We
also know that Uout

u (xu,x−u) ≥ qu in a NE from Lemma 1. Combining these observations, we have

PoA ≤ 1 + αk (31)

When GF= Kn and GC= Kn, we have qu = min(k, n − 1). The value of Uout
u (xu,x−u) in a NE can be

lower bounded by

Uout
u (xu,x−u) =

∑
(uv)∈GF∩GC

xuv
u + α ·

∑
(uw)∈GF

(uv),(vw)∈GC

xuv
u · xvw

v

≥ qu + α ·
∑

(uv)∈GC

xuv
u

∑
(vw)∈GC ,w �=u

xvw
v

≥ qu + α ·
∑

(uv)∈GC

xuv
u · (k − 1)

≥ qu + αqu · (k − 1) (32)

When GF = GC = Kn, for an upper bound on Uout
u (xu,x−u) in any solution (in particular an optimum

solution), we can use the upper bound of qu(1 + αk) we had derived on Uout
u (xu,x−u) for GF ⊆ GC , since

GF = GC = Kn is a special case of GF ⊆ GC . Combining this upper bound with Equation (32), we get

PoA ≤ 1 + αk

1 + α(k − 1)
(33)


�

Note that if we have different budget constraints ku on the total contributions of different nodes, instead
of a single budget k for everyone, then almost all of our results hold with k replaced by kmax = maxu ku.
The only exceptions are that the bound for S2H games with arbitrary GF and GC becomes 1 + αkmax ·

kmax

min(kmin,ρ(GF ,GC)) and the bound when both of them are complete graphs changes to (1 + αkmin)/(1 +

α(kmin − 1)), where and kmin = minu ku.

Theorem 6 The bounds on the price of anarchy in Theorem 5 are asymptotically tight.

Proof. To begin, we will investigate the case when GF and GC can be arbitrary. For this case, the PoA is
upper bounded by 1+αk · k/min(k, ρ(GF , GC), see Theorem 5. We have already discussed before that PoA
can be infinite when ρ(GF , GC) = 0 using Figure 3. Now we will describe how to construct an instance to
demonstrate the tightness for any non-zero value of ρ(GF , GC).

Consider Figure 4 where nodes have been divided into five sets A, B, C, D1, D2. Let set B contain q ≤ k
nodes. Let set D1, D2 contain k nodes each. Let set C contain k− q nodes. Let set A contain the remaining
n−3k nodes. A solid bidirectional arrow between two sets denotes that all the nodes in one set are connected
with all the nodes in the other set in GF ∩GC . In Figure 4, such solid bidirectional arrows exist between set
A and B, set B ∪C and set D1 ∪D2. The semi-solid bidirectional arrow between set A and D1 denotes that
all the nodes from set A are connected with all the nodes in set D1 only in GF but not in GC . The dotted
bidirectional arrow between A and C denotes that all the nodes from A are connected with all the nodes
in C in GC but not in GF . Note that there exist no edges in either GF or GC between the nodes belonging
to the same set. From Equation (8), in S2H games a node u has an opportunity to obtain two-hop benefit
only if it is a vertex of a triangle uvw such that (uv), (vw) ∈ GC and (uw) ∈ GF but the two-hop benefit it
actually obtains depends on the contributions made by the nodes u, v, w. Thus in Figure 4, the only nodes
that have an opportunity to obtain two-hop benefit are the nodes from set A and D1.

Recollect that for an instance, the overlap ρ(GF , GC) is the minimum number of neighbors a node has
in GF ∩ GC in that instance. By the construction of the instance in Figure 4, the overlap ρ(GF , GC) for
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A

C

B

D1

D2

(q nodes)

(k nodes)

(k nodes)

(k − q nodes)

(n− 3k
nodes)

Fig. 4: Tight example for PoA of S2H games for arbitrary GF and GC . A solid, semi-solid, and dotted bidirectional
arrow between two sets means these two sets form a complete bipartite graph with edges in GF ∩ GC , GF \ GC ,
and GC \GF respectively. The overlap is given by ρ(GF , GC) = q and is dictated by the number of nodes in set B.
As described in the proof of Theorem 6, in the worst Nash Equilibrium, the nodes in set B end up contributing to
the edges leading to the nodes in set D2 and no node obtains any two-hop benefit. This key observation leads to an
asymptotically tight bound on the PoA of S2H games with GF and GC .

A1 B1 A2 B2

C2C1

k nodes

k nodesk nodes k nodes k nodes

k nodes

Fig. 5: Tight example for PoA for the S2H game when GF=GC . Solid bidirectional arrow between two sets means these
two sets form a complete bipartite graph. The key observation for this example is that in the worst Nash Equilibrium,
all the nodes in set A1 contribute to the edges leading to set A2 and vice versa with analogous contributions for the
nodes in the sets B1, B2, C1, C2. Thus in the worst NE, no node obtains any two-hop benefit. This observation leads
to the bound of 1 + αk being tight.
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this instance is given by the degree of a node in set A in GC ∩ GF , and thus ρ(GF , GC) = q for this
instance. To analyze the PoA for this instance, we will use the alternate definition of PoA for S2H games
given by Equation (24). Recollect that Uout(M) is given by

∑
u U

out
u (xu,x−u) where U

out(xu,x−u) is given
by Equation (9).

We will now construct two solutions: M∗ and M , such that M∗ is an optimal solution and M is a NE. We
will show that the quantity Uout(M∗)/Uout(M) can be taken arbitrarily close to the PoA bound in Theorem
5, as desired.

Let solution M∗ be as follows: Any node in set A, D1, D2 has exactly k adjoining edges in GC , thus it
contributes 1 to all these edges. Let each node in B and C contribute 1 to the k adjoining edges that lead
to nodes in D1. Now let us compute Uout(M∗). Notice that in M∗ each node in B, C, D1, D2 contributes
to the edges that are in GC as well as GF . Hence in M∗, the expression

∑
(uv)∈GF∩GC

xuv
u evaluates to k

for any node u that belongs to B ∪ C ∪D1 ∪D2. However, in M∗ any node u ∈ A contributes to exactly q
edges that are in GF ∩ GC , i.e., the edges connecting u to the nodes in set B. Thus in M∗ the expression∑

(uv)∈GF∩GC
xuv
u evaluates to q for any node u ∈ A. Thus if we sum the expression

∑
(uv)∈GF∩GC

xuv
u over

all the nodes, we get (n − 3k)q + 3k · k = nq + 3k(k − q). We already mentioned that the only nodes that
have an opportunity to obtain two-hop benefit are the nodes in A and D1. Now recall that in Figure 4, for
every node u ∈ A and w ∈ D1, we have (uw) ∈ GF . In the solution M∗ just described above, we have that

xuv
u xvw

v = 1 and (uw) ∈ GF ∀u ∈ A, v ∈ B ∪ C,w ∈ D1 (34)

Hence in M∗, for a node u ∈ A we have
∑

(uw)∈GF

(uv),(vw)∈GC

xuv
u xvw

v = k2 (35)

Using the above equation, we get that in M∗ the following holds:
∑

u∈A∪D1

∑
(uw)∈GF

(uv),(vw)∈GC

xuv
u xvw

v = (n− 3k)k2 (36)

Thus in total,

Uout(M∗) = nq + 3k(k − q) + α(n− 3k)k2

≥ (n− 3k) · (q + αk2) (37)

Now we construct a NE M as follows: Let all the nodes have the same strategy they follow in M∗ except
that let the nodes in B and C contribute 1 to the edges leading to the nodes in D2. Note that in M , for
any node u the expression

∑
(uv)∈GF∩GC

xuv
u (the direct benefit of u) takes the same value as it has in M∗.

However notice that in M no node obtains two-hop benefit, thus we have

Uout(M) = nq + 3k(k − q) = (n− 3k)q + 3k2 (38)

Now we will show that M is indeed a NE: none of the nodes can change their strategies to increase their
utility. Consider a node in A ∪ D1 ∪ D2. While analyzing solution M∗, we argued that such a node does
not have a choice for strategy in any solution but to contribute 1 to all the adjoining edges in GC . Thus a
node belonging to sets A ∪D1 ∪D2 cannot change its strategy. A node u ∈ B ∪C cannot receive any 2-hop
benefit, and so it simply tries to maximize the direct benefit that depends on its contributions, i.e., Uout

u .
Since it cannot get any 2-hop benefit, from this node’s point of view contributing to any k edges gives the
same utility, and so M is a NE.

Using Equations (37) and (38), we get

Uout(M∗)
Uout(M)

≥ 1 + αk · k/q
1 + 3k2

(n−3k)q

(39)

Note that in this instance we had q = min(k, ρ(GF , GC)). Thus from Equation (39), by increasing n, we
can construct instances to reach within arbitrary precision of the upper bound on PoA given by 1 + αk ·
k/min(k, ρ(GF , GC).
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Now let us prove that the upper bound of 1 + αk on PoA for GF ⊆ GC and GC ⊆ GF is tight. To prove
this, we will describe an instance with GF = GC , thus covering both cases GF ⊆ GC and GC ⊆ GF . The
scheme of such an instance is depicted in Figure 5. This instance consists of two complete tripartite graphs,
with each partition consisting of k nodes. Sets A1, B1, C1 constitutes one of the tripartite graphs and sets
A2, B2, C2 constitutes another tripartite graphs. Sets A1 and A2 also constitute a complete bipartite graph.
Similarly sets B1, B2 (and sets C1, C2) constitute a complete bipartite graph. To analyze the PoA for this
instance, we will use the alternate definition of PoA for S2H games given by Equation (24). Recollect that
Uout(M) is given by

∑
u U

out
u (xu,x−u) where Uout

u (xu,x−u) is given by Equation (9).

The direct benefit component of Uout
u (xu,x−u) is given by

∑
(uv)∈GC∩GF

xuv
u which can be at most

k in any solution. From Equation (26) the two-hop benefit component has an upper bound of αk2 in any
solution. Combining these observations, Uout

u (xu,x−u) ≤ k(1+αk) in any solution (in particular an optimum
solution). This implies that for our instance if we could find a solution in which every node obtains an utility
of exactly k(1+αk) then it is an optimum solution. Now we will construct such a solution. Let all the nodes
in set A1 contribute 1 to all the edges leading to the nodes in set B1. Note that this does not violate the
constraint of S2H games that

∑
(uv)∈Gc

xuv
u = k as each partition consists of exactly k nodes. Also, let all

the nodes in set B1 (set C1) contribute 1 to all the edges leading to the nodes in set C1 (set A1). Let the
nodes in sets A2, B2, C2 make analogous contributions. Let us denote this solution by M∗. Since GF = GC ,
the two-hop benefit component of a node u in M∗ is given by

α ·
∑

(uv),(vw)∈GC

w �=u

xuv
u · xuv

v = α ·
∑

(uv)�u

xuv
u ·

∑
(vw)∈GC ,w �=u

xvw
v = α ·

∑
(uv)�u

xuv
u · k = αk2

In the above series of equalities, the second equality follows from the first one using the fact that in the
solution M∗, at most one endpoint of an edge contributes to it. It is straightforward to see that the direct-
benefit component of Uout

u (xu,x−u) which is given by
∑

(uv)∈GC∩GF
xuv
u is exactly k for each node in solution

M∗. Thus Uout
u (xu,x−u) for each node u is k(1+αk) in the solution M∗. As argued before, this proves that

M∗ is an optimum solution. Thus Uout(M∗) = nk(1 + αk).

Now we will construct a NE, denoted by M , in which each node u obtains Uout
u (xu,x−u) exactly equal

to k. Thus we will have Uout(M) = nk. Combining it with Uout(M∗) = nk(1 + αk) proves the tightness of
PoA bound of 1+αk. Now let us construct such a NE M . To construct M , let all the nodes in A1 contribute
1 to all the edges leading to nodes in A2 and vice versa. Let the nodes in all other partitions make analogous
contributions. Now let us prove that M is a NE. Since the network is symmetric, to prove that M is a NE,
it is sufficient to show changing its strategy cannot increase utility for any one node. Hence without loss of
generalization, consider a node u ∈ A1. The only part of the utility Uu(xu,x−u) (See Equation 8) which
depends on the contributions of u is expressed by Uout

u (xu,x−u). Hence to prove that the utility of u cannot
increase by changing its strategy, it is sufficient to prove that Uout

u (xu,x−u) cannot increase by changing its
strategy.

As argued before, the direct benefit component of Uout
u (xu,x−u) can be at most k in any solution. In

M , the direct benefit component of Uout
u (xu,x−u) is exactly k. Hence if u can at all improve its utility

by changing its strategy, then after changing the strategy, the two-hop benefit component of Uout
u (xu,x−u)

must go positive from its value of 0 in M . Now we will show that this cannot happen, which will prove that
u cannot change its strategy. To see this, notice that whenever u changes its strategy in M , it must happen
that it decreases its contributions on some of the edges leading to nodes in A2 and increases its contributions
on some of the edges leading to nodes in B1 or C1. Let (uv) be among such edges where u increases its
contribution. Without loss of generalization, let v ∈ B1. However its contribution to (uv) cannot make the
two-hop benefit component of Uout

u (xu,x−u) positive because in M the node v ∈ B1 does not make any
contributions to edges of the type (vw) such that (uw) ∈ GF (See Equation 9). This holds irrespective of
u’s other contributions. Thus any change in the strategy of u cannot make the two-hop benefit component
of Uout

u (xu,x−u) positive which was the only remaining part while proving the tightness of PoA bound of
1 + αk. Thus we have proved that the PoA bound of 1 + αk is tight for GF ⊆ GC and GC ⊆ GF . 
�
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3.2 Weighted S2H Games

Sometimes a person can have different levels of intrinsic interest in different acquaintances. We incorporate
this scenario into S2H games by having a positive weight fuv on each edge (uv) ∈ GF . We call this extension
as Weighted S2H Games. The utility of a node Uu(xu,x−u) in Weighted S2H games is given by:

Uu(xu,x−u) =
∑

(uv)∈GC∩GF

(xuv
u + xuv

v )fuv + α
∑

(uw)∈GF

(uv),(vw)∈GC

(xuv
u xvw

v + xvw
w xuv

v )fuw (40)

It is not difficult to see that the argument for the existence of NE for Weighted S2H games is the same as the
argument for the existence of NE of S2H games. Also, despite having arbitrary weights on the edges of GF ,
whenever we have GF ⊆ GC the PoA proves to be at most 1 + αk as it was in the absence of weights. Here
by GF ⊆ GC , we mean that the unweighted version of GF is a subset of GC . Because of having arbitrary
positive weights on the edges of GF we do not treat the case of GF = GC = Kn (i.e., the unweighted GF is
equal to Kn) separately but view it as a special case of GF ⊆ GC . Thus we get the following results:

Theorem 7 For Weighted S2H games, a Nash Equilibrium always exists.

Theorem 8 For Weighted S2H games, whenever GF⊆GC we have PoA ≤ 1 + αk.

Proof (Theorem 8). We first introduce some notation. Analogous to Equations (9) and (10) we define
Uout
u (xu,x−u) and U in

u (xu,x−u) for Weighted S2H games:

Uout
u (xu,x−u) =

∑
(uv)∈GF∩GC

fuv · xuv
u + α ·

∑
(uw)∈GF

(uv),(vw)∈GC

fuw · xuv
u · xvw

v (41)

U in
u (xu,x−u) =

∑
(uv)∈GF∩GC

fuv · xuv
v + α ·

∑
(uw)∈GF

(uv),(vw)∈GC

fuw · xvw
w · xuv

v (42)

The definitions of Uout(M), U in(M) are the same as the ones in Section 3.1. We also have Uu(xu,x−u) =
Uout
u (xu,x−u) +U in

u (xu,x−u). Lemma 12 also holds for Weighted S2H games. Let du be the degree of node
u in GC . Let Eu denote the edge set adjoining u in GF ∩GC . Define Wu as

Wu = max
S⊆Eu s.t. |S|≤min(k,du)

∑
(uv)∈S

fuv (43)

In other words, if we compute the cumulative weight of the member edges for each of the subsets of Eu with
at most min(k, du) edges then Wu is the maximum value of cumulative weight of member edges for any such
set. This is the maximum direct benefit that node u could possibly attain from its incident edges. Now we
will prove Lemma 2 and Lemma 3 which will help us prove Theorem 8.

Lemma 2 For Weighted S2H games, Uout
u (xu,x−u) ≥ Wu in any NE.

Proof (Lemma 2). Notice from Equations (41) and (42) that Uout
u (xu,x−u) is the only part of the utility

obtained by u that depends on the contributions made by u whereas U in
u (xu,x−u) is independent of the

contributions of u. Hence a node u in a NE M must choose a strategy that maximizes Uout
u (xu,x−u) given

the strategies played by the other nodes. If in M , we have Uout
u (xu,x−u) < Wu then the node u can increase

Uout
u (xu,x−u) (and in turn its utility as U in

u (xu,x−u) doesn’t change) by simply making a contribution of
1 to the edges that add up to Wu. This is a contradiction hence we have proved our claim. 
�

Lemma 3 For Weighted S2H games, whenever GF ⊆ GC , U
out
u (xu,x−u) ≤ Wu(1 + αk).
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Proof (Lemma 3). Recall that
∑

(uv)�u x
uv
u ≤ min(k, du). Using this constraint and the definition of Wu, we

have that for any solution
∑

(uv)∈GF∩GC
fuv · xuv

u ≤ Wu. Now we claim that for any solution

α ·
∑

(uw)∈GF

(uv),(vw)∈GC

fuw · xvw
v · xuv

u ≤ αkWu (44)

Note that the above inequality combined with the observation
∑

(uv)∈GF∩GC
fuv · xuv

u ≤ Wu proves the
lemma. To show that this inequality always holds, consider the quantity cuw defined as:

cuw =
∑

v:(uv),(vw)∈GC

xuv
u xvw

v (45)

Since the total contributions of any node are at most k and each xvw
v ≤ 1, then clearly cuw ≤

∑
(uv)�u

xuv
u ≤ k

for every u,w. Now consider fixing node u, and summing cuw over all w such that (u,w) ∈ GF . This equals∑
(uv)�u[x

uv
u

∑
(vw)�v x

vw
v ], which is at most k2.

Now let us prove that Equation (44) holds. The left hand side of Equation (44) can be rewritten as

α ·
∑

(uw)∈GF

(uv),(vw)∈GC

fuw · xvw
v · xuv

u = α ·
∑

(uw)∈GF

fuw ·
∑

(uv),(vw)∈GC

w �=u

xuv
u xvw

v

= α ·
∑

(uw)∈GF

fuwcuw (46)

Since each cuw is bounded by k and their sum is bounded by k2, the above quality is maximized when cuw is
set to k for the k edges (u,w) ∈ GF with maximum value fuw, and set to 0 otherwise. Since GF ⊆ GC , then
these are exactly the edges considered in Wu, and so the above quality is bounded by αkWu, as desired. 
�

From Lemma 3, we have that in an optimum solution, Uout
u (xu,x−u) ≤ Wu(1+αk) for any node u. Combining

this with Lemma 2 we get that PoA for Weighted S2H games is at most 1 + αk, proving Theorem 8. 
�

Although we proved the upper bound of 1+αk on the PoA for the weighted S2H games with GF ⊆ GC , the
same result does not easily extend to the case of GC ⊆ GF . This is because when GC ⊆ GF , the weights on
the edges in GF \GC make it difficult to bound the two-hop benefit obtained by the nodes along the lines
of Equation 30, unlike the unweighted version.

4 Min Two-Hop (M2H) Games

Recall that M2H games are a natural extension of fractional stable matching games obtained by introducing
two-hop benefit. Denoting min(xuv

u , xuv
v ) by xuv , the utility Uu(xu,x−u) of a node u in M2H games can be

written as:

Uu(xu,x−u) =
∑

(uv)∈GC∩GF

xuv + α ·
∑

(uv),(vw)∈GC

(uw)∈GF

xuv · xvw (47)

We will call the first summation in Equation 47 as direct benefit of node u and the term with the coefficient
of α in Equation (47) as two-hop benefit of node u. Recall from Section 1 that we use the concept of pairwise
equilibria (PE’s) to assess the quality of a solution in M2H games, denoting the ratio between the worst PE
and the optimal solution as 2-PoA.

Recall that in an integral PE all the contributions are either 0 or 1. An integral PE exists for M2H games
without two-hop benefit (see Related Work). With two-hop benefit, we construct an instance of M2H games
which does not admit any integral pure NE by adapting Example 1 from [11] which is an instance of stable
roommates problem such that no stable matchings exist. We also give 2-PoA bounds in Thm 10 for some
important cases to assess the quality of PE’s whenever they exist.
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Theorem 9 There exist instances of M2H games that do not admit any integral pairwise equilibrium.

Proof. To construct an instance of M2H games where an integral PE does not exist, consider a pentagon
constituted by nodes u, v, w, y, z (see Figure 6). We will refer to this pentagon as the central pentagon.
All the edges of the central pentagon are in GC ∩ GF . These and the other edges that are in GC ∩ GF are
shown in solid pattern in Figure 6. Each vertex of the central pentagon has three other nodes connected to
it in GF ∩ GC which we will refer as the satellite nodes of the vertex under consideration. For example va,
vb and vc are the satellite nodes of the vertex v. Each satellite node is connected to 3 further nodes which
we will refer as subordinate nodes of the satellite node under consideration. In Figure 6, for convenience we
have shown the subordinate nodes va1, va2, va3 of only one satellite node va, see the expanded view of the
balloon pointed by the dark arrow. All other balloons consist of analogous connections networks. A vertex
of the central pentagon is connected in GF \ GC to all the subordinate nodes of its satellite nodes. These
and the other edges that are in GF \ GC are shown in dotted pattern. In addition, a vertex of the central
pentagon is also connected in GF \GC to exactly one satellite node of the vertex of the central pentagon in
clockwise direction. For example, vertex u is connected in GF \GC to va, vertex v is connected in GF \GC

to wa and so on. We set k = 4 and choose 0 < α < 1. Now we will show that an integral PE does not exist
for this instance.

u

v

wy

z

va

vb

vc

v

va1
va2

va3

va

Edges in GF ∩GC

Edges in GF \GC

Fig. 6: Example showing that an integral PE may not exist for M2H game. Example shown for k = 4. Each “petal”
in the figure (e.g., the ones around va, vb, and vc represent a gadget which is illustrated on the top right of the figure
for node va. In this example, it is possible to show that the only candidates for an integral PE are the solutions where
the node v contributes 1 to the edges (vav), (vbc), (vcv) (and analogous observations hold for the nodes u, w, y, z).
Now each node of the central pentagon has a remaining budget of 1 for which they face a choice between the two
adjoining edges of the central pentagon. The proof of Theorem 9 uses this observation along with the structure of
the example to prove that no integral PE can exist for this example.

To begin with, notice that for the lack of choice, all the satellite nodes and subordinate nodes contribute
1 to all the adjoining edges in GC . Due to these nodes having a fixed strategy in any solution, we need
not analyze these nodes for changing the strategy. Thus we will be concerned about the strategies of only
the nodes that are the vertices of the central pentagon. Now we claim that in any candidate solution for
an integral PE, node v will contribute 1 to edges (vva), (vvb) and (vvc). This is for the following reason:
its contribution to each of these edges, say (vva), fetches it a direct benefit of 1 and a two-hop benefit of
3α as xvva · xvava1 = xvva · xvava2 = xvva · xvava3 = 1 (refer to Equation (47) to see how two-hop benefit is
calculated). Thus contributing to (vva) fetches v an utility of 1+3α in every solution. However contributing
to edge (vu) (or edge (vw)) can fetch u an utility of at most 1 (or 1+α). Thus in any candidate solution for
PE, v will contribute 1 to edges (vva), (vvb) and (vvc). Analogous conclusions hold for the other vertices of
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the central pentagon. Hence to examine the possibility of an integral PE, we only need to look at the last
remaining contribution that these vertices make. For the remaining contribution, each vertex of the central
pentagon has to choose between two edges of the central pentagon that it is part of. Recall that it cannot
contribute on the dotted edges as the dotted edges are in GF but not in GC . Given these choices for the
remaining contributions for the vertices of the central pentagon, now we will show that any of the resulting
solutions cannot be an integral PE. To see this, let us make a simple observation that after each vertex of
the central pentagon chooses one of the adjoining edges of the pentagon to make its last contribution, there
is at least one vertex such that if it contributes to edge e of the central pentagon then the other endpoint
does not contribute to it. Without loss of generality, say this vertex is v and it contributes to (vw) but w
does not contribute to (vw). Thus v does not get any direct or two-hop benefit by contributing to (vw) by
using Equation (47). Now we have two cases: u contributing to (uv) or (uz). We will show that both cases
do not lead to an integral PE.

– u contributes to (uv): Here v can choose to contribute to (uv) instead of (vw), thus making xuv =
min(xuv

u , xuv
v ) = 1 to gain a direct benefit of 1 whereas its previous contribution to (vw) fetched v no

utility. Thus this case does not result in an integral PE.
– u contributes to (uz): Here we will show that both u and v can instead choose to contribute to (uv) and

increase their utility, thereby proving that this case does not lead to an integral PE. By contributing to
(uz) node u cannot get any two-hop benefit as there is no other neighbor of z in GC from which there is an
edge to u in GF (Refer Equation 47 to see when a node can obtain two-hop benefit). However, it can get
a direct benefit of 1 if z also happens to be contributing to (uz), resulting in xuz = min(xuz

u , xuz
z ) = 1.

Thus its contribution (uz) can fetch node u an utility of at most 1. Now suppose u and v choose to
contribute to (uv), making xuv = min(xuv

u , xuv
v ) = 1. Thus both u and v get a direct benefit of 1 by their

contribution to (uv). This leads to an increase in the utility of v as its earlier contribution to edge (vw)
did not fetch any utility to v as argued before. In addition to the direct benefit of 1, node u also gets a
two-hop benefit of α because now the term xuvxvva becomes 1 and we have (uva) ∈ GF . Thus in this
process, node u gains a total utility of 1 + α which more than compensates for the utility of 1 that it
could have been getting by contributing to (uz). Thus both u and v improve their utility in this process
and hence this case does not lead to an integral PE.

Hence we have shown that an integral PE does not exist for the instance shown in Figure 6 thus proving
that an integral PE may not exist for M2H games. 
�

Theorem 10 For the M2H game:

1. If GC ⊆ GF then 2-PoA ≤ 2 + 2αk.
2. For the special case of GF=GC= Kn, a PE always exists and 2-PoA tends to 1+αk

1+α(k−1) as n → ∞.

Proof (Thm 10, Proof of case GC ⊆ GF ). First let us introduce some notation. Let us define the quantities
P (M) and S(M) for a solution M as:

P (M) =
∑
u

∑
v:(uv)∈GC∩GF

xuv (48)

S(M) =
∑
u

∑
(uw)∈GF

(uv),(vw)∈GC

αxuvxvw (49)

The quantity P (M) is the combined direct benefit in M of all the nodes, and S(M) is the combined two-
hop benefit in M of all the nodes. Note that U(M) = P (M) + S(M). We will prove the 2-PoA bound for
GC ⊆ GF in two steps. In the first step, we will prove that for any optimum solution M∗ and a PE M , we
have P (M∗) ≤ 2 ·U(M). Then in the second step, we will prove that S(M∗) ≤ 2αk ·U(M). Combining these
two steps with the observation U(M∗) = P (M∗) + S(M∗) proves the desired 2-PoA bound.

Now let us prove P (M∗) ≤ 2 · U(M). Let yuvu ’s (or ruvu ’s) denote the contributions made by u in M∗

(or in M). Similarly, let yuv = min(yuvu , yuvv ) and ruv = min(ruvu , ruvv ). To begin with, we claim that for an
edge (uv) ∈ GF ∩ GC s.t. yuv > ruv , at least one of its endpoints, say u obtains a direct benefit of exactly
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min(k, du) in M (note that no node can obtain a direct benefit of more than min(k, du)). In other words, for
every edge (uv) ∈ B, at least one of its endpoints belongs to set A where we define set A and B as follows:

A = {u :
∑

(uv)�u

ruv = min{k, du}}

B = {(uv) ∈ GC ∩GF : yuv > ruv}

Suppose this claim is not true and that for some edge (uv) ∈ B node u (and node v) obtains a direct
benefit less than min(k, du) (less than min(k, dv)) in the PE M . Since we have GC ⊆ GF , this implies that∑

(uw)�u r
uw < min(k, du) and

∑
(vy)�v r

vy < min(k, dv). Now combining
∑

(uw)�u r
uw < min(k, du) with

the constraint
∑

(uw)�u r
uw
u = min(k, du) we get that there must exist an edge in GC adjoining u, say (uz)

s.t. ruzu > ruz . Similarly, for v, there must exist an adjoining edge in GC , say (vp) s.t. rvpv > rvp. Now let us
break the analysis intwo two cases:

– Let (uz) = (uv) but (vp) �= (uv): Since (uz) = (uv) we have min(ruvu , ruvv ) < ruvu , i.e. ruvv < ruvu . We
already have rvpv > rvpp . Now, let v decrease rvpv by an infinitesimal quantity ε and increase rvpv by ε.
Notice that since rvpv > min(rvpv , rvpp ) decreasing rvpv by a tiny constant does not change the utility of v.
However since ruvv < ruvu , increasing ruvv by ε increases ruv (i.e., min(ruvu , ruvv ). Given that (uv) is also in
GF , in this process the direct benefit of v increases, increasing the utility of v in turn. This contradicts
our assumption of M being a PE.

– Let (uz) �= (uv) and (vp) �= (uv): The analysis of this case is similar to the previous case, except that
both u and v simultaneously will be able to increase their contributions to (uv) by a tiny constant (this
is permitted as for (uv) ∈ B we have ruv < 1) and both will be able to increase their utility. This
contradicts our assumption of M being a PE.

Hence we have proved that for every edge (uv) ∈ B, at least one of its endpoints belongs to A. Because of
this, the following inequality must hold:

∑
(uv)∈B

yuv ≤
∑
u∈A

∑
(uv)�u
(uv)∈B

yuv (50)

Now consider the edges (uv) ∈ GF ∩GC which are not in B.

∑
(uv)∈B

yuv +
∑

(uv)∈GF∩GC

(uv) �∈B

yuv ≤
∑
u∈A

∑
(uv)�u
(uv)∈B

yuv +
∑

(uv)∈GF∩GC

(uv) �∈B

yuv

=⇒
∑

(uv)∈GF∩GC

yuv ≤
∑
u∈A

∑
(uv)�u

yuv +
∑
u�∈A

∑
(uv)�u
(uv) �∈B

yuv (51)

Let us analyze the terms that appear on the right hand side of Equation (51):

– First let us consider the terms
∑

(uv)�u y
uv for u ∈ A. We know that this is in total at most min{k, du},

since this is the largest amount u can contribute to all the incident edges. However, by definition of A,
we also know that min{k, du} =

∑
(uv)�u r

uv. Thus, this term is at most
∑

(uv)�u r
uv . This is at most

the direct benefit obtained by u in M since GC ⊆ GF and hence is at most Uu(ru, r−u).
– Now consider the terms

∑
(uv)�u
(uv) �∈B

yuv for u �∈ A. Since we are only summing over edges not in B, and by

definition of B this means that yuv ≤ ruv, then the above term is at most
∑

(uv)�u r
uv . As argued in the

previous case, this upper bound is at most Uu(ru, r−u) for GC ⊆ GF .

Using the above, we get

∑
(uv)∈GF∩GC

yuv ≤
∑
u∈A

Uu(ru, r−u) +
∑
u/∈A

Uu(ru, r−u)

=⇒ P (M∗)/2 ≤ U(M)
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Hence we have proved that P (M∗) ≤ 2 · U(M) for M2H games whenever GC ⊆ GF .
Now let us prove that S(M∗) ≤ 2αk · U(M) for M2H games whenever GC ⊆ GF . Consider the two-hop

benefit obtained in M∗ by a particular node u. It can be bounded as

∑
(uv)�u,(vw)�v
(uw)∈GF ,w �=u

αyuvyvw ≤

⎛
⎝ ∑

(uv)�u

αyuv

⎞
⎠ ∑

(vw)�v

yvw ≤

⎛
⎝ ∑

(uv)�u

yuv

⎞
⎠ · αk (52)

Because GC ⊆ GF , we have that
∑

(uv)�u y
uv is at most the direct benefit obtained by u in M∗. Thus

summing the above bound over all the nodes, we get S(M∗) ≤ αkP (M∗). We have already proved that
P (M∗) ≤ 2 · U(M). Thus we have S(M∗) ≤ 2αkU(M).

Thus we have proved that whenever GC ⊆ GF , we have P (M∗) ≤ 2 · U(M) and S(M∗) ≤ 2αkU(M).
Combining these observations with U(M∗) = P (M∗) + S(M∗), we get the desired 2-PoA bound of 2 + 2αk.


�

Proof (Thm 10, Proof of case GC = GF = Kn). Now consider the case of GF = GC = Kn. For the existence
of a PE, it can be verified that every node making a contribution of k/(n− 1) to every adjacent link is a PE.
Now we give a brief outline of how to prove the bound on 2-PoA. We will assume that n is large enough, in
particular at least 2k. Thus every node has degree of at least 2k−1. First we prove that when GF = GC = Kn,
for a pairwise equilibrium, if two nodes u and v satisfy

∑
(uw)�u x

uw < k and
∑

(vw)�v x
vw < k respectively

then xuv = 1. We use this claim to bound the cardinality of the set T defined by T = {u :
∑

(uw)�u x
uw < k}.

Then using this bound on cardinality, we bound the utility U(M) obtained in a PE M from which the 2-PoA
bound will follow. Now we will proceed to the proof.

We claim that whenGF = GC = Kn, for a pairwise equilibrium, if two nodes u and v satisfy
∑

(uw)�u x
uw <

k and
∑

(vw)�v x
vw < k respectively then xuv = 1. To see this, notice that whenever

∑
(uw)�u x

uw < k, there

exists an edge (uz) such that xuz
u > xuz

z and thus u can decrease its contribution xuz
u without affecting

its utility. Such an edge exists because otherwise if xuz
u ≤ xuz

z holds for all the adjoining edges of u then∑
(uw)�umin(xuw

u , xuw
w ) will become equal to min(k, du) using the fact that

∑
(uw)�u x

uw
u = k. Thus whenever∑

(uw)�u x
uw < k, there exists an edge adjoining u such that u can can decrease its contribution xuz

u without

affecting its utility. Suppose for v also similar inequality holds, i.e.
∑

(vw)�v x
vw < k. In such a case, if the

mutual consent xuv is less than 1 then u and v can increase their contributions to (uv) without decreasing
the utility obtained because of their contributions from other edges. This would be a contradiction to our
assumption of pairwise equilibrium. Thus we have proved the claim that for GF = GC = Kn, in any PE, if
two nodes u and v satisfy

∑
(uw)�u x

uw < k and
∑

(vw)�v x
vw < k respectively then xuv = 1. We will call an

edge (uv) with mutual consent xuv = 1 as “full” edge. We have just proved that all the nodes belonging to
the set T = {u :

∑
(uw)�u x

uw < k} form a clique in the sense that all the edges between such nodes are full.
Each node in this set can have at most k − 1 full edges adjoining it because if it were k for any node u in
set T then we will have

∑
(uw)�u x

uw = k, contradicting the criterion for a node to be included in T . Thus,

|T | ≤ k.
Let us denote the cardinality of T by q, which is at most k as argued above. For large n, the cardinality

of T̄ (complement of T ) will also be at least k. For each node u in T̄ , the direct benefit component of
Uu(xu,x−u) is exactly k. Thus the cumulative direct-benefit component of the nodes in T̄ is given by k · |T̄ |.
Now the two-hop benefit component of a node u in T̄ would be

α
∑

(uv)�u
v∈T̄

xuv
∑

(vw)�v,w �=u

xvw + α
∑

(uv)�u
v∈T

xuv
∑

(vw)�v,w �=u

xvw ≥ α
∑

(uv)�u
v∈T̄

xuv · (k − 1) + α
∑

(uv)�u
v∈T

xuv · (q − 2)

The above inequality holds because for a node v ∈ T̄ we have
∑

(vw)�v x
vw = k and for a node v ∈ T we

have
∑

(vw)�v x
vw ≥ q − 1. Expressing q − 2 as (k − 1)− (k − q + 1), a lower bound on the two-hop benefit

component of a node u in T̄ can be further expressed as

α
∑

(uv)�u

xuv(k − 1)− α
∑

(uv)�u
v∈T

xuv(k − q + 1) = αk(k − 1)− α
∑

(uv)�u
v∈T

xuv(k − q + 1) (53)
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Adding it over all the nodes in T̄ , the cumulative two-hop benefit obtained by nodes in T̄ is lower bounded
by

αk(k − 1) · |T̄ | − α
∑

(uv)�u
u∈T̄ ,v∈T

xuv(k − q + 1) ≥ αk(k − 1) · |T̄ | − αq(k − q + 1)2 (54)

The above inequality holds because for any node in T , it is contributing q − 1 to edges to other nodes in
T , and thus can only contribute at most k − q + 1 to edges to nodes in T̄ . Thus, the total contributions on
edges between T and T̄ are at most q(k − q + 1).

Adding it to the cumulative direct benefit component k · |T̄ | of all the nodes in T̄ , the total utility of all
the nodes in T̄ , and thus the utility U(M) of a PE M is lower bounded by

U(M) ≥ k|T̄ |+ αk(k − 1) · |T̄ | − αq(k − q + 1)2 (55)

It is easy to see that an upper bound on the utility U(M∗) of an optimum solution M∗ is given by

U(M∗) ≤ n(k + αk2) (56)

From Equations (55) and (56), we obtain

U(M)

U(M∗)
≥ |T̄ |

n
· 1 + α(k − 1)

1 + αk
− αq(k − q + 1)2

n(k + αk2)
(57)

As n grows, |T̄ |/n → 1 and the second term in the above bound decreases, thus we get

2-PoA→ 1 + αk

1 + α(k − 1)
as n → ∞ (58)


�

5 Empirical Findings

We begin by presenting the models and the settings used for the simulations we carried out for our ex-
periments. Then we will present the findings that we obtained, relating them to the theoretical results for
Weighted S2H and Weighted M2H games.

Let us start by describing the base model that we use for the simulations. In the base model, we consider
networks of 100 nodes placed uniformly at random inside a unit square. Thus each node corresponds to a
point (x, y) inside a unit square. Each node has an edge joining to every other node in the network. These
edges have weights fuv which depend on the distance d(u, v) between the nodes. We will specifically consider
the following three kinds of weight functions:

1. Inverse: For the inverse weight function, we set fuv = 1/d(u, v).

2. Exponential: For the exponential weight function, we set fuv = e−d(u,v)−e−
√

2

1−e−
√

2
. The weight function has

been normalized to take value 1 when d(u, v) = 0 and 0 when d(u, v) =
√
2, with

√
2 being the largest

distance between any two nodes located in a unit square.
3. Linear: For the linear weight function, we set fuv = 1− d(u, v)/

√
2. Again, the weight function has been

normalized to take value 1 when d(u, v) = 0 and 0 when d(u, v) =
√
2.

The attenuation with respect to distance becomes steeper as the weight functions change from linear to
exponential to inverse. In the model that we consider for simulations, we allow the variables xuv

u to take
values only from {0, 1}, i.e. we allow the system to converge only to integral equilibria. We set k = 3. The
nodes in this base model engage in either S2H or M2H games.

Now we describe the settings for the simulations. For each new instance of simulations, we start by placing
100 nodes uniformly at random inside a unit square. Then in the second step, the values of its contributions
are set for each node u. Here we explore two possibilities: for a node u, either we choose any other three
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nodes randomly and make u contribute (with a contribution of 1) to the edges joining to these nodes or we
make u’s contributions as 1 on the edges joining u to the three closest nodes. Note that as k = 3, a node
can contribute 1 corresponding to only three adjoining edges. After this initial assignment of the variables,
a random permutation of nodes is generated in the third step. In each iteration of the instance the nodes
are examined in the order given by this permutation. When a node u gets examined, we execute a better
response for node u (if a better response exists for node u) where a node u increases its contribution xuv

u

to 1 on some edge (uv) by removing its contribution on some other edge. Note that this better response is
executed for M2H games only if it is a better response also for node v, since for M2H games we are interested
in pairwise deviations.

If none of the nodes have any better response, then it means we have found a NE (PE) for Weighted S2H
(Weighted M2H) games. We run the simulations for a large number of iterations, typically 500− 1000. We
found that whenever an instance converged, it took a much less number of iterations, typically of the order
of 10 iterations. Hence we consider that an instance is not likely to converge if it fails to converge within 500
iterations.

We will evaluate the simulations based on two criteria:

– Existence of an (integral) equilibrium: If a simulation instance converges within 1000 iterations, it implies
we have found a NE if it was an instance of Weighted S2H games (or a PE for Weighted M2H games).
However, if a simulation instance does not converge, then it may or may not have an equilibrium. Based
on how many instances converged for a model under consideration, we can evaluate the likelihood of an
instance for that model to have an equilibrium.

– Price of Anarchy: If we are considering an instance of Weighted S2H games that converges (to a NE
M) then the utility U(M) of the resultant NE is given by adding the utilities obtained by all the nodes.
Computationally it is difficult to compute the worst NE as well as optimum solution in our settings.
However if we take the ratio of U(M) to an upper bound U(M∗) on the value of an optimum solution
then we have a bound on the quality on the resultant NE. We will slightly abuse the notation to call this
ratio as the price of anarchy in this section. Thus in this section, price of anarchy means the quality of
the solution to which the simulation converged. An upper bound on U(M∗) for Weighted S2H games
is given by

∑
u 2(1 + αk) · (wu1 + wu2 + wu3) where wu1, wu2, wu3 are the maximum 3 values of weight

functions among the weights of the edges adjoining a node u. To see why this is an upper bound, notice
that the maximum utility that a node u can obtain is given by 2(1 + αk) · (wu1 + wu2 + wu3) as per
Equation (40). We will see that the average value of the equilibria whenever the instances converged
is close to the value of an optimum solution. For the instances of Weighted M2H games, we evaluate
the upper bound on U(M∗) in the similar way except that the upper bound on U(M∗) is given by∑

u(1+αk) · (wu1 +wu2 +wu3). We will examine how the average value of the equilibria obtained varies
with α.

Now we present the results of the simulations in Section 5.1 and Section 5.2.

5.1 Existence of an (Integral) Equilibrium

Although in Section 3 we gave an instance of S2H games where an integral NE does not exist, we found that
in simulations better-response dynamics converge to an integral NE almost all of the time, at least for the
types of graph structures that are considered in the simulation settings. To give specific numbers, we found
that for linear, exponential, and inverse weight functions, we have convergence for 99%, 97% and 73% of the
simulation instances for Weighted S2H games. Moreover, the convergence, when it occurs, is extremely fast:
all the instances either converged within 10 rounds, or did not converge within 500 iterations. The same is
not true for Weighted M2H games: over 65 percent of our instances did not converge to a PE even after 5000
rounds. Thus, in the settings that we examine, we found that we are much more likely to have an (integral)
NE in S2H games (with extremely fast convergence to a stable solution) compared to Weighted M2H games.
See Figure 7 and Figure 8 for some typical outcomes. We explore these outcomes in details later.

5.2 Price of Anarchy

The quality of NEs that our simulations converged to was extremely close to the quality of the an optimal
solution, usually within a few percent of the centralized optimal solution, indicating that our theoretical
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bounds are truly only for the worst case, not average case. Table 1 shows the average values of the equilibria
obtained for our simulations when the weight functions are linear. The values for exponential and inverse
weight functions also showed similar trends. We can see that on average, the value of the equilibria obtained
is very close to the value of an optimum solution. The values are also consistent with worst-case PoA being
1 + αk, which decreases as α decreases. As α decreases, the NEs and optimum solutions both converge to
nodes following the strategy of contributing to edges leading to their closest neighbors. Thus there is less
tendency to deviate from the strategy in OPT, resulting in better equilibria.

α Average PoA (with standard deviation) Average PoA (with standard deviation)
Weighted S2H games Weighted M2H games

1/2 1.033 (0.0021) 1.043 (0.0063)
1/4 1.031 (0.0018) 1.037 (0.0049)
1/6 1.029 (0.0016) 1.032 (0.0040)
1/8 1.028 (0.0025) 1.030 (0.0043)

Table 1: Average value of equilibria obtained with α for n = 100, k = 3 for linear weight functions. PoA here refers
to the ratio between the computed NE and the optimum solution.

Fig. 7: Typical pairwise equilibria computed for the Weighted M2H games with linear weight function and (Left)
α = 1/2 (Middle) α = 1/8 (Right) α = 1/16.

As α decreases or as the weight functions become steeper from linear to exponential to inverse, we also
observed that nodes increasingly form a “backbone”-type network by connecting to the closest nodes. We
explain this as follows: As α decreases, the contribution of two-hop benefit to node utility starts losing its
significance. When α is small, nodes simply attempt to connect to their closest k nodes and little clustering
takes place, instead forming a backbone-type of network. This effect is especially pronounced in M2H games
(see Figure 7). In Figure 7, for α = 1/2, two-hop benefit plays a significant part in the utility obtained
by a node. Because of the bidirectional nature of contributions, the structures that can increase two-hop
benefit for a node in M2H games are cliques – as it is easy to see in a clique, a node is a part of maximum
possible k(k − 1) two-hop paths. However, for α = 1/8 and α = 1/16 in Figure 7, two-hop benefit plays
increasingly insignificant role in node utility, thus the outcome is a backbone-type network as predicted. It
would be interesting to investigate further if a phase transition occurs as α decreases, where the clustering
effect suddenly disappears, or whether it disappears gradually.

We plot the effect of increasing the steepness of weight functions in Figure 8, where as the weight functions
become steeper the nodes increasingly form a “backbone”-type of network by connecting to the k closest
nodes. Although the rationale is similar to the effect of decreasing α with M2H games, there are slight
differences between Figures 7 and 8 as they correspond to equilibria of S2H and M2H games respectively.
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Fig. 8: Typical NE computed for the Weighted S2H games with linear weight function (Left) and exponential weight
function (Middle) and inverse weight function (Right) with α=1/6.

For steeper weight functions with S2H games, two-hop benefit plays a significant part in node utility but
it manifests in a slightly different way than M2H games. In S2H games, the nature of contributions is
unidirectional, thus a node has no control over incoming (one-hop or two-hop) paths. Thus if a node u were
to contribute on an edge (uv) where the other endpoint v has already contributed, then u can be a part
of at most (k − 1) outgoing two-hop paths through node v. However, if a node u were to contribute on an
edge (uv) such that v does not contribute to (uv), then u can be a part of k outgoing paths through node v.
Thus in S2H games, in order to obtain a higher two-hop benefit as encouraged by a less steep (linear) weight
function, nodes tend to contribute to edges where the other endpoint does not contribute, thus reducing the
tendency of nodes to form cliques and also making the edges that get contributed close to 2kn. This leads
to a dense network with higher connectivity in a typical outcome, as shown in Figure 8 for linear weight
functions. Note that such a typical outcome also has higher number of unidirectional (orange-blue) edges as
predicted. When the weight functions become steeper, two-hop benefit contribution to node utility becomes
increasingly insignificant, thus nodes tend to contribute to the edges leading to closest k neighbors. If v is
among k closest neighbors of u then u is also highly likely to be among k closest neighbors of v because
of the nature of node distribution (random in a unit square) – thus it is highly likely that an edge that
gets contributed to, gets contributed from both its endpoints as two-hop benefit becomes insignificant. This
can be observed in increasing percentage of blue-colored edges (denoting contribution from both endpoints)
in Figure 8 as weight functions change from linear to exponential to inverse (increasing their steepness).
Most of the contributed edges being bidirectional with nodes connecting to k closest neighbors also means
a typical outcome in S2H games with steep weight function (e.g., inverse weight function) resembles to a
typical outcome with small α in M2H games as observed from the rightmost subfigures of Figure 7 and
Figure 8.

Let us summarize the simulation results. We investigated Weighted S2H and Weighted M2H games with
nodes scattered uniformly at random inside a unit square. We used three different classes of weight functions
– linear, exponential and inverse with the attenuation of weight function becoming steeper with distance as
they change from linear to exponential to inverse. We found that for Weighted S2H games, we are much more
likely to have an (integral) NE compared to Weighted M2H games. The quality of NEs that our simulations
converged to was extremely close – usually within a few percent – of the centralized optimal solution. We
also saw that as α decreases or as the weight functions go from linear to exponential to inverse, the nodes
stop forming “clusters” and instead form a “backbone”-type network resulting from their connecting to the
closest possible neighbors.

6 Conclusion

Most game theoretic versions of network formation games consider agents deriving benefit either from their
immediate neighborhood or from the entire network. In many settings, however, the agents are neither so
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myopic as to only consider their benefit from direct connections, nor so far-sighted as to consider their benefit
from the entire network, including their connections to agents which are 3 or more hops away. Motivated
by this, we defined Two-Hop games where nodes try to maximize a combination of direct benefit (i.e.,
benefit obtained from their immediate neighborhood) and two-hop benefit (i.e., benefit obtained from two-
hop neighborhood). We considered two specific versions of two-hop games, namely S2H and M2H games,
which can be interpreted as natural extensions of well-studied games. We studied both these versions while
distinguishing between the ability of two nodes to form connections (represented by the Connection Graph
GC) and the ability of two nodes to be of mutual benefit (represented by the Friendship Graph GF ).

For both S2H games and M2H games, we showed that the introduction of two-hop benefits significantly
changes their properties. Among other results, we showed that for S2H games a fractional Nash Equilibrium
still exists (although an integral Nash equilibrium may not exist after introducing two-hop benefit) and the
price of anarchy (PoA) significantly reduces as the overlap between GF and GC increases, converging to
1+αk for several important cases. For M2H games, the corresponding bound on the PoA was 2+2αk. Here
α is the two-hop benefit factor, with higher values of α indicating higher contribution of two-hop benefit
to node utility. For some intuitive simulation settings, we also found that the actual quality of equilibria
of converged instances was very close to the optimum, although the theoretical worst-case bounds could be
much higher. We also observed in our simulations that as the contribution of two-hop benefit decreases,
nodes tend to form backbone-like structure by connecting to k closest neighbors.

There are several important open questions that should be considered in future work. One immediate
and important question that is still unanswered is whether a fractional pairwise equilibrium exists for M2H
games, as we know that some instances of M2H games do not admit an integral pairwise equilibrium.
Similarly, as S2H also do not admit integral Nash equilibria in some instances, it would be interesting to
know if good quality approximate equilibria exist for S2H and M2H games. Long-term challenges include
considering different utility structures for two-hop games and exploring the effect of two-hop benefit on other
well-studied games.
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