
SIAM J. COMPUT. c© 2011 Society for Industrial and Applied Mathematics
Vol. 40, No. 3, pp. 678–708

TERMINAL BACKUP, 3D MATCHING, AND COVERING CUBIC
GRAPHS∗

ELLIOT ANSHELEVICH† AND ADRIANA KARAGIOZOVA‡

Abstract. We define a problem called Simplex Matching and show that it is solvable in poly-
nomial time. While Simplex Matching is interesting in its own right as a nontrivial extension of
nonbipartite min-cost matching, its main value lies in many (seemingly very different) problems that
can be solved using our algorithm. For example, suppose that we are given a graph with terminal
nodes, nonterminal nodes, and edge costs. Then, the Terminal Backup problem, which consists of
finding the cheapest forest connecting every terminal to at least one other terminal, is reducible to
Simplex Matching. Simplex Matching is also useful for various tasks that involve forming groups of
at least two members, such as project assignment and variants of facility location. In an instance
of Simplex Matching, we are given a hypergraph H with edge costs and edge size at most 3. We
show how to find the min-cost perfect matching of H efficiently if the edge costs obey a simple and
realistic inequality that we call the Simplex Condition. The algorithm we provide is relatively simple
to understand and implement but difficult to prove correct. In the process of this proof we show
some powerful new results about covering cubic graphs with simple combinatorial objects.

Key words. graph packing, Simplex Matching, cycle cover, network design

AMS subject classifications. 05C70, 68Q25, 68R10

DOI. 10.1137/090752699

1. Introduction. Matching theory, as well as its extensions, is both extremely
important and well studied. Perhaps surprisingly, there still remain basic matching
problems that can be solved efficiently and yet are not solvable using existing matching
algorithms and techniques [12, 15, 21, 22]. In this paper, we address one such problem
that we call Simplex Matching and show how to solve it in polynomial time using an
elegant covering argument. While Simplex Matching is interesting in its own right as
a nontrivial extension of nonbipartite min-cost matching, its main value lies in many
(seemingly very different) problems that can be solved using our algorithm. After
defining Simplex Matching, we give several representative examples of such problems.

Simplex Matching. The main focus of this paper lies in providing a polynomial-
time algorithm for Simplex Matching, which is a generalization of min-cost nonbipar-
tite matching. It is also a generalization of {K2,K3}-packing (see, e.g., [13, 22]).
A lot of work has been devoted to packing of graphs with various subgraphs [6, 11,
13, 14, 21, 28] (for surveys, see [12, 15, 22]). In this context, the standard match-
ing can be thought of as a packing with edges, i.e., a {K2}-packing. The study of
packing has a lot in common with our work as it deals with nontrivial extensions of
matching, often using totally different methods. In [23], Hell and Kirkpatrick gave an

∗Received by the editors March 16, 2009; accepted for publication (in revised form) March 31,
2011; published electronically June 2, 2011. A preliminary version of this paper appeared in the
Proceedings of the 39th ACM Symposium on Theory of Computing (STOC), 2007.

http://www.siam.org/journals/sicomp/40-3/75269.html
†Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180 (eanshel@cs.

rpi.edu). This author’s research was supported by an NSF Postdoctoral Fellowship in Mathematical
Sciences.

‡Department of Computer Science, Princeton University, Princeton, NJ 08540 (karagioz@cs.
princeton.edu). This author’s research was supported by NSF ITR grant CCR-0205594, NSF CA-
REER award CCR-0237113, MSPA-MCS award 0528414, and Moses Charikar’s Alfred P. Sloan
Fellowship.

678

TERMINAL BACKUP, 3D MATCHING, AND COVERING GRAPHS 679

elegant algorithm (reminiscent of Edmonds’s blossom algorithm) to find the perfect
{K2,K3}-packing, [38] greatly improved its running time, and [29] classified some
types of packings that can be found efficiently. Their results held only for unweighted
graphs, however, where the cost of every edge is 1. Among other things, our algorithm
for Simplex Matching gives a simple and intuitive way of finding the best (min-cost)
perfect {K2,K3}-packing, even in the weighted case. The algorithm we provide is
relatively simple to understand and implement but difficult to prove correct. In the
process of this proof we show some powerful new results about covering cubic graphs
with simple combinatorial objects.

We now define the Simplex Matching problem. In an instance of Simplex Match-
ing, we are given a hypergraph H containing edges of sizes 2 and 3 with edge costs
c(e). Our goal is to find a perfect matching of H with minimum cost. Since H is
a hypergraph, a perfect matching here (often referred to as a packing) is simply a
collection S of edges in H such that every node of H appears in exactly one edge
of S.

This problem is NP-hard without additional constraints on the costs c(e). To see
this, notice that if H contains only edges of size 3, we have exactly three-dimensional
(3D) Matching. However, in the applications that the authors are interested in, H
satisfies the following extra condition, which we call the Simplex Condition. It states
that for every 3D edge (u1, u2, u3), the corresponding two-dimensional (2D) edges also
exist (see Figure 1.1(a)), with the cost relation of

c(u1, u2) + c(u1, u3) + c(u2, u3) ≤ 2 · c(u1, u2, u3).

Fig. 1.1. The Simplex Condition in Simplex Matching, Project Assignment, and Terminal
Backup.

It is worth pointing out that by replacing 2 with 2 + ε in the Simplex Condition,
this problem becomes NP-complete.

Proposition 1.1. If the Simplex Condition above is relaxed by replacing 2 with
2+ε, then finding a min-cost perfect matching in a hypergraph H obeying this condition
is NP-complete.

Proof. The reduction from 3D-Matching is straightforward: add the 2D edges
required by the Simplex Condition, set their costs to 1, and set the costs of the 3D
edges to 3/(2+ ε). In the resulting instance of Simplex Matching, a perfect matching
of cost ≤ n/(2 + ε) (for n being the number of nodes) would use only 3D edges
and so would exist exactly when a 3D perfect matching exists in the 3D-Matching
instance.

Problems obeying the Simplex Condition. To understand why the Simplex
Condition is natural, consider the special case where the costs c(u, v) correspond to
distances between u and v that obey the triangle inequality, and c(u, v, w) corresponds

680 ELLIOT ANSHELEVICH AND ADRIANA KARAGIOZOVA

to the cheapest way of connecting u, v, and w, which is a three-pointed star, as shown
in Figure 1.1(b). In this special case, by the triangle equality, c(u, v) must be smaller
than the distance along the star, and so the Simplex Condition is obeyed. In general,
this occurs whenever the costs c(u, v) are obtained from an application where some
version of triangle inequality holds. Below we give two representative examples of
such problems, called Terminal Backup and Project Assignment. For more examples
of problems that can be shown to obey the Simplex Condition, as well as the reductions
from Project Assignment and Terminal Backup to Simplex Matching, see section 6.

Terminal Backup. Consider the following network design scenario. As in the
Steiner tree problem, we are given a graph consisting of terminal nodes, nonterminal
nodes, and edges with costs ce. The terminal nodes represent facilities that need to be
connected for backup purposes. To do this, we must construct a network of edges so
that every facility is connected to at least one other facility. In other words, we need
to find a forest of minimum cost such that every connected component of this forest
contains at least two terminals. The facilities connected together can back up their
data, and if any one facility failed, there would be at least one other that contains
its data. In [41], Xu, Anshelevich, and Chiang discuss applications of this problem
beyond simply backing up data and show how to solve it using Simplex Matching.

Project Assignment. Now consider a teacher with a list of projects for the stu-
dents, who wants to break the students into groups of at least 2 (and at most k) and
assign each group a project (several groups may do the same project as long as they do
not work together). Also suppose that there is a function u(s, p) that shows how much
a student s likes project p. How should the teacher break the students into groups so
that the sum of the students’ utilities is maximized? This question is a special case of
facility location with lower bounds and can be reduced to Simplex Matching. Notice
that if the groups were allowed to be of size 1, the optimum would simply assign each
student to the project she likes best. If the groups had to be of size exactly 2, this is
reducible to nonbipartite matching (notice that not all projects need to be assigned;
otherwise this would be easily solvable by a flow argument). And if the group size
had to be at least 3, this problem would immediately become NP-hard. The variant
with group size at least 2 and arbitrary k, however, is reducible to Simplex Matching
and so has nontrivial structure that can be exploited to form an efficient algorithm.
We discuss these two problems further in section 6.

Our results. Our main contribution consists of providing a polynomial-time
algorithm for Simplex Matching, which can be used to solve a variety of related
problems. The algorithm is very simple conceptually.

Definition 1.2. A 2-factor is a subgraph with every node in this subgraph having
exactly two incident edges. For a matching M , an M -alternating 2-factor is a 2-factor
in which every node has exactly one incident edge in M .

Our algorithm simply starts with a perfect matching (packing) M and at every
step finds an M -alternating 2-factor such that augmenting M by this 2-factor creates
a significantly cheaper perfect matching. It is not surprising that such an algorithm
exists, since the min-cost perfect matching can be obtained from any perfect matching
if we just augment it by the correct 2-factor. What is surprising here is that a desirable
2-factor can be found efficiently. Most of the paper is devoted to proving this.

Consider how a similar algorithm would behave if we wanted to find the min-
cost perfect matching without any edges of size 3. Then any 2-factor is simply a
collection of cycles and could find an alternating cycle that decreases the matching
cost sufficiently. In the case of Simplex Matching, however, the 2-factors can have
very complex structures (see Figure 1.2), and finding a good M -alternating 2-factor

TERMINAL BACKUP, 3D MATCHING, AND COVERING GRAPHS 681

Fig. 1.2. (Left) An M-alternating 2-factor. The bold edges are edges in M . 3D edges are drawn
as a star with 3 leaves (i.e., the nodes in the middle of these stars are not real nodes). (Right) The
dual of this 2-factor (see section 3). Filled circles are nodes in M .

may seem difficult.

To get around this problem, we show that there is no need to consider arbitrary
2-factors like that in Figure 1.2, as there always exist good 2-factors with simple
structures (containing at most two 3D edges), even in the weighted case. The proof
of this is complex and relies on our theorem about covering arbitrary cubic graphs
with simple combinatorial objects we call dual augmentors. For a discussion on the
relationship between our results and other covering results, especially cycle covers
[24, 25, 37, 42], see section 4.

Related work. Terminal Backup is similar to many Steiner-tree variations [10,
17, 20]. However, all such variations are required to either connect particular pairs
of terminals, connect terminals from a particular set, or connect at least k terminals
in total. The problem of finding the cheapest forest with at least k terminals in each
connected component has not been addressed before. In addition, all of the above
variations are NP-hard, while Terminal Backup is solvable in polynomial time for
k = 2. For k > 2 it becomes NP-hard, although there is a 2-approximation algorithm
shown in [4] using techniques from [18].

Simplex Matching and especially Project Assignment are also very similar to
variants of facility location. In fact, we can use Simplex Matching to solve instances
of facility location where all open facilities have lower bounds of 2 and the facility
costs obey the Simplex Condition (e.g., the costs are all 0, or the cost of serving three
clients is at least 3/2 times the cost of serving two clients). Although this is a very
special case of facility location, it is the first result (to our knowledge) of a nontrivial
facility location problem with lower bounds [2, 19, 27] that can be exactly solved
efficiently.

Matching theory is a very large field (see, e.g., [30]), and there are many algorithms
for weighted nonbipartite matching. A lot of work has also been done on exact
packings, which are exact covers of a graph using more complicated combinatorial
structures than just edges. For some results on packings, see, e.g., [6, 11, 13, 14, 21,
28, 32], and for surveys see [12, 15, 22]. Especially relevant to our work is packing by
edges and triangles ({K2,K3} packing), since choosing a 3D edge in Simplex Matching
is similar to choosing a triangle for a packing. Hell and Kirkpatrick’s algorithm for
finding the perfect {K2,K3} packing in unweighted graphs (in [23]) and the more
efficient algorithm given in [38] can easily be extended to solve the unweighted version
of Simplex Matching [26]. At the core of the algorithms for unweighted Simplex
Matching lies the ability to efficiently find an improving M -alternating 2-factor that
can be used to augment the matching. This can be done because in unweighted graphs,
it is not difficult to show the existence of an improving 2-factor with simple structure
(e.g., having at most two 3D edges). Showing the same result for weighted graphs,

682 ELLIOT ANSHELEVICH AND ADRIANA KARAGIOZOVA

however, is significantly more complicated and requires very different methods (in fact,
a large part of this paper is devoted to proving exactly this). Given that we can find
an improving M -alternating 2-factor efficiently, the algorithm for weighted Simplex
Matching is similar to the algorithms for unweighted graphs: just keep augmenting
the matching by such a 2-factor until we reach the matching of minimum cost. Since
Simplex Matching is a generalization of {K2,K3} packing, our algorithm can also be
used to find the min-cost {K2,K3} perfect packing. Another relevant line of research
is packing by cycles of length at least three [7, 8].

Much of the literature on packing concerns itself with matching polyhedra. Unlike
the standard perfect matching, which has a nice characterization as a linear program,
many similar results for packing can be extremely complicated. While the weighted
perfect matching problem lends itself to a primal-dual algorithm, this is not true
for Simplex Matching, for which there is no nice linear program characterizing the
solutions. See [12, 15, 22, 29] for polytope characterizations of other packing problems,
although most of these are either for unweighted versions or for packing problems very
different from ours. An exception is Pap, who produces some results similar to ours
in [33], although he uses completely different techniques and looks at this problem
from quite a different perspective.

Finally, [41] is a companion paper to this one. In it the reader will find detailed
applications of Simplex Matching, much discussion of the Terminal Backup problem,
and an implementation of the Simplex Matching algorithm. Additionally, [4] looks at
game-theoretic versions of Terminal Backup.

Paper organization. In section 2 we give an efficient algorithm to solve the
weighted Simplex Matching problem. In section 3 we argue its correctness. To do
this, we define the concept of dual augmentors, as well as a valid augmentor sum, and
show that our algorithm is correct if Theorem 3.5 holds, which states that any cubic
multigraph has a valid augmentor sum. In section 4 we prove this theorem, which
is the most technical part of the paper. In section 5 we discuss the running time of
our algorithm and show that it is polynomial. Finally, in section 6 we give several
examples of problems that can be solved efficiently using Simplex Matching.

2. Algorithm for weighted Simplex Matching. For the standard 2D match-
ing we know that if we take a perfect matching M that is not the minimum-weight
matching, then there exists an alternating cycle that could be used to improve the
current matching. We now show a similar condition for Simplex Matching.

Definition 2.1. To augment a perfect matching M by a set of edges S means
to replace all edges in M ∩ S with the edges in S −M . In other words, augmenting
M by S results in M�S (the symmetric difference).

Let M be a perfect matching of cost
∑

e∈M c(e). For any set of edges S, define
a potential function φM (S) =

∑
e∈M∩S c(e)−∑

e∈S−M c(e). If we augment M by S,
then the cost of the new set decreases by φM (S). Moreover, if S is an M -alternating
2-factor, then this is still a perfect matching. Recall from Definition 1.2 that an
M -alternating 2-factor is a set S such that every node in S has exactly two edges
incident to it, exactly one of which is in M . Let M∗ be a min-cost perfect matching.
The connected components of the symmetric difference M�M∗ are M -alternating
2-factors that augment M to M∗. Therefore, there always exists an M -alternating
2-factor S with φM (S) = cost(M)− cost(M∗).

If we could find the M -alternating 2-factor with maximum φM , we could simply
augment by it and get the min-cost perfect matching. Instead, our algorithm will
proceed by finding an M -alternating 2-factor S with high φM (S) at each step and

TERMINAL BACKUP, 3D MATCHING, AND COVERING GRAPHS 683

augmenting by it. Finding a 2-factor S with a high potential φM (S) seems difficult,
since 2-factors for Simplex Matching can have a complex structure, as in Figure 1.2.
We will show, however, that there is no need to consider arbitrary 2-factors like the
one in Figure 1.2, because there always exists a good 2-factor with simple structure:
it should contain at most two 3D edges. We call such 2-factors augmentors.

Definition 2.2. An augmentor is an M -alternating 2-factor that contains at
most two 3D edges.

More specifically, augmentors can be of the following types (see Figure 2.1):
Type-0. A Type-0 augmentor is an M -alternating cycle of 2D edges. This is the same

as a 2D matching augmenting cycle.
Type-1. A Type-1 augmentor consists of two 3D edges (a1, a2, a3) and (b1, b2, b3) to-

gether with M -alternating paths of 2D edges connecting a1 to b1, a2 to a3,
and b2 to b3. These paths must be node-disjoint, and the entire augmentor
must be M -alternating (so the 3D edges may or may not be in M).

Type-2. This is the same as Type-1, but the paths connect a1 to b1, a2 to b2, and a3
to b3.

Type-0

a1a2

a3

b1 b2
b3

Type-1

a1

a2

a3

b1
b2

b3

Type-2

Fig. 2.1. Simplex Matching augmentors.

The bulk of this paper is devoted to proving that an augmentor with high potential
always exists. The following lemma allows us to claim that if this is true, then we can
improve the current perfect matching in polynomial time.

Lemma 2.3. Let A be an augmentor with maximum potential with respect to some
perfect matching M in a hypergraph H with edges of sizes 2 and 3 and edge costs c(e).
Given H and M , we can find an M -alternating 2-factor S with φM (S) ≥ φM (A) in
polynomial time (which may or may not be A itself).

Proof. Suppose A is of Type-0. Delete all 3D edges from H as well as all nodes
that are matched in M using 3D edges, forming a graph H ′ with no 3D edges. By
the notation M |H′ , we will mean the subset of edges in M restricted to edges of H ′,
i.e., only those edges of M that are also in the graph H ′. Notice that M |H′ is a
perfect matching of H ′, since all nodes of H adjacent to 3D edges of M were deleted.
Now find a min-cost perfect matching M∗ of H ′. Then, S = M∗�M |H′ gives us an
M -alternating 2-factor to augment M by. Since A is of Type-0, it cannot include any
nodes incident to 3D edges of M ; thus A is contained in H ′. Augmenting by S results
in the best possible matching in H ′; therefore, φM (S) ≥ φM (A).

Now suppose A is of Type-1 or Type-2. Fix the two 3D edges e1 and e2 that
it contains (there are only |E|2 possibilities). We will find the best M -alternating
2-factor with only e1 and e2 as the 3D edges. Form a new graph H ′ as above, except
do not delete edges e1 or e2. If this forces some nodes incident to e1 or e2 to be deleted,
we do not need to consider the (e1, e2) pair, since this can occur only if e1 �∈ M shares
a node with a 3D edge e ∈ M with e �= e2, in which case for A to be an M -alternating
2-factor, it must also contain e, giving us a contradiction. Therefore, 3D edges e1 and
e2 that A contains must be such that H ′ still has all the nodes incident to e1 and e2.

As before, we know that M |H′ is a perfect matching of H ′, since for every edge

684 ELLIOT ANSHELEVICH AND ADRIANA KARAGIOZOVA

of M that was removed, so were all the adjacent nodes. Let M∗ be the min-cost
perfect matching of H ′. Since A is entirely contained in H ′, we once again know
that M∗ is a cheaper matching than A�M |H′ . Therefore, if S = M∗�M |H′ , then
φM (S) ≥ φM (A). To find M∗, notice that H ′ is a graph with exactly two 3D edges.
Thus, there are only four cases for whether those edges are in the matching, and we
can try each case, computing a 2D min-cost perfect matching on the rest of H ′ if one
exists. In fact, since we are trying only to find a matching better than A�M |H′ ,
we can just assume that ei for i = 1, 2 is in the matching if and only if ei �∈ M , and
find the best 2D perfect matching on the rest of H ′ with this constraint. We can do
this because augmenting M by A is guaranteed to add ei to the matching exactly if
it were not in it before.

We now choose the best one of the resulting |E|2+1 M -alternating 2-factors. For
analysis of the running time, as well as ways to make the above algorithm run faster,
see section 5.

In the next few sections we will show that if M is not the min-cost perfect match-
ing, then there exists an augmentor with positive potential. Using the above lemma,
we can state our algorithm for finding the min-cost weighted Simplex Matching. The
initial perfect matching in this algorithm can be computed using an algorithm for
unweighted Simplex Matching [23, 26, 38].

Start with any perfect matching (possibly containing 3D edges).

Repeat until done

Find an M-alternating 2-factor better than any augmentor, and

augment by it.

3. Dual augmentors. We now focus on the algorithm’s correctness and termi-
nation. To prove that this algorithm finds the min-cost perfect matching, we need
to show that for any perfect matching M that is not of minimum cost there exists
an augmentor A with φM (A) > 0. We will accomplish this by showing that every
M -alternating 2-factor of positive potential contains an augmentor of positive poten-
tial. This will be sufficient since we know that for any perfect matching M that is
not minimum-cost there exists an M -alternating 2-factor S with φM (S) > 0 (in fact,
with φM (S) = cost(M)− cost(M∗)).

For any M -alternating 2-factor S we form a dual graph S∗ that is easier to deal
with than S (see Figures 1.2 and 3.1). The nodes of S∗ are the 3D edges of S; we
will denote by ve the node of S∗ corresponding to the 3D edge e of S. For every
path of 2D edges in S connecting one of the nodes of e with one of the nodes of e′,
there is an edge in S∗ between nodes ve and ve′ . Note that this may result in parallel
edges as well as self-loops (e.g., if both (u, v, w) and (v, w) were in S). The resulting
graph S∗ is a cubic (3-regular) graph. We will say that a node v ∈ S∗ is in M if its
corresponding 3D edge of S is in M .

Definition 3.1. A dual augmentor with respect to M is a connected subset of
edges of S∗ satisfying the following conditions:

1. Degree 2 everywhere except at most two nodes.
2. All degree 1 nodes are in M .
3. No degree 2 node is in M .

Let Sextra be the multiset of 2D edges (u, v) such that a 3D edge (u, v, w) is in
S, but (u, v) �∈ S, as in Figure 3.1. Let Saug = S ∪ Sextra . As we prove below,
dual augmentors are exactly the subgraphs in the dual graph S∗ corresponding to
augmentors in Saug, as shown in Figure 3.1.

TERMINAL BACKUP, 3D MATCHING, AND COVERING GRAPHS 685

X 2 X 2

X 2 X 2

Fig. 3.1. (Top) An M-alternating 2-factor S with edges of Sextra shown as dashed lines. To
the right of it are some augmentors. (Bottom) The dual cubic graph S∗ and the corresponding dual
augmentors. The nodes of M are shown as black circles.

Type-0. A Type-0 augmentor A of Saug is an M -alternating cycle of 2D edges,
some of which are in Sextra , like the third augmentor shown in Figure 3.1. In the
dual graph S∗, every path of 2D edges in S corresponds to a single edge. Thus in the
dual graph S∗, A corresponds to a cycle of nodes ve where each e is the 3D edge that
produced one of the above Sextra edges. Let ve be one of these nodes, with e = (u,w, z)
and the edge (u,w) being the edge of Sextra in A. Since A is M -alternating, u and
w must each belong to some edge of M in A, and neither of these edges is the edge
e, since then A would contain a 3D edge and would not be an augmentor of Type-0.
Therefore, this implies that ve �∈ M since M is a matching, and so A corresponds to
a dual augmentor that is simply a cycle with no nodes in M , to which we refer as a
dual augmentor of Type-0.

Conversely, every Type-0 dual augmentor of S∗ corresponds to a Type-0 augmen-
tor of Saug. Let A∗ be a dual augmentor of S∗ that has degree 2 at all nodes, with
all nodes not in M . Let (ve, ve′) be an edge of A∗. Every edge in A∗ corresponds to
an M -alternating path of 2D edges in S; denote the path corresponding to (ve, ve′)
by P (ve, ve′). Since neither ve nor ve′ is in M , then neither e nor e′ is in M . The
path P (ve, ve′) is a path from a node of e to a node of e′, and since the original
2-factor S is M -alternating, then this path P (ve, ve′) must begin and end with an
edge in M . We can create a Type-0 augmentor of Saug by simply taking the paths
of 2D edges corresponding to the edges of A∗, together with an edge of Sextra for
every node ve ∈ A∗. Specifically, if A∗ contains two edges (ve1 , ve2) and (ve2 , ve3),
then we include the paths P (ve1 , ve2) and P (ve2 , ve3) in our augmentor, as well as the
edge (u,w) of Sextra, where u and w are nodes of e2 that are endpoints of the paths
P (ve1 , ve2) and P (ve2 , ve3). Note that u �= w since otherwise u would have degree 3
in S, which is a 2-factor. The above process creates a cycle in Saug, and this cycle is
M -alternating, since all edges of Sextra are not in M , and all the M -alternating paths
of 2D edges that we include begin and end with an edge of M .

Type-1. A Type-1 augmentor A will produce a dual augmentor of one of three
kinds, as shown in Figure 3.2. The M -alternating paths connecting a1 to b1, a2 to a3,
and b2 to b3 behave exactly as the cycle augmentor in the previous case; namely, they
correspond to paths that do not contain vertices ofM . This gives us a dual augmentor
of Type-1c in Figure 3.2 that is a path together with the two cycles attached to it,
with only nodes v(a1,a2,a3) and v(b1,b2,b3) possibly being in M .

Notice that if both (a1, a2, a3) and (a2, a3) are in A, then the “cycle” incident to
v(a1,a2,a3) in the dual augmentor is just a self-loop. Consider the special case, however,
when (a1, a2, a3) ∈ M and (a2, a3) ∈ Sextra , as in many augmentors of Figure 3.1. We
cannot form a self-loop in the dual augmentor, because we only formed self-loops in

686 ELLIOT ANSHELEVICH AND ADRIANA KARAGIOZOVA

⇒
Type−0

a2

a3

a1
b2

b3

b1 ⇒
a2

a3

a1
b2

b3

b1 ⇒

a2

a3

a1
b2

b3

b1 ⇒

Type−1a

Type−1b

Type−1c

⇒
Type−2

Fig. 3.2. Transformations from augmentors to dual augmentors.

S∗ for edges of S, not Sextra . Because of this, we simply have no loop at all, and we
associate to A a dual augmentor of Type-1a or Type-1b (depending on whether this
special case occurs at both (a1, a2, a3) and (b1, b2, b3) or just one of them). Notice
that only nodes that are in M can have degree 1 in such a set of edges, so these are
indeed dual augmentors as defined in Definition 3.1.

Conversely, a dual augmentor A∗ of Type 1a, 1b, or 1c as shown in Figure 3.2
corresponds to an augmentor of Type-1 in Saug. By using the same arguments as
above for Type-0 augmentors, we know that A∗ corresponds to an M -alternating
2-factor in Saug, except that now this 2-factor will have two 3D edges: one for each
node of degree 1 or 3 in A∗. If ve is a node of A∗ with degree 3, then edge e is in the
corresponding augmentor. If ve has degree 1 in A∗, then both e = (u,w, z) and an
edge (u,w) of Sextra (where z is the node of e that is incident on the path of Saug that
corresponds to an edge of A∗) are in the corresponding augmentor. Notice that in the
latter case, this still results in an M -alternating 2-factor, since e ∈ M because ve has
degree 1 in A∗, and so both u and w have exactly one edge of M incident to them (the
edge e) and exactly one edge not in M incident to them (the edge (u,w) ∈ Sextra).

Type-2. By similar reasoning, the set of edges in S∗ corresponding to a Type-2
augmentor of Saug is a Type-2 dual augmentor shown in Figure 3.2, with only the
degree 3 nodes possibly being in M . Conversely, a dual augmentor of Type-2 with
two nodes of degree 3 corresponds to a Type-2 augmentor of Saug with two 3D edges.

The above discussion establishes that every augmentor of Saug corresponds to a
dual augmentor of S∗. The converse also holds, since the structures in Figure 3.2 are
the only possible structures of dual augmentors as defined by Definition 3.1, and each
such structure corresponds to an augmentor of Saug. Therefore, the following lemma
holds.

Lemma 3.2. There is a one-to-one correspondence between augmentors in Saug

and dual augmentors in the cubic graph S∗.
In other words, dual augmentors are the structures in Figure 3.2, with the nodes

in M being only of degree 1 or 3. The reason for considering the dual graph S∗ instead
of S is that we now have a cubic (i.e., 3-regular) graph and, as the lemma below will
show, our goal now will be to cover this cubic graph with dual augmentors. While the
same results can be proven directly for Saug instead of S∗, their statements become
a lot more messy and complicated.

We now proceed to argue that there always exists an augmentor with high po-
tential for which we need the concept of augmentor sum. Let A∗ be the set of all
possible dual augmentors with respect to M contained in S∗.

Definition 3.3. We call a function α : A∗ → N a valid augmentor sum of
S∗ with respect to M iff ∃x > 0 such that for all edges e of S∗, we have that

TERMINAL BACKUP, 3D MATCHING, AND COVERING GRAPHS 687

∑
A∈A∗,A�e α(A) = x.
In other words, a valid augmentor sum is a cover of S∗ with dual augmentors so

that every edge is contained in exactly the same number of elements (which we call the
cover number). Given that there is a one-to-one correspondence between augmentors
in Saug and dual augmentors in S∗, we can also view α as a weight assignment on
the augmentors in Saug. Figure 3.1 shows a set of dual augmentors that form a valid
augmentor sum by covering every edge of S∗ twice. It also shows the augmentors of
Saug they correspond to. The lemma below shows that if φM (S) > 0, then the same
must be true for at least one of the augmentors in that list. The idea behind it is that
if all augmentors corresponding to the dual augmentors in α “add up” to S and S is
improving, then so is some augmentor in the sum. By |S|, we will mean the number
of nodes incident to edges of S.

Lemma 3.4. Given a perfect matching M and an M -alternating 2-factor S with

φM (S) > 0, there exists an augmentor A that is a subset of Saug with φM (A) ≥ φM (S)
|S|

if there exists a valid augmentor sum α of S∗.
Proof. If we had a cover of S by augmentors, such that every edge of S is

contained in the same number of augmentors, then we immediately know that some
augmentor must have positive potential. This follows because the total potential of
the augmentors must equal a multiple of φM (S). Unfortunately, we have such a cover
of S∗, but not S. As shown in Figure 3.1, dual augmentors of S∗ can correspond
to augmentors that include edges in Sextra , but not S. In fact, there are some 3D
edges of S in Figure 3.1 that are not contained in any augmentors from the list, even
though this list forms a valid augmentor sum of S∗ (with cover number of 2). Notice,
however, that the edges of Sextra corresponding to these 3D edges are included in the
list of augmentors, which we are able to relate to the cost of the 3D edges using the
Simplex Condition.

Let x be the cover number of α : A∗ → N, and let A be the set of augmentors in
Saug. Since there is a one-to-one correspondence between A∗ and A, we will consider
α as an integer weight assignment to augmentors in Saug. First we will compute how
many times α covers an edge in S ⊆ Saug.

1. If e = (u, v) ∈ S, then
∑

A∈A,A�e α(A) = x.
Proof. A 2D edge e of S is part of some path P of 2D edges in S that connects
two 3D edges. In S∗, this path P corresponds to a single edge, which we
denote by f . This edge f of S∗ is covered exactly x times, which means that
every edge is P is covered exactly x times, since the dual augmentors that
contain f correspond exactly to augmentors containing P .

2. If e = (u, v, w) ∈ S such that some (u, v) ∈ S, then
∑

A∈A,A�e α(A) = x.
Proof. This implies that the node ve corresponding to e in S∗ has a self-loop.
By the definition of dual augmentors, all dual augmentors in a valid augmen-
tor sum that contain ve must also contain the self-loop, which is covered x
times, so e is covered exactly x times. The proof of this is as follows.
Let f be the self-loop incident to ve, and f ′ be the other edge incident to ve.
If a dual augmentor contains ve but not the self-loop incident to ve, then node
ve must have degree 1 in this dual augmentor, and thus e ∈ M . Since all edges
of S∗ are covered x times, and there is a dual augmentor that contains f ′ but
not f , then there must be a dual augmentor containing f but not f ′. In this
dual augmentor, however, ve would have degree 2, which is a contradiction
since the definition of dual augmentors states that all nodes of degree 2 are
not in M . Therefore, every dual augmentor containing ve also contains the
self-loop f .

688 ELLIOT ANSHELEVICH AND ADRIANA KARAGIOZOVA

3. If e = (u, v, w) ∈ M ∩ S such that e1 = (u, v), e2 = (v, w), e3 = (u,w) /∈ S,
then for every i = 1, 2, 3, we have that

∑
A∈A,A�e α(A)−2

∑
A∈A,A�ei

α(A) =
x.
Proof. Consider the middle rightmost 3D edge of Figure 3.1. It appears in
several augmentors, with different corresponding edges from Sextra . What
the above statement implies is that each of these edges in Sextra is covered
the same number of times y, and that e is covered exactly x+ 2y times.
Let ve be the node in S∗ corresponding to e. Each edge incident to ve in
S∗ appears in dual augmentors exactly x times, and each dual augmentor
that includes ve either contains all three edges incident to ve or exactly one
of them. This is because by Definition 3.1, the degree of a node of M in
a dual augmentor is 1 or 3. Let a be the number of dual augmentors in α
containing all 3 edges incident to ve. Then all remaining dual augmentors
that contain ve must contain only one of the edges incident to ve, since ve
must have degree 1 in these dual augmentors. Therefore, there must be x−a
dual augmentors containing each edge incident to ve. Every dual augmentor
like this corresponds to an augmentor of Saug that contains the edge e and
also contains exactly one of e1, e2, or e3 in Sextra . Therefore, for i = 1, 2, 3,
we know that ei is contained in exactly x − a augmentors. By the above
argument, the node ve is contained in exactly a+ 3(x− a) dual augmentors.
Each of the augmentors corresponding to these contains e in Saug, and so
edge e is covered a+3(x− a) times, and each ei is covered x− a times. This
gives us the desired result, since a+ 3(x− a)− 2(x− a) = x.

4. If e = (u, v, w) ∈ S −M such that e1 = (u, v), e2 = (v, w), e3 = (u,w) �∈ S,
then for every i = 1, 2, 3, we have that

∑
A∈A,A�e α(A)+2

∑
A∈A,A�ei

α(A) =
x.
Proof. Let ve be the node in S∗ corresponding to e. Each edge incident to ve
in S∗ appears in dual augmentors exactly x times, and each dual augmentor
that includes ve contains either all three edges incident to ve or exactly two
of them. This is because by Definition 3.1, the degree of a node not in M in a
dual augmentor can only be 2 or 3. Let a be the number of dual augmentors
in α containing all 3 edges incident to ve. These correspond exactly to the
augmentors containing e in Saug. The rest of the dual augmentors that cover
edges adjacent to ve must cover each edge exactly x−a times. Since there are
3 edges incident to ve, and ve has degree 2 in each of these dual augmentors,
then we know that the set of these dual augmentors can be partitioned into
(x − a)/2 triples such that each dual augmentor in the triple contains two
different edges incident to ve, so that the entire triple covers each edge twice.
A corresponding triple of augmentors in Saug contains each of e1, e2, and e3
once. Therefore, edge e is contained in a augmentors, and each edge ei is
contained in (x− a)/2, producing the result.

Using these covering results we now bound x φM (S) = x
∑

e∈S φM (e).
If e = (u, v), or e = (u, v, w) ∈ S with some (u, v) ∈ S, we have x φM (e) =∑

A∈A,A�e α(A)φM (e). If e = (u, v, w) ∈ M ∩ S such that e1 = (u, v), e2 = (v, w),
e3 = (u,w) /∈ S, then φM (e) = c(e) and φM (ei) = −c(ei), so

x φM (e) =
∑

A∈A,A�e

α(A)φM (e)− 2
∑

A∈A,A�ei

α(A)φM (e)(3.1)

≤
∑

A∈A,A�e

α(A)φM (e)−
∑

A∈A,A�ei

α(A)(c(e1) + c(e2) + c(e3))(3.2)

TERMINAL BACKUP, 3D MATCHING, AND COVERING GRAPHS 689

=
∑

A∈A,A�e

α(A)φM (e) +
∑

A∈A,A�ei

α(A)(φM (e1) + φM (e2) + φM (e3))(3.3)

=
∑

A∈A,A�e

α(A)φM (e) +
∑

A∈A,A�e1

α(A)φM (e1)(3.4)

+
∑

A∈A,A�e2

α(A)φM (e2) +
∑

A∈A,A�e3

α(A)φM (e3).

The inequality holds because of the Simplex Condition on e and the last part holds
because

∑
A∈A,A�ei

α(A) is the same for all i = 1, 2, 3.
Similarly, if e = (u, v, w) ∈ S−M such that e1 = (u, v), e2 = (v, w), e3 = (u,w) /∈

S, then φM (e) = −c(e) and φM (ei) = −c(ei), and so

x φM (e) =
∑

A∈A,A�e

α(A)φM (e) + 2
∑

A∈A,A�ei

α(A)φM (e)(3.5)

≤
∑

A∈A,A�e

α(A)φM (e)−
∑

A∈A,A�ei

α(A)(c(e1) + c(e2) + c(e3))(3.6)

=
∑

A∈A,A�e

α(A)φM (e) +
∑

A∈A,A�e1

α(A)φM (e1)(3.7)

+
∑

A∈A,A�e2

α(A)φM (e2) +
∑

A∈A,A�e3

α(A)φM (e3).

Therefore, we have that

x φM (S) ≤
∑
A∈A

∑
e∈A

α(A)φM (e) =
∑
A∈A

α(A)φM (A).

Recall that our goal is to show that if S has high potential, then so does some

augmentor. If for all A ∈ A, φM (A) < φM (S)
|S| , then by the above inequality x φM (S) <

φM (S)
|S|

∑
A∈A α(A). Now consider the dual augmentors corresponding to these aug-

mentors A. Every edge in S∗ is covered exactly x times, and every dual augmentor
must contain at least one edge; hence

∑
A∈A α(A) ≤ x|E(S∗)|. By definition of S∗ we

know that |E(S∗)| ≤ |S|. Overall, this implies that x φM (S) < φM(S)
|S| x|S| = x φM (S),

giving us a contradiction. This means that there must exist at least one augmentor

A with φM (A) ≥ φM (S)
|S| , as desired.

Given a perfect matching M that is not min-cost, we know there exists an M -
alternating 2-factor S with φM (S) > 0, since the symmetric difference of M with the
min-cost perfect matching is such a 2-factor. By Lemma 3.4, it is enough to show that
S∗ has a valid augmentor sum in order to prove that our algorithm finds a min-cost
perfect matching. The following theorem completes the correctness proof.

Theorem 3.5. Any cubic multigraph S∗ (possibly with self-loops) has a valid
augmentor sum α with respect to any set of nodes M .

4. Valid augmentor sums (proof of Theorem 3.5). In this section we set
aside our algorithm and Simplex Matching and concentrate on proving Theorem 3.5.
We assume that we are given an arbitrary cubic multigraph S∗ that may contain
self-loops, and some set M of nodes in S∗. We show that there always exists a valid
augmentor sum of S∗ with respect to M . In other words, we show that we can always
cover any cubic graph with dual augmentors so that each edge appears in the same
number of these objects.

690 ELLIOT ANSHELEVICH AND ADRIANA KARAGIOZOVA

To understand when such covers may exist, consider the special case when M = ∅.
In [37], Seymour states that we can cover any cubic 2-edge-connected graph with cycles
so that every edge is in the same number of cycles. Since M = ∅, all cycles are dual
augmentors (they satisfy the conditions of Definition 3.1), and so we always have a
valid augmentor sum. There has been much work in finding cycle covers with small
cover numbers [24, 42], and it is unknown whether there always exists a cycle cover of
a cubic 2-edge-connected graph with cover number 2 (this is the Cycle Double Cover
Conjecture). Since we are proving only an existence result, however, for our purposes
the cover number does not need to be small.

The fact that M may not be empty complicates things. For example, while
forming a cycle cover of a planar graph is easy, consider forming an augmentor sum
of Figure 4.5, or of the complete graph with 4 nodes and |M | = 1. Definition 3.1
puts degree constraints on nodes of M , which makes augmentor sums much more
difficult to deal with than cycle covers. Our hope is that these results will lead to
more covering results where nodes have general degree constraints.

The main idea of the proof of Theorem 3.5 involves constructing a valid augmentor
sum for S∗ from valid augmentor sums on smaller subgraphs. We will prove Theorem
3.5 with a series of lemmas that show the existence of a valid augmentor sum of S∗ in a
different way depending on the structure of S∗. Specifically, the proof of Theorem 3.5
is as follows.

Proof of Theorem 3.5. We prove this by induction on the number of nodes in S∗.
For the base case, the smallest cubic multigraph consists of two nodes u, v, in which
case the entire graph is a dual augmentor of either Type-1 or Type-2.

Now assume that all cubic multigraphs smaller than S∗ have a valid augmentor
sum. We have the following cases:

• If S∗ is not connected, then we can consider each connected component sep-
arately and use the inductive hypothesis.

• If S∗ has a cut of size 1, i.e., contains a bridge (an edge whose removal
disconnects S∗), then by Lemma 4.5, S∗ has a valid augmentor sum.

• If S∗ does not contain a bridge, but has a cut of size 2, then by Lemma 4.7,
S∗ has a valid augmentor sum.

• If S∗ is 3-edge-connected and |M | �= 1, then by Lemma 4.3, S∗ has a valid
augmentor sum.

• If S∗ is 3-edge-connected and |M | = 1, then by Lemma 4.4, S∗ has a valid
augmentor sum.

Since these are all the possible cases, this finishes the proof of the theorem.

4.1. Composition lemmas. To prove Theorem 3.5, we now need to show a
series of composition lemmas that allow us to construct valid augmentor sums from
augmentor sums of smaller graphs. We begin with the following easy lemma about
augmentor sums.

Lemma 4.1. Let B be a collection of edge subsets of S∗, and let β : B → N and
xβ be such that for all edges e in S∗,

∑
B∈B,B�e β(B) = xβ . If every B ∈ B has a

valid augmentor sum, then S∗ has a valid augmentor sum.
Proof. Notice that by Definition 3.1, any dual augmentor of B ⊆ S∗ is also a dual

augmentor of S∗. Let αB be the augmentor sum for B ∈ B, and let xB be the cover
number of αB. Let x be the least common multiple of all xB ’s and α′

B = x
xB

αB , so
α′
B is a valid augmentor sum of B with cover number x. α′

B is defined only for dual
augmentors in B, but we can extend it to the set of all dual augmentors A∗ in S∗ by
setting α′

B(A) = 0 for any dual augmentor A of S∗ not contained in B.

TERMINAL BACKUP, 3D MATCHING, AND COVERING GRAPHS 691

Define α(A) =
∑

B∈B β(B)α′
B(A). Then for all edges e in S∗

∑
A∈A,A�e

α(A) =
∑

A∈A,A�e

∑
B∈B

β(B)α′
B(A)(4.1)

=
∑
B∈B

β(B)
∑

A∈A,A�e

α′
B(A)(4.2)

=
∑

B∈B,B�e

β(B) x = xβx.(4.3)

Since every edge of S∗ appears in exactly xβx dual augmentors, α is a valid augmentor
sum of S∗.

We will also make use of the following cycle cover theorem due to Seymour [37].
It gives a sufficient condition for the existence of a valid cycle sum, which we define
in the same way as a valid augmentor sum.

Theorem 4.2 (see [37]). We are given a graph G with capacities cap(e). Let
C(G) be the collection of all cycles in G and a valid circuit sum of G be a function
β : C(G) → Q+ such that for every edge e of G,

∑
C∈C(G),C�e β(C) = cap(e). Then,

a valid circuit sum exists if for every cut K, we have that for all e ∈ K, cap(e) ≤∑
e′∈K−e cap(e

′).
First, we address a special case.
Lemma 4.3. If S∗ is 3-edge-connected and |M | �= 1, then there exists a valid

augmentor sum of S∗. Moreover, if |M | = 0, then the only dual augmentors in this
sum are of Type-0 (i.e., cycles).

Proof. Construct a new graph G by adding an extra node s to S∗, together with
an edge (s, v) for all v ∈ M (see Figure 4.1). Associate a capacity cap(e) with all edges
e of G. If e is one of the new edges (s, v), set cap(e) = 3; otherwise set cap(e) = 1.
By Theorem 4.2, we know that there exists a valid circuit sum of G if for all cuts K
of G and all edges e ∈ K:

(4.4) cap(e) ≤
∑

e′∈K−e

cap(e′).

We now show that this holds true for G.
Consider an arbitrary cut K of G. If K is the cut (s,G− s), then inequality (4.4)

is satisfied since all edges in the cut have the same capacity (there cannot be exactly
one edge in the cut, since |M | �= 1). Any other cut K of G contains at least three
edges since S∗ is 3-edge-connected. If all edges e ∈ K are such that cap(e) = 1, then
the above inequality is trivially satisfied (this also finishes the case when |M | = 0).
Otherwise, if e = (s, v) and K is not (s,G − s), then K − e is also a cut in S∗, and
it contains at least three edges of capacity 1 since S∗ is 3-edge-connected. Inequality
(4.4) holds since cap(e) = 3 and there are at least three edges in K with capacity 1.
By Theorem 4.2, we can therefore form a circuit sum of the graph G.

To form dual augmentors from these cycles, we need to break up all the cycles
containing a node of M , since nodes of M cannot have degree 2 in a dual augmentor.
We can do this since all such cycles contain at least two nodes of M . Specifically,
we will partition each cycle C with β(C) > 0 into dual augmentors as follows. Every
cycle that does not contain any nodes in M is contained in S∗ and is trivially a Type-0
dual augmentor. No cycle passes through two edges with capacity 1 incident to a node
v ∈ M , since all other cycles passing through v would not be able to fill (s, v) to its
capacity. Therefore, every cycle entering a node in M must proceed to s. Removing

692 ELLIOT ANSHELEVICH AND ADRIANA KARAGIOZOVA

S∗s 3

3

3

Fig. 4.1. Capacitated graph G in Lemma 4.3.

all (s, v) edges from these cycles gives us a collection of Type-1a dual augmentors in
S∗. The valid circuit sum β can be viewed as a fractional weight assignment on those
Type-1a and Type-0 dual augmentors such that every edge in S∗ is covered exactly
once. We can now multiply β by a large enough constant to form a valid augmentor
sum.

Section 4.2 addresses the special (and tricky) case when only a single node of S∗

is in M and proves the following lemma.

Lemma 4.4. If S∗ is 3-edge-connected, and |M | = 1, then there exists a valid
augmentor sum of S∗. Moreover, every dual augmentor in this sum that contains the
node in M also contains all edges incident to this node.

Hence, all that is left to show are Lemmas 4.5 and 4.7, which provide us with
augmentor sums for the cases when S∗ has a bridge or is 2-edge-connected.

Lemma 4.5. Assume that all cubic multigraphs smaller than S∗ have valid aug-
mentor sums and that S∗ contains a bridge.1 Then S∗ has a valid augmentor sum.

Proof. Let e = (u1, v1) be a bridge in S∗. Let the other two edges incident to
u1 be (u1, u2) and (u1, u3), and let the other two edges incident to v1 be (v1, v2) and
(v1, v3). Form two smaller cubic multigraphs S1 and S2 by removing nodes u1 and v1
together with their incident edges and adding two new edges (u2, u3) and (v2, v3), as
in Figure 4.2. In the case where (u1, u2) = (u1, u3) (u1 has a self-loop), we delete u1

and the edge e but keep the loop, resulting in a loop without any nodes, which is a
dual augmentor of Type-0 and corresponds to a cycle with no 3D edges in S.

e

(u1,u2)

(u1,u3)

(v1,v2)

(v1,v3)

⇒ (u2,u3) (v2,v3)S1 S2

Fig. 4.2. Breaking S∗ with a bridge into two smaller cubic multigraphs.

By the assumption made in the statement of the lemma, there exist valid aug-
mentor sums α1 and α2 of S1 and S2, with corresponding cover numbers x1 and
x2. If x is the least common multiple of x1 and x2, then

x
x1
α1 and x

x2
α2 are valid

augmentor sums of S1 and S2 with cover number x. This gives us a multiset of size
x of dual augmentors in S1 that contain (u2, u3) and another multiset of size x of

1Recall that a bridge is an edge whose removal disconnects the graph.

TERMINAL BACKUP, 3D MATCHING, AND COVERING GRAPHS 693

dual augmentors in S2 that contain (v2, v3). Form a matching of the dual augmentors
of the S1 multiset with the dual augmentors of the S2 multiset, and let (A1, A2) be
one such pair in the matching. Consider the multigraph C(A1, A2) constructed from
A1 ∪ A2 by adding nodes u1 and v1, replacing the edges (u2, u3) and (v2, v3) in A1

and A2 with edges (u1, u2), (u1, u3), (v1, v2), and (v1, v3), and then adding the edge
e = (u1, v1). As we will prove below in Lemma 4.6, C(A1, A2) has a valid augmentor
sum for all pairs (A1, A2). This is enough to prove our lemma, since we can then use
Lemma 4.1 to deduce that the entire graph S∗ has a valid augmentor sum. Specifi-
cally, we define a collection B of edge subsets of S∗ as the set of dual augmentors in
the valid augmentor sums of S1 and S2 with cover number x, except that for every
pair (A1, A2) as above, we replace A1 and A2 with C(A1, A2). This creates exactly x
sets containing each edge e = (u1, v1), (u1, u2), (u1, u3), (v1, v2), and (v1, v3). Since
every edge e′ of S∗ is contained in exactly x sets of B, we can apply Lemma 4.1 to
prove that S∗ has a valid augmentor sum if all sets C(A1, A2) have valid augmentor
sums.

Lemma 4.6. Let A1 and A2 be node-disjoint dual augmentors, and let C =
C(A1, A2) be a multigraph created from A1 and A2 as described in the proof of
Lemma 4.5. Then C has a valid augmentor sum.

Proof. Rather than providing a valid augmentor sum individually for all possible
graphs C resulting from the pairing of the different types of dual augmentors, we give
three simple rules that reduce most such possible graphs to trivial cases. Each of
these rules decomposes C into smaller graphs, such that if all these smaller graphs
have valid augmentor sums, then by Lemma 4.1 C also has a valid augmentor sum.
We will call a structure reducible if at least one of these three rules can be applied
to it, and irreducible otherwise. To prove that C has a valid augmentor sum, we will
recursively apply these three rules to C until we obtain irreducible structures and then
prove that these irreducible structures have valid augmentor sums, which implies that
C must also have a valid augmentor sum by Lemma 4.1. Figure 4.3 illustrates these
rules (for a detailed description see below).

Rule 1: C1 C2
v ⇐ C1

v
C2

v

Rule 2: C1

C2

C3
v ⇐ C1

C2

v C1

C3
v

C2

C3
v

Rule 3: C1 C2

P1

P2

u v ⇐ C1 C2

P1
u v

C1 C2

P2

u v
P1

P2

u v

⇐ C1

P1
u v

C1

P2

u v
C2

v
C2

P1

P2

u v

Fig. 4.3. Rules for decomposing graphs into easier cases to prove the existence of augmentor
sums.

Rule 1. Suppose C contains a vertex v ∈ M of degree 2, the removal of which
disconnects C into components C1 and C2. If C−C1 and C−C2 have valid augmentor
sums, then by Lemma 4.1 C also has a valid augmentor sum, as the edge sets of C−C1

and C −C2 cover every edge of C exactly once. We can also apply a similar rule if v
is of degree 3, and removing it disconnects C into 3 connected components.

Rule 2. Suppose C contains a vertex v �∈ M of degree 3, the removal of which
disconnects C into components C1, C2, and C3. As above, if C − C1, C − C2, and
C −C3 have valid augmentor sums, then so does C, as these sets cover every edge of

694 ELLIOT ANSHELEVICH AND ADRIANA KARAGIOZOVA

C exactly twice.
Rule 3. Suppose C contains two vertices u and v of degree 3, the removal of

which partitions C into components C1, C2, P1, and P2 as in Figure 4.3, where P1

and P2 are paths. As above, if C−P1, C−P2, and C−C1−C2 have valid augmentor
sums, then so does C, since those graphs cover every edge of C twice. Similarly, if
C − P1 − C2, C − P2 − C2, C − C1 − P1 − P2, and C − C1 have valid augmentor
sums, then so does C. We apply the first variant of Rule 3 when either u, v ∈ M or
u, v /∈ M , since it is then that the cycle C − C1 − C2 has a valid augmentor sum (if
u, v ∈ M , then it is a sum of two dual augmentors, with u and v having degree 1 in
each). We apply the second variant when u /∈ M and v ∈ M , since then v always has
degree 1 or 3, as needed by Definition 3.1.

To illustrate the use of these rules, consider the following example. Let A1 be a
dual augmentor of Type-1c, A2 be a dual augmentor of Type-2, and u /∈ M lie on
one of the cycles of A1. Moreover, suppose that the node of degree 3 on the same
cycle of A1 is in M . Then we would apply the second version of Rule 3, as shown in
Figure 4.4. The first two resulting structures are dual augmentors (of Type-1b and
Type-1c), and so they each have a valid augmentor sum. If we can show that the last
two resulting structures also have valid augmentor sums, then we know that C also
has a valid augmentor sum, since Rule 3 is such that the resulting structures contain
each edge of C exactly the same number of times. At this point, we can apply any of
the three rules to the resulting structures in order to decompose them further.

A1 A2

u v
e ⇐

Rule3

u u v u v

Fig. 4.4. Sample reduction for Lemma 4.5.

Graphs like the last one in Figure 4.4, however, and graphs of similar structure
are irreducible and yet are not dual augmentors. For these types of graphs we show
a valid augmentor sum directly in Figure 4.5. Notice that if the leftmost node of M
is substituted by a cycle, the same augmentor sum is valid.

×2 = + +

×4 = + + + + +

×2 = + + + + + +

×2 = + +

×2 = + + + + +

×1 = + + + +

Fig. 4.5. Proof that the last remaining case of Lemma 4.5 has a valid augmentor sum. Small
circles indicate nodes of M , so this shows all possible cases. Notice that structures on the right are
dual augmentors because they are objects from Figure 3.2 and nodes of M have degree 1 or 3.

It is easy to check that no matter what two structures A1 and A2 from Figure 3.2
are patched together to form C = C(A1, A2), we can always decompose them via
repeated application of the above three rules into irreducible structures which are
either dual augmentors (and so trivially have a valid augmentor sum) or a structure
in Figure 4.5, for which we explicitly gave a valid augmentor sum. For completeness,

TERMINAL BACKUP, 3D MATCHING, AND COVERING GRAPHS 695

the full description of the types of structures resulting from patching together dual
augmentors, and the order of applying the three rules to those structures, can be found
in Table A.1 in the appendix. These irreducible structures all have valid augmentor
sums, and since we obtained them through repeated applications of our three rules,
we know that we can use these structures to cover every edge of C exactly the same
number of times. By Lemma 3.4, this implies that C has a valid augmentor sum.

The only case left now is if S∗ is bridgeless, but not 3-edge-connected, which is
addressed below.

Lemma 4.7. Assume that all cubic multigraphs smaller than S∗ have a valid
augmentor sum and that S∗ is bridgeless but contains two edges e1 and e2, the removal
of which disconnects it. Then S∗ has a valid augmentor sum.

Proof. The proof of this lemma is similar to Lemma 4.5: we decompose S∗ into
two smaller cubic graphs S1 and S2, and form augmentor sums of each. Then we
show that after patching together a dual augmentor of S1 with a dual augmentor of
S2, we get an object that itself has a valid augmentor sum. Note that the “patching”
process here is different from Lemma 4.5.

We assumed that S∗ is bridgeless. Let e1 = (u1, v1) and e2 = (u2, v2), so that
u1, u2 are in the same connected component of S∗ − e1 − e2. We proceed as in the
proof of Lemma 4.5 to form two smaller cubic multigraphs S1 and S2 by removing e1
and e2, and forming two new edges (u1, u2) and (v1, v2), as in Figure 4.6. Notice that
the four nodes u1, u2, v1, and v2 must be distinct, since if u1 = u2, then the third
edge incident to u1 would be a bridge.

e1

e2

u1 v1

u2 v2

⇒
u1 v1

u2 v2

S1 S2

Fig. 4.6. Breaking a 2-edge-connected bridgeless S∗ into two smaller cubic multigraphs.

Similar to Lemma 4.5, there exist valid augmentor sums for S1 and S2 with cover
number x. This means that there exists a multiset of size x of dual augmentors
in S1 that contain (u1, u2) and another multiset of size x of dual augmentors in S2

that contain (v1, v2). Pair up the dual augmentors of the S1 multiset with the dual
augmentors in the S2 multiset, and let (A1, A2) be one such pair. Consider the cubic
multigraph C resulting from removing (u1, u2), (v1, v2) and adding e1 and e2 to A1

and A2. We will now show that C has a valid augmentor sum, regardless of the types
of A1 and A2, which finishes the proof using Lemma 4.1.

Figure 4.7 shows what each dual augmentor might look like once the edge (u1, u2)
(similarly (v1, v2)) is removed. The graph C is simply the joining of two of these
objects along the two “connector” vertices (marked with empty nodes).

It is easy to see that all possible ways to join these objects to form C have already
been proven to have a valid augmentor sum in Lemma 4.6, with the exception of the
graph formed when the two dual augmentors A1 and A2 are of Type-2. Figure 4.8
shows the valid augmentor sum for this graph, which completes the proof of the
lemma. For completeness, see Table A.2 for all possible ways to join together two
objects from Figure 4.7. All of the resulting objects have valid augmentor sums, as

696 ELLIOT ANSHELEVICH AND ADRIANA KARAGIOZOVA

Fig. 4.7. Dual augmentors with an edge removed. From left to right these are Type-1a, Type-0,
two versions of Type-1b (depending which edge is removed), two versions of Type-1c, and Type-2.

×2 = + + +

×2 = + +

×2 = + + + + + +

×2 = + + +

×2 = + + +

×2 = + + + + + + +

×1 = + + + + +

Fig. 4.8. Proof that the last remaining case of Lemma 4.7 has a valid augmentor sum. Small
circles indicate nodes of M , so this shows all possible cases. The structures on the right are dual
augmentors because they are objects from Figure 3.2 and nodes of M have degree 1 or 3.

desired.

4.2. Special case: |M | = 1. This section is devoted to the special case where
|M | = 1 and S∗ is 3-edge-connected.

Lemma 4.4. If S∗ is 3-edge-connected, and |M | = 1, then there exists a valid
augmentor sum of S∗. Moreover, every dual augmentor in this sum that contains the
node in M also contain all edges incident to this node.

Proof. We proceed by induction. The smallest cubic graph with |M | = 1 is a
graph on two nodes. This graph is either a Type-2 dual augmentor or a Type-1 dual
augmentor, and so the lemma holds for this base case.

We now assume that the statement of the lemma holds for all cubic multigraphs
smaller than S∗. If there does not exist a cut of size 3 with more than a single node
on each side, then the lemma holds for S∗ by Lemma 4.8, which is proved below.
Therefore, we assume that there exists such a cut of size 3, and prove the inductive
step for this case.

This proof is similar to the proofs of Lemmas 4.5 and 4.7. Let the cut of size 3
be {e1, e2, e3}, and let M = {r}. Form two new 3-edge-connected cubic multigraphs
S1, S2 by contracting each side of the cut into a single node, with r ∈ S1. S1 is a
smaller graph with a single node of M , so by the inductive hypothesis, there exists a
valid augmentor sum α1 of S1. Let v be the node of S2 representing the contracted
side of the cut, which included the node r. Here we have a choice: do we say whether
v is in M or not? Denote the first graph with v ∈ M as S2 and the second graph with
v �∈ M as S′

2. In the first case, S2 is a graph with a single node of M , which must have
some valid augmentor sum α2, with cover number y, by the inductive hypothesis. In
the second case, S′

2 would have no nodes in M , so by Lemma 4.3, we also have a valid
augmentor sum α′

2, with cover number y′.
We can say something more specific about α2 and α′

2. Since S′
2 is a 3-edge-

connected graph with no nodes in M , by Lemma 4.3 we can assume that α′
2 is a

cycle cover (i.e., the only dual augmentors appearing in it with positive weight are

TERMINAL BACKUP, 3D MATCHING, AND COVERING GRAPHS 697

cycles). In particular, all dual augmentors containing v in α′
2 contain exactly two

edges incident to v. As for α2, we know by the inductive hypothesis that all dual
augmentors containing v in α2 contain all three edges incident to it. Similarly, all
dual augmentors containing r in α1 must contain all edges incident to it.

Now let w be the node of S1 representing the contracted side of the cut. Let a be
the number of times w appears in a dual augmentor of α1 containing all 3 edges of
w, and let b be the number of times w appears in a dual augmentor of α1 containing
exactly two edges of w. Since w �∈ M , these are the only options, and so the cover
number of α1 is a+ 2b/3.

The idea is that we are going to attach α2 to the a dual augmentors above, and
α′
2 to the other b dual augmentors. To do this, let x be the least common multiple

of y and 3y′/2, and form new augmentor sums xα1,
xa
y α2, and

2xb
3y′ α

′
2. This means

that we now have xb dual augmentors containing exactly two edges of w in S1, and
xb dual augmentors containing exactly two edges of v in S′

2, the latter coming from
2xb
3y′ α

′
2. Just as in Lemmas 4.5 and 4.7, we can place these dual augmentors into pairs

(A1, A2). Furthermore, since dual augmentors covering exactly two edges of a node
must appear in triples (so that all edges are covered the same number of times), we
can make sure that in every pair (A1, A2), both A1 and A2 use the same two edges
from the set {e1, e2, e3}. We can then form a multigraph C in S∗ by patching A1 and
A2 together; i.e., C consists of edges in S∗ corresponding to either A1 or A2. Since all
dual augmentors in α′

2 are cycles, C must be a dual augmentor, since patching a dual
augmentor in this manner together with a cycle results in a dual augmentor again.

We now consider the xa dual augmentors containing exactly three edges of w
in S1, and xa dual augmentors containing exactly three edges of v in S2, the latter
coming from xa

y α2. We pair them up in the same way and patch them together to

form subgraphs C = A1 ∪ A2 for each pair (A1, A2). All structures C that can be
formed in this way are dual augmentors.

By taking the above subgraphs C, together with the dual augmentors of α1, α2,
and α′

2 that do not intersect v or w, we form a valid augmentor sum for S∗, as
desired. Moreover, notice that C = A1 ∪ A2 contains edges incident to r exactly
when A1 contains them, and so if C contains r, it must also contain all edges incident
to r.

The most difficult subcase of Theorem 3.5 is proven in the following lemma, which
requires different techniques from most of our other proofs. We prove the cases when
S∗ is planar and nonplanar separately. For the nonplanar case, we show that there
must be some subdivision of K3,3 containing the node of M , and from this we form
a valid augmentor sum using Theorem 4.2. In the planar case, we use powerful edge-
coloring results (see Figure 4.10). The following lemma finishes our proof that every
cubic graph has a valid augmentor sum.

Lemma 4.8. Assume that S∗ does not have a cut of size 3 with more than a single
node on each side. If S∗ is 3-edge-connected, and |M | = 1, then there exists a valid
augmentor sum of S∗. Moreover, every dual augmentor in this sum that contains the
node in M also contain all edges incident to this node.

Proof. Let M = {r}, the three nodes adjacent to r be v1, v2, v3, and denote the
edge (r, vi) by ei. First, we address the nonplanar case.

Nonplanar. Assume that S∗ is not planar. A subdivision of K3,3 is a graph with
nodes s1, s2, s3 and t1, t2, t3 with a node-disjoint path between every si and tj . We

698 ELLIOT ANSHELEVICH AND ADRIANA KARAGIOZOVA

first want to show that there exists a subdivision of K3,3 as a subgraph of S∗ with r as
one of the degree-3 nodes in this K3,3, which we do in a separate technical Lemma 4.9.

v1’

r
v1

v2

v3

v2’ v3’

u1 u2

s

t

s

t

Fig. 4.9. Proof of Lemma 4.8. (Left) A subdivision of K3,3. (Middle) An s-t path with
t ∈ P (u1, v′1). (Right) An s-t path with t ∈ P (u1, v′2).

Let K be this K3,3 instance, and let σ(K) be the subdivision of it found above.
That is, σ(K) is a subgraph of S∗ with nodes r, u1, u2 and v′1, v′2, v′3 and a node-
disjoint path between every ui and v′j , as well as between r and every v′j . As pictured
in Figure 4.9, we let v′1, v′2, v′3 be the nodes adjacent to r in K, with v′i appearing
at the end of a path in σ(K) starting at vi, and we let u1, u2 be the nodes in K
that are at distance 2 from r. Define P (r, v′j) and P (ui, v

′
j) to be the node-disjoint

paths described above for j = 1, 2, 3 and i = 1, 2, and let P be the collection of these
9 paths. In general, for any u, v contained in the same path of P , define P (u, v) to
be the unique path in σ(K) that does not go through any degree 3 node except at its
endpoints.

Next we want to show that there exists such a σ(K) with the length of P (r, v′j)
equal to 1 for all j. Take σ(K) as above so that the lengths of P (r, v′j) are minimal.
Suppose that there exists some path P with endpoints s, t ∈ σ(K), disjoint from σ(K)
except at endpoints, with s ∈ P (r, v′1) and s �= v′1. If t ∈ P (v′1, u1), then we can form
a new K3,3 subdivision by replacing P (t, v′1) with P , as in Figure 4.9(Middle). This
shortens the length of P (r, v′1), since s becomes the “new” v′1, giving a contradiction.
If t ∈ P (u1, v

′
2), we can similarly redesign K by replacing P (u1, v

′
1) with P and

making t the “new” u1, as in Figure 4.9(Right). This also shortens P (r, v′1), and all
other cases with s ∈ P (r, v′j) and t ∈ P (ui, v

′
k) can be reduced to these for any i, j, k.

Therefore, we can assume that all paths from nodes in P (r, v′j) must pass through
v′1, v

′
2, v

′
3 to reach nodes outside of ∪jP (r, v′j). Let ej be the edge closest to v′j on the

path P (r, v′j). The above reasoning implies that {e1, e2, e3} is a cut in the graph S∗.
In the statement of the lemma we assumed that this is impossible unless one side of
the cut is a single node. Since distinct nodes u1 and u2 are on the same side of this
cut, this implies that r is the only node on one side of this cut, and so |P (r, v′j)| = 1
for all j. Thus, from this point on we can assume that vj = v′j .

Take this σ(K), which is really the union (although not a valid sum) of two Type-2
dual augmentors containing r: one with degree 3 at u1, and one with degree 3 at u2;
both with degree 3 at r. Set the α value of each of these two dual augmentors to 1.
To form a valid augmentor sum, it is enough to cover all edges not in σ(K) by two
dual augmentors, and all edges in σ(K) not adjacent to r by one dual augmentor.
We do not need to cover the edges adjacent to r anymore, since we already covered
them with two dual augmentors, and so we may as well remove them. Call the graph

TERMINAL BACKUP, 3D MATCHING, AND COVERING GRAPHS 699

formed by removing r and its incident edges S′. All nodes in this graph have degree 3,
except for v1, v2, and v3, which have degree 2.

We now apply Theorem 4.2 to S′, with the capacity of an edge being 1 if this
edge was in σ(K), and 2 otherwise. We know that we can cover this graph with
cycles in the desired manner if for every cut C, we have that for all e ∈ C, cap(e) ≤∑

e′∈C−e cap(e
′). Consider an arbitrary cut C. If all nodes v1, v2, and v3 are on the

same side of the cut, this C is also a cut in S∗. Since S∗ is 3-edge-connected, C must
consist of at least three edges, and since the edge capacities are either 1 or 2, we know
that the desired inequality holds. Therefore, we can assume that not all nodes vj are
on the same side of the cut. Without loss of generality, assume that C disconnects
v1 from nodes v2 and v3. If the cut C is simply (v1, S

′ − v1), i.e., if v1 is the only
node on one side of the cut, then C consists of two edges that are incident to v1,
both with capacity 1 (since they are both in σ(K)). Therefore, we once again have
that for all e ∈ C, cap(e) ≤ ∑

e′∈C−e cap(e
′). The final case is if there is another

node w �= v1 that is on the same side of the cut as v1. We will show that C must
contain at least 3 edges, and thus that the desired inequality holds. Suppose to the
contrary that C consists of only two edges. Now consider the cut C ∪ {(r, v1)} in
S∗. This cut disconnects r from w, since if it did not, then there would be a path
from v2 or v3 to w in S′ that does not use edges of C. This gives us a set of three
edges that disconnects the graph S∗. Both sides of this cut contain more than a single
node (one side contains at least r, v2, and v3, and the other contains at least v1 and
w). By our assumption in the statement of the lemma, this is not possible, giving
us a contradiction. Therefore, there exists a circuit sum of this graph, giving us a
valid augmentor sum together with the the augmentors in σ(K). As in the proof of
Lemma 4.3, this is a fractional augmentor sum, since each dual augmentor is assigned
a fractional weight, such that the sum of the weights for dual augmentors containing
any edge equals 2. To form a valid augmentor sum where each augmentor is used an
integral number of times, we can simply multiply this fractional weight assignment
by a large enough integer x to form a valid augmentor sum with cover number 2x.
Notice in addition that all dual augmentors in this sum containing r also contain all
3 edges incident to r, as desired.

Planar. We now address the planar case. Tait [40] showed that the Four Color
Theorem [5, 35] is equivalent to the following statement: “Every 2-edge-connected
cubic planar graph is edge-3-colorable.” Take such a coloring of S∗, where each color
just forms a perfect matching. Call these matchings M1,M2,M3 and form symmetric
differences M1�M2, M2�M3, and M3�M1. Each of these is a set of node-disjoint
cycles, with every edge being in exactly two of these. Consider what M1�M2 looks
like with respect to r, and let C1 be the cycle of it containing r, and C2 be the cycle
of it containing the node adjacent to r attached by an edge e of M3. Form a dual
augmentor by taking C1 ∪ C2 ∪ {e} (note that C1 may equal C2). Figure 4.10 shows
what this object can look like. To check that this is a dual augmentor, notice that
the only nodes of degree 3 are the endpoints of e, since C1 and C2 are node-disjoint.
The only node of M is r, which has degree 3, as desired.

Now, take all the cycles of M1�M2,M2�M3,M3�M1, but replace C1, C2 by
C1 ∪ C2 ∪ {e} (and similarly for M2�M3 and M3�M1). If we take all of these dual
augmentors and cycles, we get a dual augmentor cover that covers the edges next to
r three times and all the other edges twice. Remove r and its adjacent edges, forming

700 ELLIOT ANSHELEVICH AND ADRIANA KARAGIOZOVA

M1

r
M2

M3

M1

M2

M1

r M2
M3

M1

M2

Fig. 4.10. The planar case in Lemma 4.8. (Left) C1 �= C2. (Right) C1 = C2.

a new graph S′. As in the nonplanar case, we can use Theorem 4.2 to show that
we can cover the resulting graph with cycles so that every edge appears in exactly
the same number x of cycles. Together this gives a valid augmentor sum, since we
can multiply the cover above by x, combine it with the cycle cover, and end up with
a valid augmentor sum with cover number 3x. As in the nonplanar case, all dual
augmentors containing r also contain the three edges incident to r.

Lemma 4.9. If the conditions of Lemma 4.8 are met, and S∗ is nonplanar, then
there exists a subdivision of K3,3 as a subgraph of S∗ with the node of M as one of
the degree 3 nodes in this K3,3.

Proof. The proof of this lemma is due largely to Paul Seymour. Let M = {r}, the
three nodes adjacent to r be v1, v2, v3, and denote the edge (r, vi) by ei. A subdivision
of K3,3 is a graph with nodes s1, s2, s3 and t1, t2, t3 with a node-disjoint path between
every si and tj . We want to show that there exists a subdivision of K3,3 as a subgraph
of S∗ with r as one of the degree 3 nodes in this K3,3.

To derive that this must hold, we use Theorem 2.4 in [34] by Robertson and Sey-
mour. For completeness, we restate this theorem here, with all the relevant notation
from [34]. A society is a pair (G,Ω) where G is a graph and Ω is a cyclic permutation
of a subset of nodes Ω∗ in G. A separation of a society (G,Ω) is a pair of subgraphs
(G1, G2) where G1 ∪G2 = G, E(G1 ∩G2) = ∅, and Ω∗ ⊆ V (G2). By V (G) and E(G)
we denote the nodes and edges of a graph G, respectively. We say that a separation
(G1, G2) is a k-separation if |V (G1 ∩ G2)| ≤ k, and V (G2) �= V (G). We say that
(G,Ω) is k-connected if it has no k′-separation for k′ < k. Additionally, we define
cross, tripod, and rural.

Definition 4.10. Let u1 and u2 be distinct vertices of G. A tripod is a set of
nodes s1, s2, s3 ∈ V (G) and t1, t2, t3 ∈ Ω∗ together with mutually node-disjoint paths
(except at their endpoints) from every ui to sj (i = 1, 2, j = 1, 2, 3), and from each
sj to tj (j = 1, 2, 3). Thus, a tripod consists of 9 disjoint paths.

Definition 4.11. A society (G,Ω) is rural if G has a drawing Γ in the plane
without crossings (so G is planar), and there is a closed disc Δ in the plane, such
that

(i) the drawing Γ uses no points outside the disc Δ, and
(ii) for v ∈ V (G), the point of Γ representing v lies on the boundary of Δ if and

only if v ∈ Ω∗. Moreover, the points on the boundary appear clockwise in the
order Ω.

We will not define precisely the term cross (see [34] for the exact definition), since
for our purposes it suffices to point out that a cross cannot exist unless |Ω∗| ≥ 4. We

TERMINAL BACKUP, 3D MATCHING, AND COVERING GRAPHS 701

are now ready to state Theorem 2.4 from [34].

Theorem 4.12 (see [34]). Let (G,Ω) be a 3-connected society with no cross or
tripod. Then (G,Ω) is rural.

We now apply Theorem 4.12 to our graph S∗ with a single node r of M . Specif-
ically, delete r and its adjacent edges from S∗ to form a new graph S′. Set Ω∗ =
{v1, v2, v3}, and let a permutation Ω of the elements of Ω∗ be (v1, v2, v3). To apply
Theorem 4.12, we must show that the society (S′,Ω) is 3-edge-connected. Suppose
to the contrary that there exists a 2-separation of (S′,Ω). That is, by definition
of 2-separation, we assume that there exist two subgraphs G1 and G2 such that
G1 ∪G2 = S′, E(G1 ∩G2) = ∅, Ω∗ ⊆ V (G2), |V (G1 ∩G2)| ≤ 2, and V (G2) �= V (S′).
Let u1 and u2 be the two (possibly not distinct) nodes in V (G1∩G2), and let w be the
node that must exist in V (S′)\V (G2). The above definition of 2-separation simply
implies that by removing nodes u1 and u2 from S′, we disconnect all the remaining
nodes of Ω∗ from the node w. Consider what this statement means for the original
graph S∗. Since r connects exactly to the nodes of Ω∗, it is equivalent to saying
that removing nodes u1 and u2 from S∗ disconnects r from w. Since S∗ is cubic,
this implies that there is an edge-cut of size 2 that disconnects r from w, which is a
contradiction with S∗ being 3-edge-connected. Therefore, we have shown that S′ is
3-edge-connected as well.

We now apply Theorem 4.12 to the society (S′,Ω). We know that (S′,Ω) cannot
contain a cross, since |Ω∗| = 3. Our goal is to show that (S′,Ω) contains a tripod,
so to do this we must prove that (S′,Ω) is not rural. Suppose to the contrary that
(S′,Ω) is rural. In this case, we can draw S′ in the plane without edge crossings, with
the nodes v1, v2, v3 on the outer face. Using this drawing, we could show that S∗ is
planar, since we could add r to the outer face of the drawing and attach it to nodes
v1, v2, v3 without adding edge crossings. Since S∗ is not planar, we know that S′ is
not rural. Therefore, by Theorem 4.12, S′ must have a tripod. A tripod combined
with r and e1, e2, e3 gives us exactly a subdivision of K3,3.

5. Running time. Here we argue that our algorithm given in section 2 runs
in polynomial time. We can find the initial perfect matching using the unweighted
version of the Simplex Matching algorithm from [38]. If we are applying this to
Terminal Backup or similar problems, then there always exists a perfect matching
without 3D edges, so we can find it using traditional matching algorithms.

Theorem 5.1. Our algorithm solves Simplex Matching with integer costs in
polynomial time.

Proof. Let OPT be the cost of the minimum-cost perfect matching M∗, and let
M be some perfect matching. As mentioned before, M∗�M is an M -alternating
2-factor. By Lemma 3.4 and Theorem 3.5 we know that there exists an augmentor

A with φM (A) ≥ φM (M∗�M)
n , where n is the number of nodes in G. By Lemma 2.3

we can efficiently find an M -alternating 2-factor S such that φM (S) ≥ φM (A). Since
φM (M∗�M) = cost(M) − OPT , then every time we augment in our algorithm, we
decrease the cost by at least (cost(M)−OPT)/n.

Therefore, in the above algorithm, if we start with a matching that is D more
expensive than OPT, then we will decrease D by at least a factor of n−1

n at every
step. So at the kth step we have a solution of cost at most

702 ELLIOT ANSHELEVICH AND ADRIANA KARAGIOZOVA

D ·
(
n− 1

n

)k

+OPT.

Therefore, it will take

logD

log(n/n− 1)

steps until we find a perfect matching with cost(M)−OPT < 1. Since we have integer
weights, this matching must be optimal:

log
n

n− 1
= logn− log(n− 1) > 1/n,

so we require at most n logD steps. In general, D can be as large as n · cmax,
where cmax is the maximum cost of any edge (or the ratio between the maximum
and minimum costs), so the total necessary number of invocations of Lemma 2.3 is
O(n log n+ n log cmax). For most of our applications, however, we can find an initial
matching which is a close approximation to OPT , and so D < OPT .

Done in a naive manner, each invocation of Lemma 2.3 consists of running a min-
cost weighted matching algorithm for every pair of 3D edges. This could take as long
as O(n3m2), where m is the number of 3D edges. However, there are some simple
ways to make this step run faster. We could take advantage of the fact that the min-
cost matchings that we are calculating are closely related. If we use an “augmenting
path” algorithm for calculating min-cost matchings [16], then each calculation takes
only O(n2) time, giving us a running time of O(n3 + n2m2) for each invocation of
Lemma 2.3. We can reduce this running time further in the geometric setting. Finally,
notice that not all pairs of 3D edges need to be considered. A lot of the pairs can be
eliminated in advance, significantly reducing the running time. This is especially true
when applying this algorithm to the Terminal Backup problem, or to any problem
involving covering instead of exact matching. Even in general settings, we do not
need to consider pairs of 3D edges (e1, e2) if e1 �∈ M is adjacent to a 3D edge of M
that is not e2. For more details on optimizing the running time, see Xu, Ansheleuch,
and Chiang [41].

Recall that in the first step of the algorithm we find an unweighted perfect match-
ing, which can be done in time O(m2) using [38]. In the worst case, we can assume that
m is Ω(n). Therefore, the total bound on the running time of our algorithm (without
any optimizations) is O(n3m2 log n+n3m2 log cmax). Since the running time depends
on log cmax, it is polynomial-time, but not strongly polynomial-time.

In the case where the edge costs are not integer, the running time will depend on
how these costs are represented. By running the augmentation algorithm until the
improvement is at most ε, we can obtain an algorithm that finds a solution that costs
at most OPT + ε in time polynomial in logD, log(1/ε), and n. At this time, it is
still an open question whether a strongly polynomial-time algorithm exists to find a
min-cost Simplex Matching.

6. Conclusion: Solving problems using SimplexMatching. In this section
we show how several different problems can be solved using our algorithm for Simplex
Matching, which we presented in section 2.

Project Assignment. Consider the Project Assignment problem described in the

TERMINAL BACKUP, 3D MATCHING, AND COVERING GRAPHS 703

introduction. It easily reduces to Simplex Matching as follows. First notice that if the
optimal solution forms groups larger than 3, then there is an equivalent solution with
groups of only 2 and 3 students. This is because we can always break up a group of size
more than 3 into groups of size 2 and 3 that are working on the same project. Define
the cost of assigning a student s to a project p to be L−u(s, p) for some large constant
L that is greater than all utilities u(s, p). Now, form a complete graph H with the
students as nodes of H , 2D edges (s1, s2) representing the smallest cost of assigning
students s1 and s2 to a project together, and 3D edges representing the same cost
for triples of students. In other words, c(s1, s2) = minp{L− u(s1, p) + L − u(s2, p)},
and similarly, c(s1, s2, s3) = minp{3L − u(s1, p) − u(s2, p) − u(s3, p)}. The Simplex
Condition will hold in any such H created from an instance of Project Assignment.
All possible 2D edges (s1, s2) exist and if an edge (s1, s2, s3) corresponds to a project
p, then c(si, sj) ≤ 2L − u(si, p) − u(sj , p) for any pair of students (si, sj) (Figure
1.1(b)), by definition of c(si, sj). Therefore, c(s1, s2) + c(s2, s3) + c(s1, s3) ≤ 6L −
2u(s1, p) + 2u(s2, p) + 2u(s3, p). This gives us the inequality portion of the Simplex
Condition.

By finding the min-cost perfect matching in H , we also find the best solution to
the Project Assignment problem. This is simply because a perfect matching in H
will have a cost of Ln minus the cost of a project assignment, and for every project
assignment with groups of at most 3 people there must exist a corresponding perfect
matching in H .

Terminal Backup. The reduction from Terminal Backup to Simplex Matching
is more complicated (see [41] for details). First, we can assume that all connected
components of an optimal solution to Terminal Backup are either a path between two
terminals or a star with three terminals as the leaves and a Steiner node at the center.
(Technically, a connected component can be a star with more than 3 leaves, but then
we can think of it as several edge-disjoint stars with at most 3 leaves.) With this
assumption we can form a complete graph H with terminals as the nodes. We set the
cost c(u, v) of a 2D edge in H to be the cost of the cheapest path connecting u and
v, and the cost c(u, v, w) of a 3D edge to be the cost of the cheapest star connecting
all three terminals u, v, and w. As with Project Assignment, any such graph H will
satisfy the Simplex Condition. Consider an instance of Terminal Backup shown in
Figure 1(c). There are three terminals u1, u2, and u3 and a single Steiner node p.
Let c(ui, uj) be the cost of the cheapest path connecting terminal ui to terminal uj

and c(u1, u2, u3) be the cost to connect all three terminals through p. Notice that if
we wanted only to connect ui to uj, we could connect them through p, so we obtain
that c(u1, u2) + c(u1, u3) + c(u2, u3) ≤ 2 c(u1, u2, u3).

The min-cost Simplex Matching in H will give us the connected components for
the optimum solution of the Terminal Backup instance. To see this, consider the
optimum solution OPT of the Terminal Backup instance. By the argument in [41],
it consists of a union of edge-disjoint cheapest paths between pairs of terminals and
edge-disjoint cheapest stars joining triples of terminals. This cost is exactly the cost
of some matching in H . Conversely, every perfect matching M in H with cost α can
be used to form a solution to Terminal Backup with cost at most α, just by taking
the stars and paths corresponding to the edges of M , and taking their union.

While the main result of this paper gives a polynomial-time algorithm for finding
the minimum-weight Simplex Matching, we are also concerned with approximation

704 ELLIOT ANSHELEVICH AND ADRIANA KARAGIOZOVA

algorithms. Specifically, there is a simple 4/3-approximation algorithm for Terminal
Backup which is more efficient than the exact algorithm. This approximation algo-
rithm could be useful when we do not care about finding the best solution but instead
are more concerned with the running time. In this algorithm, we form a graph H ′,
which is the same as the graph H above but contains only 2D edges. We then proceed
to find the min-cost edge cover C of H ′. We claim that C has cost at most 4/3 times
the cost of M∗ (the cheapest perfect matching of H), and so the solution consisting
of paths corresponding to edges of C is a 4/3 approximation to Terminal Backup.

To prove the above claim, consider an edge cover C∗ of H ′ formed by taking all
the edges of M∗ and replacing every 3D edge (u, v, w) of M∗ with the cheapest pair of
corresponding 2D edges, i.e., with {(u, v), (v, w)}, {(u, v), (u,w)}, or {(u,w), (v, w)}.
This is an edge cover of H ′ since M is a perfect matching of H , and so cost(C) ≤
cost(C∗). Now consider how much the cost can increase by our replacing a 3D edge
(u, v, w) with two 2D edges as described above. Assume without loss of generality
that these two edges are (u, v) and (v, w). By our choice of the two edges, we know
that c(u, v) + c(v, w) ≤ c(u, v) + c(u,w) and c(u, v) + c(v, w) ≤ c(u,w) + c(v, w).
Therefore, 3(c(u, v) + c(v, w)) ≤ 2c(u, v) + 2c(v, w) + 2(u,w) ≤ 4 c(u, v, w), with the
last inequality being true because of the Simplex Condition. As desired, this tells us
that cost(C) ≤ cost(C∗) ≤ 4

3cost(M
∗).

This approximation algorithm works since the Terminal Backup problem required
only that every terminal be connected to at least one other, and so is essentially a
covering problem, instead of a matching problem. The same algorithm will work for
other applications where we are concerned with only the edge-cover version of the
Simplex Matching problem.

Problems obeying the Simplex Condition. Simplex Matching seems well suited to
solving problems where a set of elements needs to be partitioned into groups of size
2 or 3, and the problem can be made to satisfy the Simplex Condition. Terminal
Backup and Project Assignment are two seemingly different problems of this kind,
since in both the costs satisfy a version of the triangle inequality.

Recently Blocki, Blum, and Williams [9] used the weighted Simplex Matching
algorithm to show that the 2-anonymity optimization problem from data privacy is
efficiently solvable (for a definition of k-anonymity, see [39]; for a discussion of its
complexity, see [31]; and for approximation algorithms, see [3]).

Kidney Exchange (see, e.g., [1, 36]) is another important problem that is rele-
vant to Simplex Matching. It involves pairing potential donors with potential kidney
recipients. Every node is a pair of people, one of whom is willing to donate a kid-
ney, and the other of whom needs a kidney. For example, such a pair might consist
of a husband and wife, with the husband needing a kidney and the wife willing to
donate a kidney to him, but with the kidneys being incompatible. Therefore, every
such pair (node) needs another pair with appropriate compatibilities, so they could
trade kidneys with the other pair [1, 36]. This is more general than a 2D matching
problem because cycles of size 3 are also acceptable (where kidneys are traded along
the cycle), and this is a weighted problem because there are different levels of com-
patibility between donors and recipients. Unfortunately, this is not directly reducible
to Simplex Matching, since the nature of compatibilities makes the underlying graph
directed (i.e., if pair (u1, u2) can give pair (v1, v2) a kidney, this does not mean that
(v1, v2) can give (u1, u2) a kidney), and so the Simplex Condition does not hold. Ex-
tending the ideas from Simplex Matching to design better approximation algorithms
for Kidney Exchange remains an interesting research direction.

TERMINAL BACKUP, 3D MATCHING, AND COVERING GRAPHS 705

Appendix. Detailed case analysis of graph decompositions in Lemmas
4.5 and 4.7.

A

B

C

D

E

F

G

H

I

Fig. A.1. All possible structures C(A1, A2) that can be created by patching together disjoint
dual augmentors A1 and A2 as described in the proof of Lemma 4.5. See Table A.1 for their
descriptions. Note that we are not including the structures formed from dual augmentors of Type
1a or 1b (only 1c), but the arguments and descriptions for C(A1, A2) involving those structures are
completely analogous: just replace one or two loops with a node in M.

Table A.1

A full list of structures C(A1, A2) (see Lemmas 4.5 and 4.6) and how to decompose them using
one of the three rules given in the proof of Lemma 4.6. The first column gives one of the structures
in Figure A.1, the second column says which types of dual augmentors could create such a structure
by being patched together, and the third and fourth columns give a rule that can be used to decompose
this structure.

Structure type Created from patching Decomposed into Using rule

A Type 0 and Type 1c Dual augmentors Rule 3
B Type 0 and Type 1c Dual augmentors Rule 1 or 2
C Type 0 and Type 2 Dual augmentors Figure 4.5
D Type 1c and Type 1c Dual augmentors and Structure A Rule 3
E Type 1c and Type 1c Dual augmentors and Structure B Rule 3
F Type 1c and Type 1c Dual augmentors and Structure B Rule 1 or 2
G Type 1c and Type 2 Dual augmentors and Structure C Rule 3
H Type 1c and Type 2 Dual augmentors and Structure C Rule 1 or 2
I Type 2 and Type 2 Dual augmentors and Structure C Figure 4.5

706 ELLIOT ANSHELEVICH AND ADRIANA KARAGIOZOVA

Table A.2

A full list of structures formed by combining two node-disjoint dual augmentors A1 and A2 into
a multigraph C using the patching process described in the proof of Lemma 4.7. Removing an edge
from a dual augmentor results in one of the objects in Figure 4.7. Number those objects from left to
right (Types 1–7). C is a result of joining any two of these objects along the two connector nodes.
The first column lists all possible pairs that could be joined together to form C. The second column
describes what the result looks like. “Equivalent to” means that some of the loops in Figure A.1 are
replaced with nodes in M , which does not change any of the arguments about those sets having valid
augmentor sums.

Types of objects we join together Structure of resulting C

Type 1 + Type 1 Two dual augmentors of Type 1a
Type 1 + Type 2 Dual augmentor of Type 1a
Type 1 + Type 3 Equivalent to Structure B in Figure A.1
Type 1 + Type 4 Two dual augmentors of Type 1a and 1b
Type 1 + Type 5 Equivalent to Structure B in Figure A.1
Type 1 + Type 6 Two dual augmentors of Type 1b
Type 1 + Type 7 Equivalent to Structure A in Figure A.1
Type 2 + Type 2 Dual augmentor of Type 0
Type 2 + Type 3 Dual augmentor of Type 1b
Type 2 + Type 4 Dual augmentor of Type 1b
Type 2 + Type 5 Dual augmentor of Type 1c
Type 2 + Type 6 Dual augmentor of Type 1c
Type 2 + Type 7 Dual augmentor of Type 2
Type 3 + Type 3 Equivalent to Structure A in Figure A.1
Type 3 + Type 4 Equivalent to Structure B in Figure A.1
Type 3 + Type 5 Equivalent to Structure A in Figure A.1
Type 3 + Type 6 Equivalent to Structure B in Figure A.1
Type 3 + Type 7 Equivalent to Structure C in Figure A.1
Type 4 + Type 4 Two dual augmentors of Type 1a and 1c (or 1b and 1b)
Type 4 + Type 5 Equivalent to Structure B in Figure A.1
Type 4 + Type 6 Two dual augmentors of Type 1b and 1c
Type 4 + Type 7 Equivalent to Structure A in Figure A.1
Type 5 + Type 5 Equivalent to Structure A in Figure A.1
Type 5 + Type 6 Equivalent to Structure B in Figure A.1
Type 5 + Type 7 Equivalent to Structure C in Figure A.1
Type 6 + Type 6 Two dual augmentors of Type 1c
Type 6 + Type 7 Equivalent to Structure A in Figure A.1
Type 7 + Type 7 See Figure 4.8

Acknowledgments. The authors would like to thank Moses Charikar, Sanjeev
Khanna, and Avi Wigderson for interesting and productive discussions. We especially
thank Paul Seymour for his great contribution to this paper, and Dahai Xu and Mung
Chiang for formulating the Terminal Backup problem.

REFERENCES

[1] D. Abraham, A. Blum, and T. Sandholm, Clearing algorithms for barter exchange markets:
Enabling nationwide kidney exchanges, in Proceedings of the 8th ACM Conference on
Electronic Commerce, ACM, New York, 2007, pp. 295–304.

[2] Z. Abrams, A. Meyerson, K. Munagala, and S. Plotkin, On the Integrality Gap of Capac-
itated Facility Location, Technical report CMU-CS-02-199, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, 2002.

[3] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and

A. Zhu, Approximation algorithms for k-Anonymity, J. Privacy Technology, 2005 (2005),
20051120001.

[4] E. Anshelevich and B. Caskurlu, Exact and approximate equilibria for optimal group net-
work formation, in Proceedings of the 17th Annual European Symposium on Algorithms,
Copenhagen, Denmark, 2009.

TERMINAL BACKUP, 3D MATCHING, AND COVERING GRAPHS 707

[5] K. Appel and W. Haken, Every Planar Map Is Four-Colorable, Contemp. Math. 98, AMS,
Providence, RI, 1989.

[6] E. Arkin, R. Hassin, S. Rubinstein, and M. Sviridenko, Approximations for maximum
transportation problem with permutable supply vector and others capacitated star packing
problems, Algorithmica, 39 (2004), pp. 175–187.

[7] M. Bläser and B. Manthey, Two approximation algorithms for 3-cycle covers, in Proceed-
ings of the 5th International Workshop on Approximation Algorithms for Combinatorial
Optimization, Springer, Berlin, 2002, pp. 40–50.

[8] M. Bläser, L. Ram, and M. Sviridenko, Improved approximation algorithms for metric max-
imum ATSP and maximum 3-cycle cover problems, in Algorithms and Data Structures,
Springer, Berlin, 2005, pp. 350–359.

[9] J. Blocki and R. Williams, Resolving the complexity of some data privacy problems, in Pro-
ceedings of the 37th International Colloquium on Automata, Languages and Programming,
Springer, Berlin, 2010, pp. 393–404.

[10] G. Calinescu and A. Zelikovsky, The polymatroid Steiner problems, J. Combin. Optim., 9
(2005), pp. 281–294.

[11] J. Chen, S. Lu, S. Sze, and F. Zhang, Improved algorithms for path, matching, and packing
problems, in Proceedings of the 18th ACM–SIAM Symposium on Discrete Algorithms,
ACM, New York, SIAM, Philadelphia, 2007, pp. 298–307.

[12] G. Cornuéjols, Combinatorial Optimization: Packing and Covering, CBMS-NSF Regional
Conf. Ser. in Appl. Math. 74, SIAM, Philadelphia, 2001.

[13] G. Cornuéjols and D. Hartvigsen, An extension of matching theory, J. Combin. Theory
Ser. B, 40 (1986), pp. 285–296.

[14] G. Cornuéjols, D. Hartvigsen, and W. Pulleyblank, Packing subgraphs in a graph, OR
Letters, 1 (1982), pp. 139–143.

[15] W. Cunningham, Matching, matroids, and extensions, Math. Program. Ser. B, 91 (2002), pp.
515–542.

[16] U. Derigs, A shortest augmenting path method for solving minimal perfect matching problems,
Networks, 11 (1981), pp. 379–390.

[17] G. Even, G. Kortsarz, and W. Slany, On network design problems: Fixed cost flows and
the covering Steiner problem, ACM Trans. Algorithms, 1 (2005), pp. 74–101.

[18] M. X. Goemans and D. P. Williamson, A general approximation technique for constrained
forest problems, SIAM J. Comput., 24 (1995), pp. 296–317.

[19] S. Guha, A. Meyerson, and K. Munagala, Hierarchical placement and network design prob-
lems, in Proceedings of FOCS, IEEE, Washington, DC, 2000, pp. 603–612.

[20] A. Gupta and A. Srinivasan, On the covering Steiner problem, Theory Comput., 2 (2006),
pp. 53–64.

[21] D. Hartvigsen, P. Hell, and J. Szabó, The k-piece packing problem, J. Graph Theory, 52
(2006), pp. 267–293.

[22] P. Hell, Graph packings, in 6th International Conference on Graph Theory, Electron. Notes
Discrete Math. 5, Elsevier, Amsterdam, 2000.

[23] P. Hell and D. Kirkpatrick, Packings by cliques and by finite families of graphs, Discrete
Math., 49 (1984), pp. 45–49.

[24] U. Jamshy and M. Tarsi, Short cycle covers and the cycle double cover conjecture, J. Combin.
Theory Ser. B, 56 (1992), pp. 197–204.

[25] H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko, Approximation algorithms
for asymmetric TSP by decomposing directed regular multigraphs, J. ACM, 52 (2005), pp.
602–626.

[26] A. Karagiozova, Aspects of Network Design, Ph.D. thesis, Princeton University, Princeton,
NJ, 2007.

[27] D. Karger and M. Minkoff, Building Steiner trees with incomplete global knowledge, in
Proceedings of FOCS, IEEE, Washington, DC, 2000, pp. 613–623.

[28] A. Kelmans, Optimal packing of induced stars in a graph, Discrete Math., 173 (1997), pp.
97–127.

[29] M. Loebl and S. Poljak, Efficient subgraph packing, J. Combin. Theory Ser. B, 59 (1993),
pp. 106–121.

[30] L. Lovasz and M. Plummer, Matching Theory, Elsevier Science, Amsterdam, 1986.
[31] A. Meyerson and R. Williams, General k-Anonymization Is Hard, CMU Technical report

CMU-CS-03-113, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
2003.

[32] G. Pap, Hypo-matchings in directed graphs, in Graph Theory 2004, Birkhäuser Verlag, Basel,
2006, pp. 325–335.

708 ELLIOT ANSHELEVICH AND ADRIANA KARAGIOZOVA

[33] G. Pap, A TDI description of restricted 2-matching polytopes, in IPCO 2004, New York, NY,
pp. 139–151.

[34] N. Robertson and P. D. Seymour, Graph minors. IX. Disjoint crossed paths, J. Combin.
Theory Ser. B, 49 (1990), pp. 40–77.

[35] N. Robertson, D. P. Sanders, P. D. Seymour, and R. Thomas, The four-colour theorem,
J. Combin. Theory Ser. B, 70 (1997), pp. 2–44.

[36] S. Saidman, A. Roth, T. Sönmez, M. U. Ünver, and F. Delmonico, Increasing the opportu-
nity of live kidney donation by matching for two and three way exchanges, Transplantation,
81 (2006), pp. 773–782.

[37] P. D. Seymour, Sums of circuits, in Graph Theory and Related Topics, J. A. Bondy and
U. R. S. Murty, eds., Academic Press, New York, 1979, pp. 341–355.

[38] A. Shalita and U. Zwick, Efficient algorithms for the 2-gathering problem, in Proceedings of
the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, SIAM,
Philadelphia, 2009, pp. 96–105.

[39] L. Sweeney, k-anonymity: A model for protecting privacy, Internat. J. Uncertain. Fuzziness
Knowledge-Based Systems, 10 (2002), pp. 557–570.

[40] P. G. Tait, Note on a theorem in geometry of position, Trans. Roy. Soc. Edinburgh, 29 (1880),
pp. 657–660.

[41] D. Xu, E. Anshelevich, and M. Chiang, On survivable access network design: Complexity
and algorithms, in Proceedings of INFOCOM, IEEE, Washington, DC, 2008.

[42] C. Q. Zhang, Integer Flows and Cycle Covers of Graphs, Marcel Dekker, New York, 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

