
1

Capacity Allocation Games for Network-Coded
Multicast Streaming

Elliot Anshelevich, Bugra Caskurlu, Koushik Kar, and Hang Zhang

Abstract—In this paper we formulate and study a capacity
allocation game between a set of receivers (players) that are
interested in receiving multicast data (video/multimedia) being
streamed from a server through a multihop network. We consider
fractional multicast streaming, where the multicast stream from
the source (origin-server) to any particular receiver (end-user)
can be split over multiple paths. The receivers are selfish and
non-cooperative, but must collaboratively purchase capacities of
links in the network, as necessary for delivery of the multicast
stream from the source to the individual receivers, assuming that
the multicast stream is network coded. For this multicast capacity
allocation (network formation) game, we show that the Nash
equilibrium is guaranteed to exist in general. For a 2-tier network
model where the receivers must obtain the multicast data from
the source through a set of relay nodes, we show that the price-
of-stability is at most 2, and provide a polynomial-time algorithm
that computes a Nash equilibrium whose social cost is within a
factor of 2 of the socially optimum solution. For more general
network models, we show that there exists a 2-approximate Nash
equilibrium, whose cost is at most 2 times the social optimum.
We also give a polynomial time algorithm that computes a (2 +
ϵ)-approximate Nash equilibrium for any ϵ > 0, whose cost is
at most 2 times the social optimum. Simulation studies show
that our algorithms generate efficient Nash equilibrium allocation
solutions for a vast majority of randomly generated network
topologies.

I. INTRODUCTION

The last decade has witnessed an explosive growth in the
number of streaming video (multimedia) applications. Some of
these involve live video streaming, while others stream video
that is already available in stored format but too large for
download-and-play. Stored video streaming applications like
YouTube [4] are already contributing to a large fraction of the
Internet traffic today1, and IPTV and similar other efforts are
likely to boost live video streaming through the Internet in the
coming years [3]. Streaming stored video may be unicast or
multicast, depending on the application: while IPTV [2] video
streaming may mostly be multicast (broadcast), receiver-driven
video streaming (like video streaming from YouTube [4]) will
typically be unicast. Streaming live video will typically be
multicast to possibly many receivers.
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1It was estimated that in 2007 YouTube consumed as much bandwidth as
the entire Internet in 2000 [1].

For multicast data delivery, use of network coding allows
individual receivers to simultaneously attain data rates that
equal their maxflow capacities [6], which in general may
not be achievable through a routing-only approach. Naturally,
this makes network coding ideally suited for multicast data
delivery over a multi-hop network.

In this paper, we consider a capacity allocation game
that end-users will play in buying resources for multicast
streaming data delivery. More specifically, receivers (users)
buy capacities on the links of the distribution network at fixed
(possibly different for different links) per-unit cost, so as to
ensure delivery of a multicast stream (with a given source rate)
from its source to the receiver. The receivers are selfish and
non-cooperative and are only interested in minimizing their
individual costs, but must collaboratively pay for capacities
bought on network links, as necessary for network coded
multicast data delivery from the data source to the individual
receivers. We consider fractional multicast streaming, i.e., the
multicast data between the source and any particular receiver
can be split across multiple paths that exist between the source-
receiver pair. The problem we consider is a network formation
game where the amount of capacity collaboratively bought
on the different links in the network must be such that the
maxflow from the source to each receiver is no less than the
desired multicast data rate. Using network coding [6], this
ensures that all receivers are able to obtain their full data
rate from the source. This paper focuses on the questions
of the existence, efficiency, and computation of the equilibria
of this game. Initially, we focus on the 2-tier network model
where the receivers must obtain the multicast data from the
source through a set of relay nodes, and derive some strong
results by exploiting structural properties of such topologies.
Later we consider arbitrary topology networks for multicast
data distribution, and study the existence and efficiency of
approximate equilibria for that case.

To measure efficiency of equilibrium, we use the common
measures of the price of anarchy and the price of stability [27]
— the supremum of the ratios between the costs of the worst
and best pure Nash equilibrium, respectively, and that of the
globally optimal solution over all instances of the game.

Our Contributions.: The specific technical contributions
of this paper are as follows. For our fractional multicast
network formation game, we show that pure Nash equilibrium
is guaranteed to exist in general. For the 2-tier model, defined
in Section IV, we show a tight bound of 2 on the price-of-
stability, and provide a polynomial-time algorithm that returns
a Nash equilibrium whose social cost is within a factor of 2 of
the socially optimum solution. The 2-tier model is essentially
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Fig. 1. Example: Fractional multicast streaming is better than integral
multicast streaming. Source S sends multicast data at rate 1 to receivers A and
B. All link capacities are 1 unit in each direction; numbers across links are
per-unit capacity (bidirectional) purchase costs. Optimal fractional solution
involves purchase of 1 unit capacities on links CA and DB, and 0.5 unit
capacities on links SC, CD, SD; total cost = 25. Optimal integral solution
involves purchase of 1 unit capacities along SC, SD, CA, DB; total cost =
30.

equivalent to the case where all nodes in the network are
receivers, which is itself an important special case (e.g. [17]).
For more general network topologies, we show that there
always exists a 2-approximate Nash equilibrium, whose cost is
at most 2 times the social optimum. We also give a polynomial
time algorithm that computes a (2 + ϵ)-approximate Nash
equilibrium for any ϵ > 0, whose cost is at most 2 times the
social optimum. Simulation studies show that our algorithms
generate efficient Nash equilibrium allocation solutions for a
vast majority of randomly generated networks.

While network formation games have been studied in other
contexts (see Section II), the questions we consider are new
for the context of network-coded fractional multicast stream-
ing. Unlike integral multicast, data distribution networks for
socially optimal or Nash equilibrium solutions for network-
coded multicast need not be trees (Figure 1), and techniques
for integral multicast do not extend to this context (see Section
II). Interestingly, however, we show that there exist solutions
based on tree topologies that are at Nash equilibrium (exactly
or approximately) and attain a near-optimal social cost. For the
2-tier network model, the solution is based on the minimum
spanning tree; for more general network models, it is based on
the minimum Steiner tree or polynomial-time approximations
of it. Despite the complexity of the problem, our results
show that there exist easily-computable exact or approximate
distribution networks where receivers have no motivation to
deviate from it unilaterally, and yet results in the set of
receivers paying near-minimal cost as a group for multicast
data delivery.

The paper is structured as follows. In Section II, we outline
related work on this topic. In Section III we describe the model
and problem formulation. In Section IV we state and prove
our main results on the existence, efficiency, and properties
of Nash equilibrium distribution topology solutions for the
2-tier network model. We extend these results to arbitrary
topology networks in Section V. In Section VI we describe
the results of experiments conducted on randomly generated
network topologies.

II. RELATED WORK

In contrast to the work presented in this paper, the models in
most network formation game literature do not allow players to
reserve an arbitrary amount of bandwidth on the links; rather,
a link can either be constructed and be utilized to full extent
or won’t be constructed at all. Our game represents a more
realistic scenario by allowing players to buy certain amount
of capacity (bandwidth) on that link. This becomes particularly
relevant for network coded multicast streaming [6], [18], [21],
[28] that we consider in this paper, where the capacity that
needs to be bought on a link for successful multicast streaming
is often less than the link capacity, as well as the source data
rate.

There have been several variants of “integral” network
formation games where instead of allocating capacity, a link
(edge)2 can be either fully present or non-existent. One of
the most important decisions when modeling network design
involving strategic agents is to determine how the total cost
of the solution is going to be split among the players. Among
various alternatives [13], the most popular one in the literature
is the “fair sharing” mechanism [8], [11], [12], [17]. In
this cost sharing mechanism, the cost of each edge of the
constructed network is shared equally by the players using that
edge. Since in our model, each player is allowed to purchase
any amount of capacity on an edge, the “arbitrary sharing”
model of network formation [9], [7], [15], [19], [20] is closer
to being an “integral” version of our game. In this model,
players contribute to the cost of an edge, and an edge is present
in the network if the player contributions are larger than its
cost. This model has many differences from the “fair sharing”
model: e.g., the game is not a congestion game, but the price
of stability is much better than with fair sharing, etc.

While many interesting results have been proven for net-
work formation games with arbitrary sharing, most do not
extend to our “fractional” context where players (multicast
data users/receivers in our case) are allowed to reserve an
arbitrary amount of bandwidth on the edges. For example,
[9] proved that the minimum-cost Steiner tree is always a
Nash equilibrium in this integral network formation game with
arbitrary sharing, but the same does not hold for the fractional
version. Consider, for example, a graph with n receiver nodes,
node s, and an extra node v. All receivers wish to receive a
rate of 1 from node s. For any receiver node u, the cost of
allocating x capacity on an edge (u, v) is x, and the same is
true for edge (v, s). The cost of allocating x capacity on an
edge (u, s) is x(2 − ϵ). No other edges exist in the graph.
Then, the minimum-cost Steiner tree has cost n+ 1 (for this
example, it is also the optimum fractional solution, although
Figure 1 shows that this is not always the case). However, the
min-cost Steiner tree in this example is not a Nash equilibrium:
there must be some receiver u who is paying for 1 capacity
of edge (u, v), and at least for 1/n capacity of edge (v, s).
This receiver could reduce its payments to both edges by 1/n,
and instead pay for 1/n capacity on edge (u, s), costing it
(2− ϵ)/n, and thus strictly decreasing its cost.

2We use the terms ’link’ and ’edge’ interchangeably in this paper.



3

Our game assumes that there is no central authority that can
dictate the network cost-sharing mechanism, and thus players
simply purchase edge capacities directly. Other directions in
multicast games include cooperative games and mechanism
design (see, e.g. [16] and [27, Chapters 14-15] and references
therein), where the goal is to come up with a cost-sharing
mechanism with good properties that could be implemented
by a central authority.

Games involving network-coded traffic have received sig-
nificant attention in recent literature, although the game
model/formulation considered in existing work differ substan-
tially from ours. Some of these consider games played between
unicast flows (sessions) [22], [23], [24]; thus the model and
concerns in these are quite from from our game model that
assumes and utilizes the multicast nature of the traffic. Among
prior work, [25], [26] are closest to ours, and also consider
multicast traffic. However, unlike our work, [25] deals with a
traffic routing (forwarding) game; [26] analyzes a cooperative
game whereas our game is non-cooperative. Moreover, another
major difference is that in the games considered in [25], [26],
a player’s payment to a link is determined by a fixed sharing
scheme. In our game, however, players are free to pay as much
as they like for any link; thus the players in our game have
much more freedom in how they behave.

III. SYSTEM MODEL AND FORMULATION

We consider a network modeled by an undirected graph
G = (V,E, b), where vertices V denote the set of nodes, and
(undirected) edges E denote the set of (bidirectional) links
in the network. For each edge (link) e ∈ E, we assume that
the capacity of the corresponding edge is at least 1 in each
direction. In other words, at full capacity at least 1 unit of
traffic can travel on edge e in one direction, and simultaneously
1 unit of traffic can travel on e in the opposite direction. This
network is to be used for delivery of a given traffic stream
of rate 1. One of the nodes, s ∈ V is designated as the
source of the traffic stream, and a subset of the nodes, R ⊆ V
are receivers (users) of the traffic stream. In our model, all
receivers must collaboratively pay for capacities of the edges
that are used for carrying the traffic stream, for shared use
by all receivers in R. We assume that an edge e is associated
with a cost of c(e) that buys the corresponding edge, i.e.,
c(e) is the cost of buying capacity of 1 of the edge in each
direction. If each receiver i ∈ R pays pi(e) for edge e, then
the total purchased capacity on the corresponding edge
is θ(e) = min{1, (

∑
i∈R pi(e))/c(e)}. In other words, if the

receivers R pay a fraction of edge e’s cost in total, then the
same fraction of e’s desired capacity becomes available in both
directions.

To formally define the game, we note that the receivers R
is the set of players, and p = (pi(e), i ∈ R, e ∈ E), or the
prices paid by the receivers for the edges, constitute the player
strategies. (Formally, a strategy of receiver i ∈ R is a function
pi : E → R≥0 that determines how much i is offering to pay
for each edge.) Once the strategies are given, the network used
for multicast traffic streaming, or the distribution network, is
(V,E, θ), where the purchased capacities θ(·) depend on the

strategy vector p. We assume that each node in the network
is capable of network-coding. Therefore, in our context each
node (other than those that act solely as receivers) has to
perform operations that go beyond traditional relaying (i.e.,
replication and forwarding). The exact set of operations that
each node must be capable of would depend on the network
coding algorithm used; in general, this may require “mixing”
of packets coming from different upstream nodes to create
coded packets that are then sent further downstream.

With network coding, a necessary and sufficient condition
for delivery of the given traffic stream to all receivers is that
the maxflow from the source s to each receiver i ∈ R in
distribution network (V,E, θ) is no less than the stream rate
of 1 [6]. In other words, a feasible strategy vector p is one
that ensures that

fi(p) ≥ 1, (1)

holds for each receiver i ∈ R, where fi(p) denotes the
maxflow from source node s to receiver node i in distribution
network (V,E, θ). The goal of each receiver i is to receive the
full rate of 1, but pay as little as possible. Formally, the cost
of receiver i with strategy vector p is

∑
e pi(e) if fi(p) ≥ 1,

and is very large otherwise.
It is worth re-stating that the purchased capacity does

not become split or shared among the receivers; it does
not “belong” to any receiver; instead network coding is
used to send traffic to all the receivers using this capacity.
Thus, the goal of each receiver it to make sure that enough
capacity is purchased to guarantee that fi(p) ≥ 1, and the
more of this capacity is purchased by other receivers, the
happier receiver i will be!

Among all strategies that form feasible networks, we are
specifically interested in those that are Nash equilibria. A
solution is a Nash equilibrium if each receiver does not have
an incentive to unilaterally deviate from it. To state this
formally, consider a strategy vector p∗ that is feasible for
all receivers, and let p∗

−i = (p∗j (e), j ∈ R \ i, e ∈ E),
denote the strategies of (purchase prices paid by) all receivers
other than i. Then the strategy vector p∗ is said to be a
Nash equilibrium if for any pi = (pi(e), e ∈ E) such that
(pi,p

∗
−i) satisfies the feasibilty condition (1) for receiver

i, we have that
∑

e∈E p∗i (e) ≤
∑

e∈E pi(e). In other words,
given the strategies of (prices paid by) the other receivers, and
subject to maintaining the feasibility condition fi(p) ≥ 1 that
is necessary for receiver i to receive the streamed data at the
full rate, the total price paid by receiver i is minimized at Nash
equilibrium. A solution that is not feasible for all receivers will
never be a Nash equilibrium, since the infeasible receivers will
have very large cost, and will have incentive to purchase more
capacity in the network in order to become feasible.

To study the efficiency of the Nash equilibrium, we next
define the social optimum against which the Nash equilibrium
solution will be compared in terms of the total capacity
purchase cost. A price vector p is said to be a social optimum
if it minimizes

∑
i∈R,e∈E pi(e) =

∑
e θ(e)c(e), subject to

satisfying the feasibility constraints (1) for all receivers i ∈ R.
We will denote this solution as OPT . The supremum of the
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Fig. 2. Streaming video delivery in the 2-tier network model.

Fig. 3. Graph representation of the 2-tier network model
in Figure 2.

ratio of the overall cost of the worst Nash equilibrium to that
of the social optimum over all instances of a game is defined
as the price of anarchy of the game. Similarly, the supremum
of the ratio of the overall cost of the best Nash equilibrium
to that of the social optimum over all instances of a game is
defined as the price of stability of the game. In this paper,
we use these two notions to characterize the efficiency of the
worst and best Nash equilibria for the game.

IV. CAPACITY ALLOCATION GAMES ON THE 2-TIER
NETWORK MODEL

It has been envisioned that in the near future, streaming
of video over the Internet will be done through the use of
multiple, dedicated servers that would relay video from the
source server to the end-users [5]. This network of video
relay servers is expected to play a role similar to that of
content distribution networks (CDN) for delivery of various
kinds of non-streaming and non-real time data (content).
This relay network will deliver video from the source to
the receiver through multiple relay-hops, possibly performing
network coding at the intermediate (relay) nodes/servers. This
is illustrated in Figures 2-3.

In this section, we restrict our attention to the 2-tier network
model. In this model, V = {s} ∪ L ∪ R, i.e., the vertex set
of the graph is composed of the source vertex s, the set of
receivers R = {r1, r2, . . . , rn}, and the set of relay nodes
L = {l1, l2, . . . , lk}. Each receiver node ri of G has exactly
one incident edge and is adjacent to a relay node of G, i.e., for
each ri ∈ R there exists lj ∈ L such that (ri, lj) ∈ E, and ri
has no other incident edges in G. Each relay node is adjacent
to one or more receiver nodes, i.e., for each lj ∈ L there
exists ri ∈ R such that (ri, lj) ∈ E. These assumptions imply
that each receiver is directly connected to exactly one relay
node, from which it must receive the data being streamed (this
relay node can obtain the data from the source through other
relay nodes, however). In addition, each relay node serves at
least one receiver. This assumption can be interpreted in the
following way: if a relay node has no receiver to serve, then
it does not participate in the multicast data distribution.

Note that the 2-Tier model is equivalent to the model where
all nodes are receivers, in the following sense. If G is an
instance of our game in the 2-Tier model, let G′ be a game

Fig. 4. Example 2-tier topology to show that price os stability is at least 2.

obtained by contracting all the edges incident to a receiver
node in G. Since every relay node in G must be adjacent to a
receiver, then all nodes in G′ except s are receivers, although
there may be several receiver players located at the same node.
Since every Nash equilibrium in G must have each receiver
ri purchasing 1 capacity on the edge (ri, lj), then it is easy
to see that there is a one-to-one correspondence between the
Nash equilibria in G and in G′. Below we argue about the
price of stability for 2-Tier networks, but all the arguments
can easily be extended to the model where the network has
arbitrary topology, but every node except s is a receiver/player.

We prove below that if G has a 2-tier topology as described
above, then there exists a Nash equilibrium solution that does
not cost much more than the cost of the socially optimal
solution. We first show, however, that there are examples where
all Nash equilibria cost a factor of 2 more than the social
optimum.

Theorem 1: The price of stability of the capacity allocation
game with the 2-Tier topology is at least 2.

Proof: Consider the following example: Figure 4 shows
G, the graph representation of a 2-tier topology that we
consider for showing that the price of stability is lower
bounded by 2. In G, there are n receiver nodes and n relay
nodes, and therefore there is a matching between the set of
receiver and relay nodes. The source node s and n relay nodes
form a complete subgraph of n+1 nodes. The capacity of each
edge in G is 1. The cost of reserving 1 unit of capacity on an
edge e = (i, j) of G is defined as follows:
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c(i, j) =

 0 if i ∈ R and j ∈ L
(1 + ϵ) if i, j ∈ L

1 if i ∈ R and j = s
Consider a distribution network (V,E, θ), where the re-

ceivers reserve 1 unit of capacity on all edges incident to a
receiver, and 1

n units of capacity on all other edges of G. First,
let us argue that all receivers satisfy the feasibility condition
given by Equation (1). Each relay node li can receive a flow
of size 1

n from s through the edge (s, li), and a flow of size 1
n

from s through the edges (s, lj), (lj , li) for all j ̸= i. Since all
these flows are disjoint, li can receive a flow of size 1 from
s on (V,E, θ). Therefore, each receiver can receive a flow of
size 1 as well.

The total cost of the distribution network (V,E, θ) is

n(n− 1)

2

(1 + ϵ)

n
+ n

1

n
=

(n− 1)(1 + ϵ)

2
+ 1 (2)

In a Nash equilibrium solution, however, no receiver can
make a payment for any of the edges between the relay nodes.
For the purpose of contradiction, assume receiver ri pays a
strictly positive amount x for the cost of the edge (lj , lk) in
a Nash equilibrium solution. Let li be the relay node adjacent
to ri. Then, notice that ri satisfies Equation (1) if she sets
her payment on (lj , lk) to 0 and increases her payment on
(li, s) by x

(1+ϵ) . Since ri can reduce her cost by unilaterally
deviating, then we have a contradiction with this being a Nash
equilibrium. Therefore, no receiver makes a payment for any
of the edges between the relay nodes in a Nash equilibrium
solution.

In a Nash equilibrium solution 1 unit of capacity is to
be reserved on all the edges between relay nodes and the
source to satisfy Equation (1), since no capacity is reserved
on the edges between the relay nodes. Therefore, the Nash
equilibrium for the above example is unique, and the cost of
the Nash equilibrium solution is n. Notice that the ratio

n
(n−1)(1+ϵ)

2 + 1
(3)

can be made arbitrarily close to 2 by assigning large values
to n and small values to ϵ. Therefore, the price of stability
in the 2-tier network model is at least 2. Since there always
exists a Nash equilibrium solution whose social cost is within
a factor of 2 of the socially optimal solution by Theorem 2
(see below), the example given above is indeed the worst case
example, and the price of stability is 2.

Theorem 1 states that the supremum of the ratio of the cost
of the best Nash equilibrium to the cost of the socially optimal
solution is at least 2. In the proof of Theorem 1, we show that
for any ϵ > 0 we can construct an instance of the capacity
allocation game with the 2-Tier topology such that the social
cost of all Nash equilibria are at least (2− ϵ) times the social
cost of OPT .

Consider the cheapest solution satisfying Condition (1) for
our game, which we denoted by OPT . Notice that OPT is
exactly the optimum fractional solution to the LP-relaxation
of the classic Steiner tree problem (see, e.g., Sec 3.1 of [29]
for the definition of the Steiner Tree problem, and Sec 22.1 of
[29] for the LP-relaxation for the more general Steiner Forest
problem, which also applies to the Steiner Tree problem), with

the terminal nodes being R ∪ {s} and edge costs being c(e).
Since the integrality gap of this LP is at most 2 ([29], Chapter
22), this implies that a minimum-cost Steiner tree has cost at
most twice the cost of OPT . More precisely, if we take a
Steiner tree T of graph G with terminals R ∪ {s} and edge
costs c(e), and set the capacity of each edge in T to be 1, and
each edge not in T to be 0, then the cost of this tree is at most
twice the cost of OPT . We show in Section V that we can
always form a 2-approximate Nash equilibrium on a Steiner
tree, and there are simple examples where there is no Nash
equilibrium that buys the minimum-cost Steiner tree. For the
2-Tier network topology, however, notice that the minimum-
cost Steiner tree is simply the minimum spanning tree (MST)
of G. This is because every node ri of R has exactly one
incident edge and is adjacent to a relay node of G, and each
relay node is adjacent to one or more receiver nodes. Notice
that in the example depicted in Figure 4, the set of edges
that has 1 unit of capacity on the unique Nash equilibrium
solution is actually the minimum spanning tree of G. We next
prove that this is not a coincidence, i.e., there always exists
a Nash equilibrium solution that buys the minimum spanning
tree, which gives the result stated by Theorem 2 since the cost
of the minimum spanning tree is at most twice the cost of the
socially optimal solution, as argued above.

The proof of Theorem 2 gives a polynomial-time algorithm
that returns a strategy profile p = (pi(e), i ∈ R, e ∈ E) that
is a Nash equilibrium, and reserves 1 unit of capacity on the
edges of the MST. Since the cost of MST is at most 2 times
the cost of OPT , the price of stability is at most 2. Theorem
1 and Theorem 2 together imply that the price of stability is
2.

Theorem 2: There is a polynomial-time algorithm that re-
turns a Nash equilibrium of the capacity allocation game for
the 2-tier topology whose social cost is within a factor of 2 of
the cost of OPT , and thus the price of stability is at most 2.

Proof: We prove the result by showing that there always
exists a Nash equilibrium solution that reserves 1 unit of
capacity on the edges of the minimum spanning tree and
0 units of capacity on the remaining edges. Our proof is
constructive, i.e., we explicitly form payments that purchase
the minimum spanning tree. In our payment scheme, for
each edge e of minimum-cost spanning tree T , there is a
corresponding receiver ri that reserves 1 unit of capacity on
it. Notice that even though the ’arbitrary-sharing’ cost-sharing
scheme allows receivers to share the cost of reserving 1 unit of
capacity on the edges of T , our payment scheme does not use
this property. Therefore, in order to fully specify the payment
scheme all we need to do is to assign one receiver for each
edge e of T .

Without loss of generality, for an edge e = (i, j), we will
assume that j is the node that is closer to s on T than i. If
e = (i, j) is an edge incident to a receiver, i.e., i ∈ R, then the
receiver i makes a payment on e that is sufficient to reserve
1 units of capacity on it. Let e = (i, j) be an edge between
two relay nodes, or a relay node and the source, i.e., i ∈ L.
Let rk be an arbitrary receiver that has a direct edge to the
relay node i, i.e., (rk, i) is an edge of T . Then, rk makes a
payment of c(e) on e.
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Since we have fully specified the payment scheme on all
the edges of T , let us now prove that this payment scheme is
indeed a Nash equilibrium. Notice that in our payment scheme
each receiver is reserving 1 units of capacity on either one or
two edges of T . More precisely, each receiver ri paying for
the cost of the edge (ri, lj) incident to her node, and possibly
she is also paying for the cost of the other incident edge of
lj .

Recall that any solution that is feasible for ri must satisfy
Inequality (1) for ri. If a receiver ri is only paying for the
cost of her incident edge e in T , she trivially does not have
an incentive of unilateral deviation since ri does not have any
other incident edges in G, and therefore any solution where ri
satisfies Equation 1 reserves 1 unit of capacity on e. Suppose
ri is paying for the cost of both e = (ri, lj) incident to her
node, and the cost of another incident edge f of lj . Since the
payments of the receivers R−{ri} reserve 1 unit of capacity
on T − {e, f}, the best response of ri must include enough
capacity for a flow of size 1 between ri and T − {e, f}. The
cheapest way to obtain this capacity is to reserve 1 unit of
capacity along a single path between ri and T − {e, f}, and
the cost of this path cannot be more than the total cost of e and
f , since otherwise T would not be a minimum spanning tree.
Thus, any deviation of ri that results in a feasible solution for
ri is at least as expensive as c(e) + c(f). Since no receiver
has an incentive for unilateral deviation, the resulting payment
scheme is a Nash equilibrium.
Running Time: The runtime to find this payment scheme is
just the time to find a minimum spanning tree, plus a linear
amount of time to form the payment assignment. Thus, the
runtime is O(|E| log |V |) using standard MST algorithms.

V. GENERALIZATIONS FOR ARBITRARY NETWORK
MODELS

In this section, we consider our general game, with the graph
G having arbitrary topology, and an arbitrary subset of receiver
nodes. The capacity allocation game is guaranteed to have a
Nash equilibrium by Theorem 3, however, the cost of some
Nash equilibria can be prohibitive by Theorem 5.

Theorem 3: Nash equilibrium in pure strategies is guaran-
teed to exist in the capacity allocation game.

Proof:
For each receiver i ∈ R, let Si denote the strategy space

of receiver i. Receiver i selects a strategy si ∈ Si when
she plays the game. Let S =

∏
i∈R Si denote the strategy

space of the game. Notice that S is the product space of the
strategy spaces of the receivers. A strategy profile s ∈ S is
an n-tuple s = (s1, . . . , sn) such that each entry si of s
is a strategy of receiver i. We use the common notational
convenience and write a strategy profile as s = (si, s−i) where
s−i ∈

∏
j∈R−{i} Sj . Notice that a strategy si ∈ Si of receiver

i is a vector of size m (with m being the number of edges
in the graph), since a strategy for a receiver consists of a
nonnegative payment for each edge e of G. Without loss of
generality, we will assume si(e) ≤ maxe c(e). Notice that S
is a nonempty, convex, and compact set since S is a cube in
Rn×m: specifically it is just the cross product of the closed
interval [0,maxe c(e)] taken nm times.

In order to prove the result, we use the technique used in
Nash’s proof for showing existence of mixed Nash equilibrium
in finite games, that uses Kakutani’s fixed point theorem. Our
proof uses standard techniques, except for the part showing
that the graph Γ(F ) is closed, which requires somewhat
different arguments due to the fact that our cost functions are
not continuous.

Recall that Kakutani’s fixed point theorem is defined as
follows:

Theorem 4 (Kakutani’s Fixed Point Theorem): Let S be a
non-empty, compact and convex subset of some Euclidean
space Rn. Let F : S → 2S be a set-valued function on S with
a closed graph Γ(F ), and the property that F (s) is nonempty
and convex for all s ∈ S. Then F has a fixed point.

A set-valued function F : S → 2S is some rule that maps
each element s ∈ S to a subset of S, i.e., F (s) ⊂ S. Notice
that each element of F (s) is a strategy profile of the capacity
allocation game. Since S is nonempty, compact, and convex,
Kakutani’s fixed point theorem states that if the function graph
Γ(F ) = {(s, t)|s ∈ S, t ∈ F (s)} (which is a subset of the
product space S×S) is a closed set, and F (s) is a nonempty
and convex set for all s ∈ S, then there exists s ∈ S such that
s ∈ F (s), i.e., a fixed point.

For a strategy profile s = (si, s−i), let χi(s−i) denote the
set of best responses of receiver i to the strategies s−i of other
receivers. Given the strategies s−i of other receivers (which
correspond to some capacity reservation on the edges of G),
each element s′i ∈ χi(s−i) is a minimum cost strategy of
receiver i that will ensure that a flow of size 1 can be send
from the source to i in the distribution network purchased by
(s′i, s−i). It is easy to see that for each s−i we can express
χi(s−i) as the set of optimal solutions of a linear program,
with only non-strict inequalities. Therefore, χi(s−i) is a closed
and convex subset of Si for all s−i ∈

∏
j∈R−{i} Sj . Moreover,

χi(s−i) is non-empty, since receiver i always has at least one
best response.

We define the mapping F : S → 2S as follows. Given a
strategy profile s, t ∈ F (s) if t is a strategy profile that can
be obtained if each receiver i ∈ R deviates from her strategy
si to one of her best responses, i.e., to an element of χi(s−i).
Formally, we define F as F (s1, . . . , sn) = {(t1, . . . , tn)|ti ∈
χi(s−i)}. In other words, F (s1, . . . , sn) =

∏
i∈R χi(s−i).

Since F (s) is the product space of nonempty, closed, and
convex sets, then F (s) is nonempty, closed, and convex for
all s ∈ S. Therefore, if the graph Γ(F ) = {(s, t)|s ∈ S, t ∈
F (s)} is a closed set, then by Kakutani’s fixed point theorem
there exists s ∈ S such that s ∈ F (s). Notice that s ∈ F (s) if
and only if si ∈ χi(s−i) for all receivers i, i.e., the strategy
of all the receivers is a best response of them to the strategies
of the other receivers. Hence, a fixed point of F is a Nash
equilibrium of the capacity allocation game. Therefore, in
order to complete the proof all we need to show is that Γ(F )
is a closed set.

Let (x1, y1), (x2, y2), . . . be an arbitrary convergent se-
quence of points in Γ(F ), and denote its limit by (x∗, y∗).
To show that Γ(F ) is closed, all we need to show is that
(x∗, y∗) ∈ Γ(F ). Recall that Γ(F ) ⊂ S × S, and S × S is
closed, so (x∗, y∗) ∈ S×S. Therefore, all we need to show is
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that y∗i ∈ χi(x
∗
−i) for all i ∈ R. In order to do this, fix some

arbitrary receiver i.
Let Ci(s) denote the cost of receiver i ∈ R for strategy

profile s, and let Ĉi(s) be the cost of i’s best response to
s, i.e., Ĉi(s) = mins′

i
∈Si

{Ci(s
′
i, s−i)}. Since Ci(s

′
i, s−i)

is minimized if and only if s′i ∈ χi(s−i), then we can
equivalently define Ĉi as Ĉi(s) = Ci(s

′
i, s−i) for some

s′i ∈ χi(s−i).
We next define a function Ci : S → R≥0 for each i ∈ R

as follows: Ci(s) = Ci(s)− Ĉi(s). Notice that Ci(s) ≥ 0 for
all s ∈ S and Ci(s) = 0 if and only if si ∈ χi(s−i). In other
words, Ci(s) = 0 if and only if s is a stable strategy profile
for receiver i, i.e., receiver i does not have an incentive of
unilateral deviation from s. Notice that for any point (s, t) ∈
Γ(F ), we have that Ci(ti, s−i) = 0 since ti ∈ χi(s−i) by
definition of F . Therefore, Ci(y

k
i , x

k
−i) = 0 for all k > 0. In

the usual argument about the existence of Nash equilibrium, Ci

is continuous over S and therefore this completes the proof,
since this implies that Ci(y

∗
i , x

∗
−i) = 0, and thus that y∗i ∈

χi(x
∗
−i). In our game, however, Ci is not continuous.

Recall that Ci is defined as the difference of two functions,
i.e., Ci(s) = Ci(s)− Ĉi(s). The function Ĉi(s) is continuous
on S, since for any strategy profile s′ such that ||s− s′|| ≤ ϵ,
we have that |Ĉi(s)− Ĉi(s

′)| ≤ ϵ. However, Ci(s) is not nec-
essarily continuous on S, since when the mincut between the
source and i becomes less than 1 in the distribution network,
then the cost for receiver i suddenly becomes unbounded. Let
∆i be the set of strategy profiles where receiver i is feasible,
i.e., ∆i = {s|fi(s) ≥ 1}. For any s ∈ ∆i, the cost Ci(s) is
simply equal to |si| =

∑
e si(e). Thus Ci is clearly continuous

on the domain ∆i. Notice that ∆i can be formulated as a set
of linear constraints with non-strict inequalities and therefore,
∆i is a closed (and convex) set. Since both Ĉi and Ci are
continuous on ∆i, then Ci is also continuous on ∆i.

Notice that for any k > 0, we have that (yki , x
k
−i) ∈ ∆i,

since yki is a best response of receiver i to xk
−i, and thus results

in a solution feasible for receiver i. Since ∆i is closed, then
(y∗i , x

∗
−i) is also in ∆i. Thus, since Ci(y

k
i , x

k
−i) = 0 for all

k, and Ci is continuous on ∆i, then Ci(y
∗
i , x

∗
−i) = 0. This

implies that y∗i ∈ χi(x
∗
−i). Since this is true for all i, then

(x∗, y∗) ∈ Γ(F ), as desired.
Theorem 5: The price of anarchy for the capacity allocation

game is N and this bound is tight.
Proof: We will first establish that the price of anarchy

cannot be more than N . For the purpose of contradiction,
assume the price of anarchy is more than N , i.e., there exists
a Nash equilibrium solution whose social cost is more than N
times the cost of OPT. Then, by pigeonhole principle, there
exists a receiver i whose total payment is more than the cost
of OPT. Observe that receiver i has an improving deviation
since she can reduce her cost simply by buying OPT instead
of her existing strategy. Therefore, the price of anarchy cannot
be more than N .

In Figure 5, all the receivers are at the node to the left. There
are 2 paths between the terminal node and s. The upper path is
composed of a single edge and the lower path is composed of
N edges. The cost of all edges in the network is 1. Consider
the strategy profile where each receiver reserves 1 unit of

t1, t2, · · · , tN s

N

Fig. 5. An example where price of anarchy is N .

capacity on one of the edges of the lower path. Observe that
this strategy profile is a Nash equilibrium since the cost of
the best response of all receivers is 1. The cost of this Nash
equilibrium solution is N . In the optimal solution the upper
path will be bought, so the cost of OPT is 1. Therefore, the
price of anarchy is N and this bound is tight.

In network formation games on undirected graphs, bounding
the price of stability is usually a lot more challenging than
bounding the price of anarchy [8], [10]. The price of stability
is known to be 1 for arbitrary sharing in the discrete model,
i.e., there exists a Nash equilibrium that buys the Steiner Tree
[9]. However, the analysis for the discrete model does not
carry over for capacity allocation games (i.e., the fractional
model), for which the price of stability is shown to be at least
2 in Section IV. In fact, the example in Section II shows that
the Steiner tree is not necessarily a Nash equilibrium for our
game, and so it is not the case that this factor of 2 arises simply
because of the gap between integral and fractional solutions.
Thus, even though there always exists a Nash equilibrium
that buys the cheapest integral solution in any 2-tier topology
(which is the minimum spanning tree in this case), this is not
true for general undirected networks.

Though we do not have an upper bound for the price of
stability in general undirected networks and therefore cannot
guarantee the existence and efficient computation of cheap
Nash equilibrium, we prove that there always exists a cheap
approximate Nash equilibrium that can be efficiently com-
puted. By an α-approximate Nash equilibrium, we mean a
solution where no receiver can reduce her cost by a factor of
α by unilateral deviation [9].

Similar to the 2-tier topology in spirit, we start with a
cheap integral feasible solution T and form payments on the
edges of T . The cheapest integral solution T is the min-
cost Steiner tree that connects the source and the receiver
nodes. Given the Steiner tree T , the proof of Theorem 6 gives
a polynomial-time algorithm that returns a strategy profile
p = (pi(e), i ∈ R, e ∈ E) that is a 2-approximate Nash
equilibrium, and reserves 1 unit of capacity on the edges of
T . Since the cost of the Steiner tree T is at most 2 times
the cost of OPT (as discussed in the previous section), we
obtain a 2-approximate Nash equilibrium, whose social cost
is at most twice the cost of OPT . However, since there is no
polynomial-time algorithm to compute the min-cost Steiner
tree unless P = NP , we cannot obtain this 2-approximate
Nash equilibrium solution in polynomial-time. Fortunately, in
Theorem 7 we give a polynomial-time algorithm to compute
a (2 + ϵ)-approximate Nash equilibrium, whose social cost is
at most twice the cost of OPT .
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Before stating Theorem 6, we first define the term edge
block which we use in the proof of Theorem 6.

Definition 1: Given a minimal (with respect to edge
removal) tree T that connects the source and the receiver
nodes, a maximal length path of T whose interior nodes
are degree 2 nonreceiver nodes is called an edge block of
T .

Fig. 6. A simple example with 4 nodes s, u, v, and w. s is the source, and
v and w are receiver nodes. The network only has three edges: (s, u), (v, u),
and (w, u). According to Definition 1, each of these three edges is a separate
edge block, so there are 3 edge blocks in this tree.

Figure 6 gives a simple example, where there are 2
receivers and 3 edges. In this example every edge is also an
edge block. If instead on a single edge (w, u), there were
two edges (w,w′) and (w′, u), then this path of 2 edges
(w,w′), (w′, u) would still be a single edge block, since it
is a path with all internal nodes being non-receiver nodes
of degree 2 in the tree. The number of edge blocks is at
most 2n− k, as proven in Lemma 1.

Lemma 1: The number of edge blocks in a tree T is at
most 2n−k, where n is the number of receiver nodes, and
k is the number of non-leaf receiver nodes of T .

Proof: Consider the tree T rooted at s, but with each
edge block replaced by a single edge. All leaves of this tree
are receiver nodes (otherwise the edges leading to them
would not be needed). The number of edges adjacent to
the leaves is thus n − k. The only nodes of degree two
are also receiver nodes, since otherwise these nodes would
have been removed when we replaced each edge block by
a single edge. The number of edges directly above these
nodes of degree 2 is at most k. Finally, the number of
nodes of degree at least 3 in a tree is at most the number
of leaves. Thus, there are at most n − k such nodes, and
thus the number of edges directly above these nodes is at
most n − k. Thus, the total number of edge blocks is at
most (n− k) + k + (n− k) = 2n− k.

Theorem 6: There always exists a 2-approximate Nash
equilibrium solution that buys the minimum-cost Steiner tree
T that connects the source and the receiver nodes.

Proof: Notice that the removal of an edge block e from T
will divide T into 2 connected components T1(e) and T2(e). A
critical property of the Steiner tree T is that e constitutes the
cheapest path between T1(e) and T2(e), since otherwise we
can obtain a cheaper tree than T that connects the source and
the receiver nodes. This would lead to a contradiction since
T , by definition, is the cheapest such tree.

Our payment algorithm assigns each edge block e to a
receiver ri and asks ri to reserve 1 unit of capacity on all
the edges of e. We use the notation pi = {e} if edge block e
is assigned to receiver ri and all other edge blocks of T are

assigned to the other receivers. Similarly, we say pi = {e, f}
if edge blocks e and f are assigned to receiver ri and all
other edge blocks of T are assigned to the other receivers. Let
χi{e} and χi{e, f} denote the cheapest deviations of receiver
ri under the two possible strategies of her described above.
Let |χi{e}| and |χi{e, f}| denote the cost of these deviations
to receiver i. We can now show the following lemmas.

Lemma 2: For an edge block e between s and ri on T , we
have that χi{e} = {e}.

Proof: For an edge block e between s and ri on T , the
cheapest deviation χi{e} of receiver ri to strategy pi = {e},
where other receivers are reserving 1 unit of capacity on all
other edge blocks of T , must reserve enough capacity to send
1 unit of traffic between T1(e) and T2(e). The cheapest way
to do this is to reserve 1 unit of capacity along the cheapest
path between T1(e) and T2(e), and thus |χi{e}| is at least the
cost of this path. Since e constitutes the cheapest path between
T1(e) and T2(e), we have that χi{e} = {e}.

Lemma 3: For any two edge blocks e and f between s and
ri on T , we have |χi{e, f}| ≥ max{|χi{e}| , |χi{f}|}.

Proof: By Lemma 2, we know that χi{e} is the cheapest
path between s and ri if all the edge blocks of T other than
e are bought by other receivers, and similarly for χi{f}. By
the same argument as in the previous lemma, we know that
χi{e, f} costs at least as much as the cheapest path between
s and ri if all the edge blocks of T other than e and f are
bought by other receivers. The lemma holds since ri can find
a cheaper path between ri and s if other receivers buy more
edges.

Lemma 2 and Lemma 3 imply that we will form a 2-
approximate Nash equilibrium if for each receiver ri, we
assign at most 2 edge blocks between ri and s to it. This is
due to the fact that if ri is assigned edge blocks e and f, then
|χi{e, f}| ≥ max{|χi{e}| , |χi{f}|} (by Lemma 3), which is
exactly the maximum of the cost of e and f by Lemma 2.
Thus, the cost of ri’s best deviation |χi{e, f}| to its current
strategy costs at least half of what ri is currently paying. Since
this is true for every receiver, this forms a 2-approximate Nash
equilibrium. All that is left to show is that we can form such
an assignment.

Recall that there are at most 2n edge blocks of T and we
can make an assignment where each receiver is assigned at
most 2 edge blocks. However, we cannot make an arbitrary
assignment of edge blocks to receivers, since Lemma 2 and
Lemma 3 hold only if a receiver ri is assigned edge blocks
that are between ri and s. In order to make an assignment with
this desired property, we will root T at s, and loop through the
edge blocks of T in the reverse BFS order from s. For each
edge block e in this order, we select an arbitrary receiver ri
under e that is not assigned 2 edge blocks yet, and assign
e to ri. It is easy to show by induction that at the time the
algorithm decides the assignment of an edge block e, there is
always a receiver ri that is not assigned 2 edge blocks yet. By
the above argument, this assignment creates a 2-approximate
Nash equilibrium that purchases 1 unit of capacity on edges
of T , and thus has cost at most twice that of OPT .

Since the Steiner Tree problem is not efficiently computable,
in order to obtain a polynomial-time algorithm, we use an
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approximation to Steiner Tree that costs at most twice the
cost of OPT. We obtain the integral solution by starting with
the primal-dual approximation algorithm for minimum-cost
Steiner Forest problems (see, e.g. [29]). We use T to denote
the tree returned by the primal-dual algorithm with R ∪ {s}
being terminal nodes, and root it at s. Since the primal-dual
algorithm uses the fractional optimal solution OPT as its lower
bound, the cost of the integral solution returned by the primal-
dual algorithm is not only within a factor of 2 of the cost of
the minimum-cost Steiner Tree, but also the cost of OPT. The
proof of Theorem 7 gives a polynomial-time algorithm that
returns a strategy profile p = (pi(e), i ∈ R, e ∈ E) that is
a (2 + ϵ)-approximate Nash equilibrium, and reserves 1 unit
of capacity on the edges of T ′, a tree that connects all the
receivers to the source and is cheaper than T .

Theorem 7: There is a polynomial-time algorithm that re-
turns a (2+ ϵ)-approximate Nash equilibrium solution, whose
cost is at most twice the cost of the social optimum solution.

Proof: As described above, we begin by constructing a
tree T using the primal-dual 2-approximation algorithm for
min-cost Steiner tree. In the proof of Theorem 6, we used the
fact that each edge block e of a minimum-cost Steiner Tree
is the shortest path between the connected components T1(e)
and T2(e) that will arise upon removal of e. However, this
property does not necessarily hold for the integral solution T
obtained as above. One strategy would be to go through all the
edge blocks e of T , and check whether e is the shortest path
between T1(e) and T2(e). If e is not the shortest path between
T1(e) and T2(e), then we can obtain a tree T ′ cheaper than
T by replacing e with this shortest path. We can then repeat
the same procedure starting with T ′. It is trivial to see that
this algorithm will allow us to obtain an approximation to the
Steiner Tree such that for every edge block e of the tree, e is
the shortest path between the connected components that will
arise upon removal of e. However, this algorithm may not
terminate in polynomial-time. Instead, we proceed as follows.

Recall from the proof of Theorem 6, that we can cluster
the edges into edge blocks and assign the edge blocks to the
receivers in such a way that each receiver ri is assigned at
most 2 edge blocks, both of which are between ri and s.
Starting from T , our polynomial-time algorithm will generate
cheaper trees by replacing some edge blocks with the shortest
paths between the connected components that will arise upon
removal of these edge blocks. However, in order to ensure a
polynomial time bound, we will make such a replacement only
if the cost of the tree is substantially decreased. Specifically,
we classify the edge blocks into two categories. We will say
that an edge block of a tree T ′ is heavy if its cost is at least
c(T ′)
n2 (where c(T ′) is the cost of tree T ′, and n is the number

of receiver nodes), and we will say that an edge block is
light if its cost is less than c(T ′)

n2 . When we are generating
cheaper trees by replacing some edge blocks with the shortest
paths between the connected components that will arise upon
their removal, we will only consider the heavy edge blocks,
as explained next in detail.

Let e be an arbitrary heavy edge block of a tree T ′, and let
ri be the receiver that e is assigned to. We define χi{e} as in
the proof of Theorem 6, i.e., it is the best deviation of receiver

ri if e were removed and all other edges of T ′ are paid for
by other receivers. If the cost of e is at least |χi{e}|(1 + ϵ

4 ),
then we will replace e with χi{e} and obtain a cheaper tree.
We will then restart the algorithm on this cheaper tree. This
gives us a sequence of trees T1, T2, . . ., with T1 = T and each
tree being cheaper than the previous one. Since the cost of a
heavy edge block in a tree Tj is at least c(Tj)

n2 , the cost of
a new tree Tj+1 is at most c(Tj)(1 − ϵ

n2(4+ϵ) ). Thus, since
with every new tree we reduce the cost by at least a factor of
1− ϵ

n2(4+ϵ) , we know that this process can only continue for
a polynomial number of steps. After this number of steps, we
obtain a tree T ′ which is cheaper than T (and thus within a
factor of 2 of OPT), and such that for every heavy edge block
e of T ′, we have that |e| < |χi{e}|(1 + ϵ

4 ).
Once we have completed the tree generation process de-

scribed above, we ask the receivers to pay for the entire cost
of the heavy edge blocks that are assigned to them. Notice
that if a receiver ri is assigned only 1 heavy edge block, then
|pi| = |e| ≤ (1 + ϵ

4 )|χi{e}| by construction. If a receiver
ri is assigned 2 heavy edge blocks e and f, then we have
|pi| = |e| + |f| ≤ (2 + ϵ

2 )max{|χi{e}| , |χi{f}|}. Therefore,
no receiver is paying more than 2 + ϵ

2 of the cost of her best
deviation, since |χi{e, f}| ≥ max{|χi{e}| , |χi{f}|} by the
arguments in Lemma 3.

Since we are done with deciding the payment for the heavy
edge blocks, we will next decide the payment on the light
edge blocks. For each light edge block e, we will ask all
the receivers to contribute to the cost of e in proportion to
what they have paid for on the heavy edge blocks. Notice that
while each heavy edge block is paid by only one receiver, each
light edge block is paid for by many receivers. Moreover, if a
receiver is not assigned a heavy edge block, our algorithm does
not ask her to contribute to the cost of light edge blocks at all,
and this receiver is a “free-rider”. We prove below that this
payment scheme is a (2 + ϵ)-approximate Nash equilibrium
for the case when the number of receiver nodes is high, i.e.,
n ≥ 4+ 8

ϵ . We will later discuss how we handle the case when
the number of receiver nodes is small, i.e., n < 4 + 8

ϵ .

Since the cost of each light edge block is at most c(T ′)
n2 and

there are less than 2n edge blocks in total, then the total cost
of the light edge blocks is at most 2·c(T ′)

n . The total cost of
the heavy edge blocks is, therefore, at least (n−2)·c(T ′)

n . Since
the total cost of the light edge blocks is small compared to
c(T ′), and the payments on the light edge blocks are made in
proportion to what is paid for the heavy edge blocks, then the
payment of each receiver is increased by a factor of at most
n

n−2 due to their paying for the light edge blocks. Therefore,
no receiver pays more than (2+ ϵ

2 )
n

n−2 times her best response.
Since n ≥ 4 + 8

ϵ , we have (2 + ϵ
2 )

n
n−2 ≤ (2 + ϵ). Therefore,

the solution returned by the algorithm is a (2+ϵ)-approximate
Nash equilibrium solution as desired.

We have completed the proof for the case where the number
of receivers is high, i.e., n ≥ 4+ 8

ϵ . If the number of receivers
is small, i.e., n < 4+ 8

ϵ , we can simply obtain the minimum-
cost Steiner tree T in polynomial-time by using a brute-
force technique and obtain a 2-approximate Nash equilibrium
solution on it as described in the proof of Theorem 6. To do
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this, we simply enumerate all the possible sets of nonreceiver
nodes of degree 3 or more in the tree. Suppose that we know
exactly what set of non-receiver nodes is going to be included
in the min-cost Steiner tree with degree 3 or higher. Then, the
min-cost Steiner tree is simply a minimum spanning tree on
these nodes (together with the receiver nodes and the source)
using the shortest-path metric, since these are the only nodes
that may have degree higher than 2 in our tree. To find the
min-cost Steiner tree, it is thus enough to enumerate all such
sets of nodes, find the minimum spanning tree as described
above, and then take the best of these trees. The number of
non-receiver nodes of degree at least 3 in the Steiner tree is
bounded by the number of receiver nodes (this is just because
the number of nodes with degree at least 3 in a tree is at most
the number of leaves). The number of receiver nodes is in turn
bounded by 4 + 8

ϵ . Thus, the number of sets which we must
enumerate is polynomial if n < 4+ 8

ϵ , and so we can obtain the
minimum-cost Steiner tree in polynomial time if n < 4 + 8

ϵ .
Once we have this tree, we can obtain a 2-approximate Nash
equilibrium (don’t need the ϵ) for this simpler case using the
algorithm in Theorem 6.
Running Time: The time for the initial primal-dual algorithm
is O(|E|2). The algorithm then reduces the cost of the tree by
a factor of (1− ϵ

n2(4+ϵ) ) at each stage, with each stage taking
O(|E| log |V |) time. Thus, for any constant ϵ, this process
takes O(|E| log2 |V | logC), where C =

∑
e c(e) is the total

cost of the network. For the case when the number of receivers
is at most 4 + 8

ϵ , the runtime is constant for any constant ϵ
(since we have to do a brute-force search here, the runtime
depends on 28/ϵ). Thus, the total running time is O(|E|2 +
|E| log2 |V | logC).

VI. EXPERIMENTAL RESULTS

A. Experimental results for uniformly random networks

In this section, we run experiments on random networks to
evaluate the tightness of our worst case bounds on the price-
of-stability (PoS) and the equilibrium approximation factors,
as outlined in the previous sections. We first present the
experimental results for the 2-tier network model. We run
the MST-based polynomial time algorithm as described in the
proof of Theorem 2 to compute a Nash equilibrium (which
guarantees a PoS of 2), and calculate β, the ratio of the cost
at NE and the socially optimal cost (the latter obtained by
solving a linear program). In the representative results shown
in Table I, the total number of non-receiver nodes, i.e., the
relay nodes plus the source, is varied from 5 to 25. For each
value of the number of nodes, we compute the maximum and
average values of β, namely βavg and βmax, over 200 random
runs (network samples). Edges are drawn between the non-
receiver nodes randomly, in the following manner: the nodes
are picked one by one, and the node picked at any step is
connected to each of the nodes already included (in previous
steps) with probability p = 0.5. If the chosen node remains
unconnected at the end of the step, to maintain connectivity,
an edge is drawn between this node and a randomly chosen
node that is already included. The cost of these edges follows
a uniform distribution between 1 and 100. Finally receivers

are assigned to the relay nodes randomly, such that each
relay node is associated with at least one receiver: first we
assign one receiver to each relay node, and then assign the
remaining receiver nodes to the relay nodes randomly. The
cost of edges between the receivers and their peers follows a
uniform distribution between 1 and 5. Table I(a) and (b) shows
the results for two different numbers of (receiver nodes/non-
receiver nodes) ratios. From the results, we observe that the β
value of the solution computed by our algorithm is very close
to 1 on the average, and less than 1.5 in the worst case. From
these results it seems, therefore, that the PoS for random 2-tier
networks is quite small, and close to 1 on an average.

Next we present the experimental results for the general
network model. We use the primal-dual min-cost Steiner tree
approximation, as described in Theorem 7, to compute an α-
approximate Nash equilibrium that attains a cost that is within
a factor of β of the socially optimal cost. Theorem 7 implies
that α ≤ 2 + ϵ and β ≤ 2. Our experimental study on these
random networks shows that the observations on β are similar
to those observed for the 2-tier model, so we only show the α
values in Table II. In these experiments, the total number of
nodes (receivers, relays, and the source) is varied from 20 to
100. For each value of the number of nodes, we compute the
average and maximum values of α, namely αavg and αmax,
over 500 random runs (network samples). Edges are drawn
randomly as in the 2-tier model, but across all nodes instead of
only the non-receiver nodes. The cost of these edges follows
a uniform distribution between 1 and 100, as before. From
Table II, we observe that α value of the solution computed
by our algorithm is very close to 1 on average, and equals
1 for a large fraction of the networks. Therefore, for general
networks, our algorithm generates a solution that is an exact
equilibrium or extremely close to an equilibrium, and has low
cost (typically within 1.5 times the socially optimal cost). For
(receiver/non-receiver) node number ratio of 2 (not shown in
the table), α was observed to be 1 in all 500 runs (network
samples). Therefore, from these results we conclude that a
larger (receiver/non-receiver) node number ratio creates better
(smaller) α values.

B. Experimental results for scale-free networks

Now we consider scale-free networks generated according
to the Barabasi-Albert algorithm [30]. In the algorithm, new
nodes are added to the network one at a time. Each new node
is connected to the existing nodes with a probability that is
proportional to the number of edges that the existing nodes
already have. As in the previous subsection, we present the
experimental results for the 2-tier network model first. The
parameters and conditions for the simulation are the same as
for the previous one. We compute the maximum and average
values of β, namely βavg and βmax. As shown in Table III(a)
and (b), we observe similar results of β of scale-free networks
to those of uniformly random networks: β is very close to 1
in general, and less than 1.5 in the worst case.

Our experimental study on scale-free general network
topologies shows that the observations on β are similar to
those observed for the 2-tier model. Furthermore, under similar
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#non-receivers 5 10 15 20 25
βavg 1.093 1.199 1.201 1.195 1.194
βmax 1.49 1.48 1.37 1.35 1.36

(a) #receiver nodes = 2×#non-receiver nodes

#non-receivers 5 10 15 20 25
βavg 1.079 1.174 1.162 1.147 1.130
βmax 1.37 1.42 1.34 1.29 1.28

(b) #receiver nodes = 4×#non-receiver nodes

TABLE I
PRICE-OF-STABILITY VALUES (β) FOR UNIFORMLY RANDOM 2-TIER NETWORKS.

#nodes 20 40 60 80 100
αavg 1.0003 1.0003 1.0002 1.0009 1.0007
αmax 1.1250 1.1429 1.0833 1.2000 1.3333

(a) #receiver nodes = 0.5×#non-receiver nodes

#nodes 20 40 60 80 100
αavg 1.0000 1.0009 1.0000 1.0000 1.0000
αmax 1.0000 1.1667 1.0000 1.0000 1.0000

(b) #receiver nodes = #non-receiver nodes

TABLE II
EQUILIBRIUM-APPROXIMATION VALUES (α) FOR UNIFORMLY RANDOM GENERAL NETWORKS.

#nodes 5 10 15 20 25
βavg 1.0609 1.0698 1.0835 1.0905 1.1013
βmax 1.4136 1.2329 1.2628 1.2117 1.2869

(a) #receiver nodes = 2×#non-receiver nodes

#nodes 5 10 15 20 25
βavg 1.0430 1.0622 1.0731 1.0771 1.0875
βmax 1.2857 1.2970 1.2354 1.1904 1.2363

(b) #receiver nodes = 4#non-receiver nodes

TABLE III
PRICE-OF-STABILITY VALUES (β) FOR SCALE-FREE 2-TIER NETWORKS.

parameters and number of runs (network samples) as those
considered in Table II, both the αavg and αmax values were
1, implying that the equilibrium-approximation factor α was
observed to be 1 in all networks simulated. Thus the obser-
vations for the scale-free general topology model are largely
similar to the other models discussed before, and therefore the
detailed results for this case are omitted here.

VII. PAYMENT STRATEGIES FOR SOCIAL OPTIMUM

In Section VI we showed results of simulations in which
we form integral solutions which cost at most twice as much
as the social optimum. Instead, in this section we consider
several approaches of paying for the true (fractional) social
optimum. While these payment strategies result in minimum
overall cost (total price paid by the receivers for multicast data
delivery), they may not be at NE. We evaluate these payment
strategies on the basis of the following two performance
metrics. The first one is α which describes how close a
payment assignment is to a pure NE. The second metric
is motivated by considering a third party that, in order to
facilitate the formation of an equilibrium, pays the difference
between the receivers’ payments and their best deviations to
all the receiver nodes. By doing this, i.e., giving subsidies to
the receivers as encouragement for them not to change their
strategies, this third party can make any solution, including
OPT, become an equilibrium. Our metric, which we call the
subsidiary ratio, measures how much this third-party facilitator
needs to pay to the receivers as a fraction of the socially
optimum cost.

As defined in Section III, a price vector p is said to be a so-
cial optimum if it minimizes

∑
i∈R,e∈E pi(e) =

∑
e θ(e)c(e),

subject to satisfying the feasibility constraints (1) for all
receivers ri ∈ R. The optimal value is unique, but the payment

assignment solutions are various and they need not be a Nash
equilibrium. Let pi be the payment vector for receiver ri,
then the total payment of ri is |pi| =

∑
e∈E pi(e). Then

α is calculated by comparing pi with χi which is the best
deviation of ri, α = max{|pi|/|χi|} for ri ∈ R. Thus, α is
the maximum factor by which any receiver could improve its
cost if it changed its strategy. The subsidiary ratio is defined
as:

γ =

∑
ri∈R(|pi| − |χi|)∑

ri∈R |pi|
(4)

Thus, γ is the total amount that a third-party (e.g., the
government) needs to subsidize the receivers in order to make
the socially optimum solution become stable, divided by the
total cost of the social optimum. For example, if γ were 0.2,
this would mean that the third party needs to pay one fifth of
the cost of OPT to the receivers to ensure that OPT become
a Nash equilibrium.

A. Payment Schemes and Theoretical Analysis

We would like the receivers to pay for the social optimum in
a way that α (equilibrium approximation factor) is minimized.
For the general network model we would like all witnessing
nodes (the nodes that at least use some amount of capacity
of an edge) to pay for the edge. Suppose that for receiver
ri ∈ R, the capacity it uses on edge e ∈ E in the social
optimum is bi(e). More precisely, if less than bi(e) fraction
of e is purchased, then constraint (1) for i would be violated,
and so it needs at least bi(e) capacity on edge e.

We consider the following payment method. Each edge
e has a vector of amount of capacities all receivers use on
it: b1(e), b2(e), ..., b|R|(e). Without loss of generality, assume
b1(e) ≤ b2(e) ≤ ... ≤ b|R|(e). Then edge e is paid in
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this way: r1 pays p1(e) = b1(e)
n c(e); ri pays pi(e) =

[ b1(e)n +
∑i

j=2
bj(e)−bj−1(e)

n−j+1 ]c(e) for 2 ≤ i ≤ |R|. Thus, the
cost of each fraction of capacity is equally shared among
the receiver nodes that need it. The total payment of ri is
|pi| =

∑
e∈E pi(e). Then we can calculate α and γ by

comparing pi and the best deviation of ri.
For the 2-tier network model, we consider two methods

to pay for the social optimum. The first one is the same
as that for the general network model. The second method
is that for edge e, instead of forming the payment by all
the witnessing nodes, we consider the witnesses that are
the closest to the edge. In particular, in a 2-tier network
V = {s}∪L∪R, R = {r1, r2, . . . , rn} is the set of receivers,
and L = {l1, l2, . . . , lk} is the set of relay nodes. For an edge
e = e(i, j), there are 3 cases: (1) i = s and j ∈ L or vice visa;
(2) i ∈ R and j ∈ L or vice visa; (3) i ∈ L and j ∈ L. In the
first case, without loss of generality, let i = s, then receivers
adjacent to j pay for the edge; in the second case, without
loss of generality, let i ∈ R and j ∈ L, then only receiver i
pays for the edge; in the third case, receivers adjacent to i as
well as those adjacent to j pay for the edge.

Before presenting the experimental results, we show theo-
retically that α can be very large in the worst case. Consider a
general network model of circular topology with N nodes and
N edges. Node 1 is the source s, and the other N − 1 nodes
are receivers r1, ..., rN−1. The cost of the edge connecting
s and r1 is c; the cost of other N − 1 edges is Kc, for
some K > 1. The social optimum is to use half unit of
capacity of all the edges, which leads to a total cost of
C = c

2 + (N − 1)Kc
2 . Then every receiver gets half unit

of flow from both clockwise and counterclockwise directions.
Therefore every receiver pays the same amount, which is
|pi| = C

N−1 = c
2(N−1) + Kc

2 , i ∈ 1, 2, ..., N − 1. Now we
consider the deviation of r1. Since it can get N−2

N−1 unit of
flow from the source through the available capacity paid by
other receivers, its best strategy is to pay 1

N−1 unit of flow on
the edge connecting itself to the source which gives a cost of

c
N−1 . Then α = ( c

2(N−1) +
Kc
2 )/ c

N−1 = 1
2 [K(N − 1) + 1].

If K is large, α will be large as well. This example easily
extends to show that α can be very large for 2-tier networks
as well.

B. Experimental results for NE approximation factor α

We present experimental results for the NE approximation
factor α in the following. We have considered both general and
2-tier network models, and each of them can be scale-free
(generated by Albert-Barabasi model) or uniformly random.
For the general network model, we use the method that all
witnessing nodes of an edge pay for the edge. For the 2-
tier network model, we consider two payment methods. In
the first method all witnessing nodes pay, and in the second
method only the closest witnessing nodes pay. Therefore we
run experiments on a total of 6 cases: (1) scale-free general
networks (SG); (2) uniformly random general networks (UG);
(3) scale-free 2-tier networks with all witnesses to pay (S2A);
(4) uniformly random 2-tier networks with all witnesses to pay
(U2A); (5) scale-free 2-tier networks with closest witnesses to

pay (S2C); (6) uniformly random 2-tier networks with closest
witnesses to pay (U2C).

In general network model the total number of nodes is 20. In
the 2-tier network model, the number of relay nodes plus the
source is 20, and each relay node may have up to 3 receivers.
We also run the experiments on other total numbers of nodes
and the results are similar; thus we only present the results
for the case of 20. We compute the average of α and γ over
100 random runs (network samples). The cost of edges and
the probability to pick up an edge in network generation stay
the same as in Section VI.

As shown in Figure 7, the average of α is very large in
the first 2 cases of scale-free and uniformly random general
networks, which means they are far from the pure Nash
equilibrium. In the following 4 cases of 2-tier network model,
the average of α is less than 2 (or less than 1.5 more
accurately). So the method performs better in the 2-tier model
than in the general network model.

It is clear from our findings, that in order to form an
approximately-stable solution for the general network model,
it is far preferable to relax the requirement that the cost of
the solution is socially optimum (i.e., that β = 1). With
this constraint, solutions generated are far from stable, with
receivers often being able to decrease their cost by a factor of
5 or 10 after switching their strategy. If we relax this constraint
and allow for slightly more expensive solutions (e.g., β = 1.5),
then as we saw in Section VI we can use our algorithms to
obtain almost exact Nash equilibrium (α < 1.001 on average)
which will also be close to the optimum in cost.

For the 2-tier model, however, our findings show a more
subtle tradeoff. If our goal was to obtain the true social
optimum (β = 1), our simulations in this section suggest that
we can usually form a 1.5-approximate Nash equilibrium on
this solution. If, on the other hand, we wanted an exact Nash
equilibrium (α = 1), then our findings from Section VI suggest
that we can still obtain a very cheap solution (β < 1.2).

C. Experimental results for subsidiary ratio γ

We now present experimental results for the subsidiary ratio
γ. The parameters are the same as those for calculating α. As
shown in Figure 8, γ is very large in cases UG and U2A.
Notice that cases UG, U2A and U2C are uniformly random
networks, and γ in these cases is greater than it is in cases SG,
S2A and S2C, which are scale-free networks. Thus we observe
that better subsidiary ratios are attained in scale-free networks
than in uniformly random networks. Indeed, for the case of
scale-free graphs, it is enough to subsidize the receiver nodes
with less than 1/5 of the total cost of the social optimum, in
order to prevent all receiver nodes from deviating, and thus
forming a stable solution.

In addition, through comparing the subsidiary of SG with
that of S2A and S2C, and comparing the subsidiary of UG
with that of U2A and U2C, we can conclude our algorithm
works better for the 2-tier model than for the general network
model. We also get this point through the results for α above.

Another interesting point that draws our interest is that γ
in cases S2C and U2C is less than it is in cases S2A and
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Fig. 7. Average α for the 6 cases. (The minimum possible value of α is 1.) Fig. 8. Average γ for the 6 cases. (The minimum possible value of γ is 0.)

U2A, and γ in cases S2C and U2C is very small and close
to zero. Notice that in S2A and U2A all witnesses need to
pay for the edge, but in S2C and U2C only closest witnesses
pay for it. This is interesting because intuitively if the cost
is shared by all witnessing nodes, then it seems to give better
performance, but it may require more computation since all the
nodes need to be considered. On the other hand, if the closest
witnesses of an edge pay for it, we just need to consider the
two ends of the edge, which requires less computation. Then
based on the experimental results we come to the conclusion
that the method of closest witnesses wins over the method of
all witnesses on both performance and computation. Therefore
for 2-tier networks, whether scale-free or uniformly random,
the social optimum can be paid by the closest witnesses of the
edges.

Our payment solutions for the social optimum return a
payment assignment that only needs a small subsidiary from
the government to become stable. Thus, although the social
optimum may not be “close” to a Nash equilibrium in terms
of α in the case of general networks (as shown in Figure 7),
a third-party would only need to subsidize 1/5 of its cost (or
1/2 for non-scale free graphs) in order to make the socially
optimum solution become stable. For the 2-tier model, these
numbers become much smaller, and we see that by subsidizing
less than 3 percent of the socially optimum solution (8 percent
for non-scale-free), it is enough to make the socially optimum
solution into a stable one.

VIII. CONCLUSION

We show that pure Nash equilibrium is guaranteed to exist
in our capacity allocation game. We provide a polynomial-time
algorithm that computes a (2 + ϵ)-approximate Nash equilib-
rium whose total cost is at most 2 times the social optimum
for general network topologies. Besides, we specifically con-
sider 2-tier network topologies and provide a polynomial-time
algorithm that computes a pure Nash equilibrium whose total
cost is at most 2 times the social optimum. The experimental
results show that both of the approximation factor α and the
ratio of the cost β are very close to 1. It means our algorithm
generates a solution that is an exact equilibrium or extremely
close to an equilibrium, and has low cost.

We also consider the problem of paying for the social opti-
mum and provide a polynomial-time algorithm that computes

payment assignments. We evaluate the experimental results
based on approximation factor α and the subsidiary ratio
γ. The results show that our algorithm returns smaller and
acceptable α and γ in the 2-tier network model than in the
general network model. We also notice that in the experimental
results the subsidiary ratio of scale-free network model is
smaller than that of uniformly random model. Moreover, the
results show that for 2-tier networks the strategy of closest
witnesses to pay provides a better subsidiary ratio than that of
all witnesses to pay.

It is worth noting that in our model, the purchased capacity
on a link is available for use in both directions. Alternatively,
one could consider a model in which link capacities are
purchased separately in each direction of the link. Extension
of our analysis and results to that model remains an interesting
direction for future research.
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