Approximation Algorithms for the Firefighter Problem

Cuts over time and Submodularity

Elliot Anshelevich, Ameya Hate Rensselaer Polytechnic Institute (RPI)

Deeparnab Chakrabarty, Chaitanya Swamy University of Waterloo

DIFFUSIVE NETWORK PROCESS

- Diffusive processes such as ideas or disease spreading through population
- Social networks modeled using graph theory
- Graph theory concepts can be used to study the spread of these entities
- Useful in a variety of areas ranging from epidemic spread to viral marketing

DIFFUSIVE NETWORK PROCESS

- Diffusive processes such as ideas or disease spreading through population
- Social networks modeled using graph theory
- Graph theory concepts can be used to study the spread of these entities
- Useful in a variety of areas ranging from epidemic spread to viral marketing

DIFFUSIVE NETWORK PROCESS

- Diffusive processes such as ideas or disease spreading through population
- Social networks modeled using graph theory
- Graph theory concepts can be used to study the spread of these entities
- Useful in a variety of areas ranging from epidemic spread to viral marketing

CONTAINING DIFFUSION

- This paper deals with inhibiting spread of infection through targeted vaccination
- We give worst case guarantees over all possible networks: Graph is part of input
- Our goal is to vaccinate parts of graphs once the epidemic has begun

CONTAINING DIFFUSION

- This paper deals with inhibiting spread of infection through targeted vaccination
- We give worst case guarantees over all possible networks: Graph is part of input
- Our goal is to vaccinate parts of graphs once the epidemic has begun

CONTAINING DIFFUSION

- This paper deals with inhibiting spread of infection through targeted vaccination
- We give worst case guarantees over all possible networks: Graph is part of input
- Our goal is to vaccinate parts of graphs once the epidemic has begun

- Graph G(V,E) and vertex s where infection begins
- Vertex states: vulnerable, infected, vaccinated
- Budget B for vaccination per step
- A vaccination strategy w.r.t. budget B

- Graph G(V,E) and vertex s where infection begins
- Vertex states: vulnerable, infected, vaccinated
- Budget B for vaccination per step
- A vaccination strategy w.r.t. budget B

- Graph G(V,E) and vertex s where infection begins
- Vertex states: vulnerable, infected, vaccinated
- Budget B for vaccination per step
- A vaccination strategy w.r.t. budget B

- Graph G(V,E) and vertex s where infection begins
- Vertex states: vulnerable, infected, vaccinated
- Budget B for vaccination per step
- A vaccination strategy w.r.t. budget B

- Graph G(V,E) and vertex s where infection begins
- Vertex states: vulnerable, infected, vaccinated
- Budget B for vaccination per step
- A vaccination strategy w.r.t. budget B

- · Notion of 'cut over time' as opposed to s-t cut
- Difficulty arises due to temporal component of the problem
 - Cut near or cut far?

- · Notion of 'cut over time' as opposed to s-t cut
- · Difficulty arises due to temporal component of the problem
 - Cut near or cut far?

- · Notion of 'cut over time' as opposed to s-t cut
- · Difficulty arises due to temporal component of the problem
 - Cut near or cut far?

- · Notion of 'cut over time' as opposed to s-t cut
- · Difficulty arises due to temporal component of the problem
 - Cut near or cut far?

- · Notion of 'cut over time' as opposed to s-t cut
- · Difficulty arises due to temporal component of the problem
 - Cut near or cut far?

- · Notion of 'cut over time' as opposed to s-t cut
- · Difficulty arises due to temporal component of the problem
 - Cut near or cut far?

- A variant: Spreading Model
- Vaccines can be infectious processes as well: competing ideas in a social network
- At every step vaccine spreads to vulnerable neighbouring vertices

- A variant: Spreading Model
- Vaccines can be infectious processes as well: competing ideas in a social network
- At every step vaccine spreads to vulnerable neighbouring vertices

- A variant: Spreading Model
- Vaccines can be infectious processes as well: competing ideas in a social network
- At every step vaccine spreads to vulnerable neighbouring vertices

- A variant: Spreading Model
- Vaccines can be infectious processes as well: competing ideas in a social network
- At every step vaccine spreads to vulnerable neighbouring vertices

- A variant: Spreading Model
- Vaccines can be infectious processes as well: competing ideas in a social network
- At every step vaccine spreads to vulnerable neighbouring vertices

- A variant: Spreading Model
- Vaccines can be infectious processes as well: competing ideas in a social network
- At every step vaccine spreads to vulnerable neighbouring vertices

OBJECTIVES

- Two objectives are mainly considered in the paper
- MaxSave: Given B and T⊆V, find valid vaccination strategy that maximizes number of vertices saved in T
 - When **T=V**, MaxSave corresponds to the well known Firefighter problem
- MinBudget: Given T⊆V, find valid vaccination strategy that saves all vertices in T and minimizes B

RELATED WORK

- Problem introduced by B. Hartnell in 1995
- Much work on Firefighter problem has been focussed on special graphs like grids and usually for MaxSave [DH'07], [Fogarty'03],[WM'03]
- Approximation results for trees [HL'00], [LVY'08], [CC'10]

RESULTS

	Spreading	Non-spreading
Max-Save	(1-1/e) approx	$n^{(1-\epsilon)}$ -hard for any $\epsilon>0$
Min-Budget	log (n) approx Ω(log n)-hard	General:O(√n) approx For Directed L-layered Graphs: O(log L) approx (independently [CC'09])

OBJECTIVE: MAXSAVE

OBJECTIVE: MAXSAVE

Given Budget B: Maximize nodes saved in T

MaxSave problem for spreading model is NP-complete

OBJECTIVE: MAXSAVE

- MaxSave problem for spreading model is NP-complete
- Approximation for MaxSave:

OBJECTIVE: MAXSAVE

- MaxSave problem for spreading model is NP-complete
- Approximation for MaxSave:
 - Set of valid immunizations can be mapped to partition matroid

OBJECTIVE: MAXSAVE

- MaxSave problem for spreading model is NP-complete
- Approximation for MaxSave:
 - Set of valid immunizations can be mapped to partition matroid
 - Number saved by valid immunizations is a submodular set function

OBJECTIVE: MAXSAVE

- MaxSave problem for spreading model is NP-complete
- Approximation for MaxSave:
 - Set of valid immunizations can be mapped to partition matroid
 - Number saved by valid immunizations is a submodular set function
 - Finding the optimal solution is akin to maximizing a set function over all valid immunizations

OBJECTIVE: MAXSAVE

- MaxSave problem for spreading model is NP-complete
- Approximation for MaxSave:
 - Set of valid immunizations can be mapped to partition matroid
 - Number saved by valid immunizations is a submodular set function
 - Finding the optimal solution is akin to maximizing a set function over all valid immunizations
 - ▶ Can get (1-1/e) approximation by using recent result [CCPV'07]

OBJECTIVE: MAXSAVE

- MaxSave problem for spreading model is NP-complete
- Approximation for MaxSave:
 - Set of valid immunizations can be mapped to partition matroid
 - Number saved by valid immunizations is a submodular set function
 - Finding the optimal solution is akin to maximizing a set function over all valid immunizations
 - ▶ Can get (1-1/e) approximation by using recent result [CCPV'07]
 - Also Greedy 2-approximate solution

OBJECTIVE: MINBUDGET

Save all nodes in given set T: Minimize Budget B

- MinBudget on directed graphs is as hard as Set Cover
- This implies inapproximability to the factor of log n
- \bullet An iterative greedy algorithm gives $\log n$ factor approximation
- Same result obtained by applying randomized rounding

	Spreading	Non-spreading
Max-Save	(1-1/e) approx	$n^{(1-\epsilon)}$ -hard for any $\epsilon>0$
Min-Budget	$O(\log n)$ approx $\Omega(\log n)$ -hard	General:O(√n) approx For Directed L-layered Graphs: O(log L) approx (independently [CC'10])

	Spreading	Non-spreading
Max-Save	(1-1/e) approx	$n^{(1-\epsilon)}$ -hard for any $\epsilon>0$
Min-Budget	$O(\log n)$ approx $\Omega(\log n)$ -hard	General:O(√n) approx For Directed L-layered Graphs: O(log L) approx (independently [CC'10])

	Spreading	Non-spreading
Max-Save	(1-1/e) approx	$n^{(1-\epsilon)}$ -hard for any $\epsilon>0$
Min-Budget	O(log n) approx Ω(log n)-hard	General:O(√n) approx For Directed L-layered Graphs: O(log L) approx (independently [CC'10])

	Spreading	Non-spreading
Max-Save	(1-1/e) approx	$n^{(1-\epsilon)}$ -hard for any $\epsilon>0$
Min-Budget	$O(\log n)$ approx $\Omega(\log n)$ -hard	General:O(√n) approx For Directed L-layered Graphs: O(log L) approx (independently [CC'10])

OBJECTIVE: MINBUDGET

Save all nodes in given set T: Minimize Budget B

ullet Simplification: adding t_{sink} vertex

OBJECTIVE: MINBUDGET

Save all nodes in given set T: Minimize Budget B

ullet Simplification: adding t_{sink} vertex

BIECTIVE: MINBUDGET

Save all nodes in given set T: Minimize Budget B

• Simplification: adding t_{sink} vertex Integer program:

 $\mathbf{x}_{\mathbf{v}}^{t} = 1 \dots$ if vertex \mathbf{v} is vaccinated at time \mathbf{t}

0 ... if not

$$\sum_{v \in V} x_v^t \le B \qquad \forall t = 1, \dots, n$$

Minimize B Subject to:

$$\sum_{i=1}^{k} \sum_{t=1}^{i} x_{v_i}^t \ge 1$$

$$\forall (s, v_1, \cdots, v_k, t) \in P$$

$$x_v^t \ge 0$$

$$x_v^t \ge 0 \qquad \forall v \in V, \ t = 1, 2, \cdots, n$$

OBJECTIVE: MINBUDGET

Save all nodes in given set T: Minimize Budget B

General Graphs

- A $2\sqrt{n}$ approximation
 - Consider the LP relaxation of the integer program
 - Vertex is vaccinated at time i if fractionally cut by amount $1/\sqrt{n}$ till time i
 - In the resulting graph, all s-t paths are at least $\sqrt{\,n}$ hops long
 - This graph has min-cut of size at most \sqrt{n}

OBJECTIVE: MINBUDGET

Save all nodes in given set T: Minimize Budget B

Directed L-layered Graphs

• We give an example of layered graph that has integrality gap of size at least \mathbf{H}_{L} (where $\mathbf{H}_{n} = 1 + 1/2 + ... + 1/n$)

OBJECTIVE: MINBUDGET

Save all nodes in given set T: Minimize Budget B

Directed L-layered Graphs

- We give an example of layered graph that has integrality gap of size at least \mathbf{H}_{L} (where $\mathbf{H}_{n} = 1 + 1/2 + ... + 1/n$)
- Algorithm for O(log L) approximation:
 - 1. Set the capacity of each $\mathbf{v} \in \mathbf{L}_i$ as $1/i\mathbf{H}_L$
 - 2. Find min-cut with above capacities. Let it be $(N_1 \cup N_2 \cup ... \cup N_L)$ with $N_i \subseteq L_i$

OBJECTIVE: MINBUDGET

Save all nodes in given set T: Minimize Budget B

Directed L-layered Graphs

- We give an example of layered graph that has integrality gap of size at least \mathbf{H}_{L} (where $\mathbf{H}_{n} = 1 + 1/2 + ... + 1/n$)
- Algorithm for O(log L) approximation:
 - 1. Set the capacity of each $\mathbf{v} \in \mathbf{L}_i$ as $1/i\mathbf{H}_L$
 - 2. Find min-cut with above capacities. Let it be $(N_1 \cup N_2 \cup ... \cup N_L)$ with $N_i \subseteq L_i$

MODEL: NON-SPREADING OBJECTIVE: MINBUDGET

Save all nodes in given set T: Minimize Budget B

... Directed L-layered Graphs

3. Vaccination strategy:

- Day one: $|N_1|$ vertices of N_1 , $|N_2|/2$ vertices of N_2 and so on.
- Day two: $|N_2|/2$ vertices of N_2 , $|N_3|/3$ vertices of N_3 and so on.
- In general on day $i: |N_j|/j$ vertices of N_j for $i \le j \le L$

	Spreading	Non-spreading
Max-Save	(1-1/e) approx	$n^{(1-\epsilon)}$ -hard for any $\epsilon>0$
Min-Budget	$O(\log n)$ approx $\Omega(\log n)$ -hard	General:O(√n) approx For Directed L-layered Graphs: O(log L) approx (independently [CC'10])

Trees

- Max-Save and Min-Budget are NP-Complete even for degree 3
- Spreading and Non-Spreading Models are equivalent
- Thus we have (1-1/e)-approx for Max-Save
- Thus we have (log L)-approx for Min-Budget
- [Chalermsook + Chuzhoy] recently gave O(log*n)-approx

OPEN PROBLEMS

- ullet Bring down \sqrt{n} approximation for Min-Budget on Non-spreading model
- Rate of spread of vaccination may lie somewhere between 0 and 1
- Probabilistic infection spread
- Threshold based models of infection spread

QUESTIONS?

