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OBJECTIVES

• Two objectives are mainly considered in 
the paper

• MaxSave: Given B and T⊆V, find valid 
vaccination strategy that maximizes 
number of vertices saved in T

• When T=V, MaxSave corresponds to 
the well known Firefighter problem

• MinBudget: Given T⊆V, find valid 
vaccination strategy that saves all vertices 
in T and minimizes B 



RELATED WORK

• Problem introduced by B. Hartnell in 1995

• Much work on Firefighter problem has 
been focussed on special graphs like grids 
and usually for MaxSave [DH’07],
[Fogarty’03],[WM’03]

•  Approximation results for trees [HL’00],
[LVY’08], [CC’10]



RESULTS

Spreading Non-spreading

Max-Save

Min-Budget

(1-1/e) approx n(1-ε)-hard for any ε>0

log (n) approx
Ω(log n)-hard

General:Ο(√n) approx

For Directed L-layered Graphs: 
Ο(log L) approx

(independently [CC’09])
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• MaxSave problem for spreading model is NP-complete

• Approximation for MaxSave: 

‣ Set of valid immunizations can be mapped to partition matroid

‣ Number saved by valid immunizations is a submodular set function

‣ Finding the optimal solution is akin to maximizing a set function over all 
valid immunizations

‣ Can get (1-1/e) approximation by using recent result [CCPV’07]

‣ Also Greedy 2-approximate solution

Given Budget B: Maximize nodes saved in T



MODEL: SPREADING
OBJECTIVE: MINBUDGET

• MinBudget on directed graphs is as hard as Set Cover

• This implies  inapproximability to the factor of log n

• An iterative greedy algorithm gives log n  factor approximation

• Same result obtained by applying randomized rounding

Save all nodes in given set T: Minimize Budget B
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Minimize B
Subject to:

Integer program:

xvt = 1 … if vertex v is vaccinated at time t

       0 … if not �

v∈V

xt
v ≤ B ∀t = 1, . . . , n

k�

i=1

i�

t=1

xt
vi
≥ 1 ∀(s, v1, · · · , vk, t) ∈ P

xt
v ≥ 0 ∀v ∈ V, t = 1, 2, · · · , n



• A 2√n approximation

• Consider the LP relaxation of the integer program

• Vertex is vaccinated at time i if fractionally cut by amount 1/√n till time 
i

• In the resulting graph, all s-t paths are at least √n hops long

• This graph has min-cut of size at most √n

MODEL: NON-SPREADING
OBJECTIVE: MINBUDGET

General Graphs

Save all nodes in given set T: Minimize Budget B
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• Algorithm for Ο(log L) approximation:
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3.Vaccination strategy:

•Day one: |N1| vertices of N1, |N2|/2 vertices of N2 and 
so on.

•Day two: |N2|/2 vertices of N2, |N3|/3 vertices of N3 

and so on.

• In general on day i: |Nj|/j vertices of Nj for i≤j≤L

MODEL: NON-SPREADING
OBJECTIVE: MINBUDGET

… Directed L-layered Graphs

Save all nodes in given set T: Minimize Budget B
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Trees

• Max-Save and Min-Budget are NP-Complete even for degree 3

• Spreading and Non-Spreading Models are equivalent 

• Thus we have (1-1/e)-approx for Max-Save

• Thus we have (log L)-approx for Min-Budget

• [Chalermsook + Chuzhoy] recently gave O(log*n)-approx



OPEN PROBLEMS

• Bring down √n approximation for Min-Budget on Non-spreading model

• Rate of spread of vaccination may lie somewhere between 0 and 1

• Probabilistic infection spread 

• Threshold based models of infection spread

PROBLEMS



QUESTIONS?
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