Recap: Kernel machines are an approach to ML with nonlinear features.

- Pick a nonlinear feature map \(\phi : \mathbb{R}^d \rightarrow \mathbb{F} \)

 ex: \(\phi : [x_1 \ x_2] \rightarrow \{x_1 \ x_2 \ x_1^2 \ x_1x_2 \ x_2^2 \} \)

 \[\phi : [x_1 \ x_2] \rightarrow \left[\sqrt{x_1^2 + x_2^2} \ + \ \tan^{-1}\left(\frac{x_2}{x_1}\right) \right] \]

 \[\phi : [x_1 \ x_2] \rightarrow \left[\text{all the monomials in } x_1 \text{ and } x_2 \right] \]

- We showed if we want to learn a function of the form
 \[f(x) = \langle w, \phi(x) \rangle \]
 this can be accomplished using just the kernel function
\[k(x, y) = \langle \phi(x), \phi(y) \rangle \]

so learning can be done using \(K \) and the kernel matrix

\[K_{ij} = k(x_i, x_j) \]

In particular, the optimal \(f \) for an ERM takes the form

\[f(x) = \sum_{i=1}^{n} \alpha_i k(x, x_i) \]

so we just have to learn the \(\alpha \) weights
Last example: logistic regression with non-linear features

$$\omega^* = \arg\min_{\omega} \frac{1}{n} \sum_{i=1}^{n} \log (1 + e^{-y_i \langle \omega, \phi(x_i) \rangle}) + \frac{\lambda}{2} \lVert \omega \rVert^2$$

we know in fact $f(x_i) = \langle \omega^*, \phi(x_i) \rangle$

$$= \sum_{j=1}^{n} \alpha_i^* \kappa(x_i, x_j)$$

$$= \left(\kappa \alpha \right)_i \text{ i^{th} row of } \kappa \alpha$$
so we can predict using \(f(x) = \sum_{i=1}^{n} \alpha_i \ K(x, x_i) \)
if we find the optimal \(\alpha \):

\[
\alpha^* = \arg\min_{\alpha} \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-y_i(k\alpha)_i}) + \frac{1}{2} \alpha^T K \alpha
\]

kernel logistic regression (recall \(K \in \mathbb{R}^{n \times n} \))
Question: how can we gain accuracy like kernel methods while having a faster runtime?

An answer:

- note the cost of kernel methods is that of
 1) multiplying by $K \propto O(n^2)$
 - for example in subgradient descent, or GrD
 2) inverting $K \propto O(n^3)$
 - for example in ridge regression

- approximate K by a low-rank matrix

\[\alpha = (K + n\lambda I)^{-1}y \]
$K \approx CC^T$ where $C \in \mathbb{R}^{n \times r}$

call $\hat{K} = CC^T$ our low-rank approximation.
and replace K in all our algorithms with \hat{K}.

Now

1) cost of multiplying by \hat{K} is $O(nr)$
 consider for example $n = 500$ and $r = 1000$

2) cost of inverting $\hat{K} + \lambda n I$ is $O(nr^2)$
 (use the Woodbury identity)
Two approaches to getting these low rank approximations:

1) Nyström approximations (originated in PDE literature)

2) Random feature maps (Recht & Rahimi, 2013)

Nyström approximations

Note that $K = K^T$ b/c $K(x_i, x_j) = K(x_j, x_i)$

Write

$$K = \begin{bmatrix}
W & C^T \\
C & \end{bmatrix}$$

where C are d sampled columns and W is the principal submatrix where C and C^T overlap.
note that this is equivalent to selecting
2 ‘landmark points’ \(p_1, \ldots, p_L \) and
comparing all of our training points to these
landmark points.

\[C_{i,j} = K(x_i, p_j) \]

and now we extend these comparisons to the
unobserved points (the non-landmark points) by
noting that

\[K = C W C^T \]
where W^+ is the Moore-Penrose pseudoinverse of W. We call W^+ the coupling matrix.

Why is $K \approx CW^+C^T$?
- Assume W is full rank, then $W^+ = W^{-1}$

and

$$CW^+C^T = \begin{bmatrix} W \\ \hline L \end{bmatrix} W^+ \begin{bmatrix} W & L^T \end{bmatrix}$$

$$= \begin{bmatrix} W & L^T \\ \hline L & LW^+L^T \end{bmatrix}$$
so \[K - CW^+C^T = \begin{bmatrix} 0 & O \\ O & K - LW^+L^T \end{bmatrix} \]

if \[K = \begin{bmatrix} W & L^T \\ L & K \end{bmatrix} \]

Schur complement of \(W \) in \(K \)

Fact: \(r_K(W) = r(K) \) then \(K - LW^+L^T = 0 \)

Take-away: if \(r_K(W) = r(K) \) then
\[K = CW^+C^T \]
Note we could pick any C subset of columns of R.

Still $R = CW^T + CT$.
Nystrom alg

Input: k - kernel function
X - training data
l - # of landmark points

Output: C, W

Algorithm
1. randomly pick l landmark points $\{p_1, \ldots, p_l\}$
2. construct C by comparing all of the data points to my landmark points
 \[C_{i,j} = k(x_i, p_j) \]
3. construct W by comparing the landmark points to themselves
 \[W_{i,j} = k(p_i, p_j) \]

return C, W
Random feature maps

Motivation:

\[K = \Phi \Phi^T \quad \text{where} \quad \Phi = \begin{bmatrix} \phi(x_1)^T \\ \vdots \\ \phi(x_n)^T \end{bmatrix} \]

would be a low-rank approximation if \(D \ll n \)

But in general \(D \gg n \) (that's why we work with the kernel \(K \) instead of \(D \) directly)

What we want to do is find an approximate feature map \(\Phi : \mathbb{R}^d \to \mathbb{R}^E \) \(E \ll D \) and \(E \ll n \)
where Φ is chosen so:

- $E \subseteq n$, D
- $\langle \Phi(x), \Phi(y) \rangle \approx k(x, y)$

because then

$$K_{ij} = k(x_i, x_j) \approx \langle \Phi(x_i), \Phi(x_j) \rangle$$

so

$$K \approx \Phi \Phi^T \quad \text{where} \quad \Phi = \begin{bmatrix} \Phi(x_1)^T \\ \vdots \\ \Phi(x_n)^T \end{bmatrix} \in \mathbb{R}^{n \times E}$$

and $E \ll n$ means this is a low-rank approx, so is cheaper to use than K.
Q: how to find these approximate feature maps
A: randomness!

For a given kernel K, choose $\tilde{\phi}$ so that

$$E \langle \tilde{\phi}(x), \tilde{\phi}(y) \rangle = K(x, y)$$

Ex: if $K(x, y) = e^{-\frac{||x-y||^2}{2\sigma^2}}$

then $\tilde{\phi}(x) = \sum_\omega \cos(\omega^T x + b)$ where $\omega \sim N(0, \sigma^2 I)$ and $b \sim \text{Unif} [-\pi, \pi]$ satisfies

$$E_{\omega, b} \langle \tilde{\phi}(x), \tilde{\phi}(y) \rangle = K(x, y)$$
Another example: polynomial kernel

\[k(x, y) = \langle x, y \rangle^r \]

Idea: \(\tilde{\phi}(x) = \epsilon^T x \) where \(\epsilon \in \mathbb{R}^d \) is a vector of uniformly random signs, iid \(\epsilon_i \in \{\pm 1\} \)

\[
E \langle \tilde{\phi}(x), \tilde{\phi}(y) \rangle = E \left[(\epsilon^T x) (\epsilon^T y) \right]
= E \left(\sum_{i,j=1}^{d} x_i y_j \epsilon_i \epsilon_j \right)
= \frac{1}{d} \sum_{i,j=1}^{d} x_i y_j E [\epsilon_i \epsilon_j]
\]
Since the entries of ε are independent,

\[E[\varepsilon_i \varepsilon_j] = \begin{cases}
E[\varepsilon_i] E[\varepsilon_j] = 0 & \text{if } i \neq j \\
E[\varepsilon_i^2] = 1 & \text{if } i = j
\end{cases} \]

\[
E \langle \tilde{\phi}(x), \tilde{\phi}(y) \rangle = \frac{1}{d} \sum_{i,j=1}^{d} x_i y_j E[\varepsilon_i \varepsilon_j] \\
= \frac{1}{d} \sum_{i=1}^{d} x_i y_i = \langle x, y \rangle
\]

Now I use this fact to approximate the polynomial feature map:
- Sample $\varepsilon_1, \varepsilon_1 \in \mathbb{R}^d, \ldots, \varepsilon_t \in \mathbb{R}^d$, i.i.d. random sign vectors
- $\tilde{\phi}(x) = (\varepsilon_1^T x) \ldots (\varepsilon_t^T x)$
with this choice:

\[
\mathbb{E} < \tilde{\phi}(x), \tilde{\phi}(y) > = \mathbb{E} \left[\prod_{i=1}^{r} (e_i^T x)(e_i^T y) \right] \\
= \prod_{i=1}^{r} \mathbb{E} [e_i^T x y^T e_i] = \prod_{i=1}^{r} < x, y > = < x, y >^r
\]

Alg:
Sample \(w_1 \in \mathbb{R}^{D \times d} \) so all its entries are i.i.d. random signs.
Sample \(w_2, \ldots, w_r \) i.i.d. in the same manner.

\[\tilde{\phi}(x) = \frac{1}{\sqrt{D}} (w_1 x) \circ (w_2 x) \circ \ldots \circ (w_r x) \in \mathbb{R}^D\]
Note that with this choice,

\[E \langle \tilde{\phi}(x), \tilde{\phi}(y) \rangle = E \sum_{i=1}^{D} \tilde{\phi}(x)_i \tilde{\phi}(y)_i \]

\[= \sum_{i=1}^{D} E \left[\tilde{\phi}(x)_i \tilde{\phi}(y)_i \right] \]

\[= \frac{1}{D} \sum_{i=1}^{D} \frac{1}{D} E \left[\left(w_{ij} \right)_i \times \left(w_{ji} \right)_i \right] \]

\[= \frac{1}{D} \sum_{i=1}^{D} \frac{1}{D} \langle x, y \rangle^r \]

\[= \langle x, y \rangle^r \]
A more general approach than kernel methods to learning nonlinear functions is that of neural networks.
Recall w/ kernel methods, we

1) pick a feature map $\phi : \mathbb{R}^d \rightarrow \mathbb{R}^D$

2) results in a kernel $\langle \phi(x), \phi(y) \rangle$

3) know the resulting ERM is convex

and takes the form

$$f(x) = \sum_{i=1}^{n} \alpha_i \cdot K(x, x_i)$$

4) solve for α^* again is a convex prob

w/ any of the methods are talked about before and we know

$$f(x_t) \leq f(x^*) + \varepsilon$$ if we run long enough
Drawbacks:
1. We have to do a good job of selecting our kernel K.
2. We have to keep around our training data to predict.

Another approach is neural nets. This is more general and learns our features for use.
What is a neural network?
- Motivated by biological neural networks (collections of neurons)

\[\text{output} = f(\text{input}) \]

- Neurons are connected together as a DAG (directed acyclic graph), no feedback loops or self-loops

[Diagram of neural networks with directed edges and nodes labeled as inputs and outputs]
Given a particular DAG (architecture of the neural network) we learn parameters for the neurons in the neural net to minimize our RERM objective

$$\omega = \arg \min_{\omega} \frac{1}{n} \sum_{i=1}^{n} l(f(x_i; \omega), y_i) + R(\omega)$$

The architecture determines how many parameters are in \(\omega \), and the way in which the function \(f \) depends on these parameters.
Architecture Choice I: Fully-connected neural networks
- The neurons are divided into an input layer, an output layer, and one or more hidden layers.
- All the neurons in layer \(l \) are connected to all the neurons in layer \(l+1 \).
Binary Classification (Logistic Regression)

Inputs are in \mathbb{R}^3

\[o = f \left(\sum_{i=1}^{3} \omega x_i + b \right) = \sigma \left(\frac{3}{2} \sum_{i=1}^{3} \omega x_i + b \right) \]

\[\sigma(a) = \frac{1}{1 + e^{-a}} \]
$x, y \in \mathbb{R}^3$, \mathbb{R}^3 inputs
$K \in \mathbb{R}^{n \times n}$ costs $\mathcal{O}(n^2)$ mult $\mathcal{O}(n^3)$ invert

$K \approx \Phi \Phi^T$ where $\Phi \in \mathbb{R}^{n \times E}$

randomized, low-dim (E) costs $\mathcal{O}(nE)$ mult
approx feature map

$\Phi \Phi^T$ where $\Phi \in \mathbb{R}^{n \times D}$ where $D \geq n$
costs $\mathcal{O}(nD) = \mathcal{O}(n^2)$
deterministic, high-dim (D)
exact feature map
costs $\mathcal{O}(nD^2) = \mathcal{O}(n^3)$