Today:

CNNs

- working w/ multi-channel images
- backprop for CNNs
- issues w/ backprops: vanishing & exploding gradients
- remedies:
 - pretraining
 - (2014) dropout
 - (2015) batch normalization
 - modify architecture of the network

- common CNN architectures:
 - VGG (repeating structures)
 - GoogLeNet (inception architecture)
 - ResNets (residual blocks)
Multi-channel inputs to convolutional layers?

Example: Consider a 3-channel input with 32-channel output (a Conv2D layer with 32 filters) and each filter is $3 \times 3 \Rightarrow$ you have $3 \times 3 \times 3 \times 32 \times 3 + 32 = 8960$ parameters for this layer.
Say we have n_l channels on convolutional layer l and for each channel we have kernels K_j^l, c where $j = 1, \ldots, n_{l-1}$ and $c = 1, \ldots, n_l$ and we write O_j^l as the jth output channel on layer l and A_j^l as the preactivation of the jth channel on layer l.

$$A_c^l = \sum_{t=1}^{n_{l-1}} O_t^{l-1} \ast K_j^l, c + b_c^l$$ bias for the jth channel on layer l.

$$O_c^l = \sigma(A_c^l)$$ for each output channel c on layer l.

Backprop for CNNs

Now we want to learn \(\frac{\partial f}{\partial x_{t,c}} \rightarrow \frac{\partial f}{\partial b_{t,c}} \)

Difficulty:
Vanishing & Exploding Gradients

Phenomenon that arises in deep neural networks: L-2 norm of the gradient tends to zero or infinity.

Why? Because of the chain rule:

\[\nabla_{\omega} f = \left[\omega^{d+1} \right]^T \left(\nabla_{\omega^{d+1}} f \circ \sigma'(a^{d+1}) \right) \]

and

\[\nabla_{w} f = \text{diag}(\sigma'(a^{d})) \left(\nabla_{\omega} f \circ \sigma'(a^{d}) \right) \]

\[\nabla_{b} f = \nabla_{\omega} f \circ \sigma'(a^{d}) \]
Two considerations:

1) The saturation of our activation function, given by $\sigma'(a_{d+1})$ and $\sigma'(a_{d})$

2) The norm of our weight matrix $\|W^{d+1}\|_2$

- if, on average, $\|W^{d+1}\|_2 \geq \|x\|_2$
 then we will get exploding gradients

- if, on average, $\|W^{d+1}\|_2 \leq \|x\|_2$
 then we will get vanishing gradients
Vanishing & Exploding gradients are difficult to handle w/ first order optimization algorithms.
- The scales of the gradients can vary widely b/w layers

- Next class: remedies for this problem
Basic idea is to note that we can represent our images however we want (and the operations on them).

Given an input image \(I \) we note \((d_1 - k_1 + 1) \times (d_2 - k_2 + 1)\).

\[d_1 \rightarrow d_2 \rightarrow \text{"unfold"} \rightarrow (d_1 - k_1 + 1) \times (d_2 - k_2 + 1) \]

Reach into the valid regions.
\[\text{vec}(I \star R) \in \mathbb{R}^{(d_1-k_1+1) \times (d_2-k_2+1)} \]

\[\text{vec}(I \star R) \in \mathbb{R}^{(d_1-k_1+1) \times (d_2-k_2+1)} \]

Question: What is the relationship between \(\text{vec}(I \star K) \) and \(\text{unfold}(I) \)?
\[\text{vec}(I \ast K) \]
\[R_{(a_1-k_1+1) \times (d_2-k_2+1)} \]
\[= \frac{\text{vec}(K)}{R_{k_1 \times k_2}} \]

Consequence:

\[\text{vec}(I \ast K) = \text{vec}(K) \cdot \text{unfold}(I) \]

\[\Rightarrow I \ast K = \text{unvec} \left(\frac{\text{vec}(K) \cdot \text{unfold}(I)}{\text{this is a vector, and we know how to backprop w.r.t. param vectors}} \right) \]