
CSCI 6971/4971: Homework 2

Assigned Monday February 12 2017. Due at beginning of class Thursday February 22 2017.
Remember to typeset this submission using LaTeX, and email it to me by the start of class on the
due date.

1. [50 points (JLT Lemma for Gaussian Projections)] In class we established the Johnson-
Lindenstrauss Lemma for general sub-gaussian random vectors. Specialize the proof to apply
to vectors whose entries are independent normal random variables, and give explicit con-
stants. You may use the following concentration inequality for chi-squared random variables
with n degrees of freedom: if the variables Xi, i = 1, 2, . . . , n are independent standard normal
random variables, then
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2. [50 points (Nonsymmetric Bernstein Inequality)] The matrix Bernstein inequality we learned
in class allows us to bound the maximum eigenvalue of a sum of symmetric random matrices.
Sometimes we need to control the norm of a sum of general random matrices. In this exercise,
you will show that such a bound follows from the inequality you already know. Specifically,
you will establish the following theorem.

Let X1, . . . ,Xn be random n-by-d matrices with zero mean. Choose a constant R that
uniformly bounds the norms of the summands almost surely,

maxn
i=1 ‖Xi‖2 ≤ R almost surely,

and a “matrix variance” σ2 that satisfies
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– The key to proving this theorem lies in two linear algebraic results. The first of these
allows replacing the sum of rectangular matrices Xi with a sum of closely related sym-
metric matrices. Prove that, for any matrix A,
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The symmetric matrix on the right-hand side is called the self-adjoint dilation of A. To
establish this result, use the full SVD of A to demonstrate that the singular values of
the self-adjoint dilation of A are the same as those of A: show that if Σ contains the
singular values of A, then there is an orthonormal matrix Z which satisfies[
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are eigenvectors of the self-adjoint dilation of A.

– Show that this fact implies that∥∥∥∑n

i=1
Xi

∥∥∥
2

= λmax

(∑n

i=1
Di

)
1



where Di is the self-adjoint dilation of Xi. Thus we can use the matrix Bernstein
inequality from class, once we have identified a uniform bound on ‖Di‖2 that holds with
probability one, and an estimate of the matrix variance ‖
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i=1 ED2

i ‖2.
– Argue that the R specified in the theorem statement is indeed a uniform bound on ‖Di‖2

with probability one. That is, show that

maxn
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– The next key linear algebraic result allows us to find the matrix variance of the sum of
the self-adjoint dilations. Prove that if A and B are matrices, then there are orthonormal
matrices L and R such that [
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where ΣA contains the singular values of A, and similarly ΣB contains the singular
values of B. Argue that it follows that∥∥∥∥[A 0
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– Use the above result to argue that the σ2 specified in the theorem statement is indeed a
suitable matrix variance for the sum of self adjoint dilations. That is, argue that∥∥∥∑n
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– Put these arguments together, and apply the matrix Bernstein theorem from class to
demonstrate that you obtain the claimed bound.
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