Linear Algebra

Concepts: SVD, EVD, QR decompositions; Rank, Nullity; Positivity; Orthonormality; Vector norms; Frobenius norm; Spectral norm

1. What is the tightest upper bound on $|x^T y|$ in terms of the Euclidean norms of x and y?

2. Let matrices A and B have the same dimensions; show that the trace of the matrix AB^T is the same as the inner product of the vectors a and b obtained by stacking the columns of A and B.

3. Why is it that $A^T A + I$ is invertible for any matrix A?

4. Express $\|A^{-1}\|_2$ in terms of the singular values of A.

5. If $A = QR$ is a QR decomposition, give an expression for $A^T A$ in terms of R.

6. If $A = USV^T$ is the full SVD of A, then what are the full SVDs of $A^T A$ and AA^T?
7. If $A = USV^T$ is the full SVD of A, how can you read off the rank and nullity of A from just S?

8. If $x^T A^T A x = 0$, what can we say about x?

9. If A is symmetric (not necessarily positive-definite), how are its eigenvalue decomposition and singular value decomposition related?

10. If U is a matrix with orthonormal columns, argue that $\|Ux\|_2^2 = \|x\|_2^2$.

11. Express the Frobenius norm of A in terms of the trace of the matrix $A^T A$ and argue that it is smaller than the spectral norm of A.

12. If A and B are matrices whose columns are respectively $\{a_i\}_i$ and $\{b_i\}_i$, show that $AB^T = \sum_i a_i b_i^T$.

13. Express $\|aa^T\|_F^2$ in terms of the Euclidean length of a.

Probability

Concepts: Independence; Variance; Expectation; Total Probability; Gaussians

1. Let \(p(x, y) \) be the joint pdf for two random variables \(X, Y \) in \(\mathbb{R}^2 \); give expressions for \(p_1(x) \) and \(p_2(y) \), the marginals of \(X \) and \(Y \).

2. If \(X \) and \(Y \) are independent random variables, how is \(p \) related to \(p_1 \) and \(p_2 \)?

3. If \(X \) and \(Y \) are independent, give an expression for the expectation of \(f(x)g(y) \), where \(f \) and \(g \) are arbitrary functions (this expression should not be true in general if \(X \) and \(Y \) are not independent).

4. What can be said about \(P\{E_1 \cap E_2\} \) if the events \(E_1 \) and \(E_2 \) are independent?

5. If \(X, Y, Z \) are independent, what can we say about \(\mathbb{E}(X+Y+Z) \)? If they are not independent?

6. Let \([\cdot] \) be the indicator function that returns 1 if the argument is true and 0 otherwise; give a simple expression for \(\mathbb{E}([X \in A]) \).

7. Use the law of total probability to argue that \(P\{E_1\} \leq P\{E_1 \cap E_2\} + P\{E_2^c\} \).
8. Give a sufficient condition for when the variance of $X + Y$ equals the sum of the variances of X and Y. Provide a proof of your claim.

9. Let \mathbf{x} be a standard multivariate Gaussian in \mathbb{R}^n, \mathbf{O} be an orthonormal matrix, and \mathcal{A} be a subset of \mathbb{R}^n. Argue that $P\{\mathbf{Ox} \in \mathcal{A}\} = P\{\mathbf{x} \in \mathbf{O}^T \mathcal{A}\}$, and evaluate the integral for the latter probability to argue that \mathbf{Ox} is also a standard multivariate Gaussian.

10. If X_1, \ldots, X_n are independent identically distributed samples drawn from a distribution with finite variance, what can we say about the distribution of their average $\frac{1}{n} \sum_{i=1}^{n} X_i$?