SVD review

Let A be a rank-ρ matrix in $\mathbb{R}^{m \times n}$ with $m \geq n$. Recall that the full SVD of A takes the form $A = U \Sigma V^T$, where U is an $m \times m$ orthonormal matrix (i.e., the columns of U have unit length and are mutually orthogonal; more concisely, $U^T U = I_m$), V is an $n \times n$ orthonormal matrix, and Σ is an $m \times n$ diagonal matrix that has nonnegative entries. The columns of U and V are called, respectively, the left and right singular vectors of A, and the diagonal entries of Σ are called the singular values of A. In particular, A has m left singular vectors and n singular values and right singular vectors.

![Diagram of SVD decomposition]

We decompose U as

$$U = \begin{bmatrix} u_1 & \ldots & u_m \end{bmatrix} = \begin{bmatrix} U_{\rho} & U_{\rho}^\perp \end{bmatrix},$$

so that u_i denotes the ith left singular vector of A, and the first ρ left singular vectors of A constitute the matrix U_{ρ}, while the remaining left singular vectors constitute U_{ρ}^\perp. Note that $U_{\rho}^T U_{\rho}^\perp = 0$. We similarly decompose the matrix of right singular vectors as

$$V = \begin{bmatrix} v_1 & \ldots & v_n \end{bmatrix} = \begin{bmatrix} V_{\rho} & V_{\rho}^\perp \end{bmatrix},$$

and the matrix of singular values as

$$\Sigma = \begin{bmatrix} \Sigma_{\rho} & 0_{m-\rho \times n} \\ 0_{m-\rho \times n} & 0_{n-\rho \times n} \end{bmatrix}.$$

Using this notation, the full SVD of A has the decomposition

$$A = \begin{bmatrix} U_{\rho} & U_{\rho}^\perp \end{bmatrix} \begin{bmatrix} \Sigma_{\rho} & 0_{m-\rho \times n} \\ 0_{m-\rho \times n} & 0_{n-\rho \times n} \end{bmatrix} \begin{bmatrix} V_{\rho}^T \\ (V_{\rho}^\perp)^T \end{bmatrix}. \quad (1)$$

The full SVD is useful because in the decomposition $A = U \Sigma V^T$, the matrices U and V are orthonormal, so are invertible, and preserve Euclidean norms of vectors. It also lets you immediately read off orthogonal bases for the four fundamental subspaces associated with A: the kernel/null space (has basis V_{ρ}^\perp), the column space (has basis U_{ρ}), the row space (has basis V_{ρ}), and the cokernel (i.e. the set of vectors so that $x^T A = 0$, equivalently the kernel of A^T; this has basis U_{ρ}^\perp).

However, as you can check by multiplying out equation (1), we can also write $A = U_{\rho} \Sigma_{\rho} V_{\rho}^T$. This is called the reduced SVD, and is a more condensed factorization that is very useful in practice. Now U_{ρ} and V_{ρ} only contain the singular vectors corresponding to the nonzero singular values of A. Note that if A is an invertible matrix then the reduced SVD and full SVD are identical.