Answer **ALL** questions. You may use one double sided $8\frac{1}{2} \times 11$ crib sheet. NO COLLABORATION or electronic devices. Any violations result in an F. NO questions allowed during the test. Interpret and do the best you can. You **MUST** show **CORRECT** work, **even on multiple choice questions**, to get credit.

GOOD LUCK!

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>200</td>
</tr>
</tbody>
</table>
Circle one answer per question. 10 points for each correct answer.

(a) Compute the sum \(\sum_{n=1}^{4} 3^n \).

A 120.

B 121.

C 242.

D 243.

E None of the above.

(b) What is the last digit of 3^{11}?

A 1.

B 3.

C 7.

D 9.

E None of the above.

(c) A graph has degree sequence \([6, 6, 3, 3, 3, 2, 2]\). How many edges does this graph have?

A 12.

B 25.

C 30.

D Not enough information to say.

E Such a graph does not exist.

(d) Suppose a connected planar graph has 18 vertices, each of degree 3. Into how many regions does any planar representation of this graph split the plane?

A 6.

B 11.

C 27.

D 40.

E None of the above.

(e) Compute 102^{1211} \mod 5.

A 0

B 1

C 2

D 3

E 4
(f) Which of the following numbers evenly divides $102^{211} - 3^{211}$?

A 5
B 17
C 2
D 99
E None of the above

(g) The negation of “If Lassie vomits then she ate grass or she is sick” is:

A If Lassie didn’t eat grass and is healthy, she will not vomit.
B Lassie vomited and did not eat grass and is not sick.
C When Lassie eats grass or is sick, she does not vomit.
D Lassie did not vomit and she ate grass and is sick.
E None of the above.

(h) Which claim below is true?

A If $x, y \in \mathbb{Q}$ then $y^x \in \mathbb{Q}$.
B x is odd if and only if $x^2 - 1$ is divisible by 8.
C If p is prime, then $k^p - k$ is not divisible by p, for any integer k.
D None of these claims are true.
E All of these claims are true.

(i) Which of the following asymptotic relationships is correct?

A $(n + 1)! \in O(n!)$.
B $(n + 1)! \in \omega(n!)$.
C $(n + 1)! \in o(n!)$.
D $(n + 1)! \in \Theta(n!)$.
E None of the above.

(j) Which of the following recursions defines a sequence T_n satisfying $T_n \in \Theta(2^n)$?

A $T_1 = 2; T_n = T_{n-1}^2$ for $n > 1$.
B $T_1 = 2; T_n = 2 + 2T_{n-1}$ for $n > 1$.
C $T_1 = 2; T_n = 2nT_{n-1}$ for $n > 1$.
D All of the above.
E None of the above.
Let p be prime. Consider an integer $b \in [1, p - 1]$. Use Bezout’s Theorem to show that there exists an integer $x \in [1, p - 1]$ that satisfies $bx \equiv 1 \mod p$.

Prove or disprove: every graph with n vertices and $n - 1$ edges is a tree.
For any positive integer \(k \), prove that \(1^k + 2^k + \cdots + n^k \in \Theta(n^{k+1}) \).
Let $A_n = \underbrace{1 \cdots 1}_n$ for $n \geq 1$. Notice that $A_n = 10A_{n-1} + 1$ for $n \geq 2$. Use induction to show that $A_n \equiv 3 \text{ mod } 4$ when $n \geq 2$.
Determine the type of proof, and prove: every odd natural number is the difference of two perfect squares.
SCRATCH