QUIZ 3: 120 Minutes

Answer ALL questions.
OPEN BOOK (notes, assignments, and textbook) and electronic devices allowed.
NO COLLABORATION or Internet use. Any violations result in an F.
NO questions allowed during the test. Interpret and do the best you can.

GOOD LUCK!

Circle at most one answer per question.
10 points for each correct answer.

You MUST show CORRECT work to get full credit.

When in doubt, TINKER.

Total

200
1. What is the expected number of times a six appears when a fair die is rolled ten times?

Let \(X_i = \begin{cases} \text{1 if 6 appears on } i\text{-th roll} & \text{w.p. } \frac{1}{6} \\ 0 \text{ otherwise} & \text{w.p. } \frac{5}{6} \end{cases} \)

\[\Rightarrow E[X_i] = \frac{1}{6} \quad \text{for } i = 1, \ldots, 10 \]

\[\Rightarrow E\left[\sum_{i=1}^{10} X_i\right] = \frac{10}{6} = 1\frac{2}{3} \]

- **A** 2\(\frac{2}{3}\)
- **B** \(\frac{1}{6}\)
- **C** 1\(\frac{2}{3}\)
- **D** 1\(\frac{1}{3}\)
- **E** None of the above

2. A test has twenty-five multiple-choice questions worth four points each and fifty True-False questions worth two points each. The probability that Katie answers a multiple choice question correctly is 0.8 and for a True-False question this probability is 0.9. What is her expected score on the test?

\[\text{E-score} = E\left[4 \sum_{i=1}^{25} m_i + 2 \sum_{i=1}^{50} t_i\right] = 4 \cdot 25 \cdot 0.8 + 2 \cdot 50 \cdot 0.9 \]

\[= 80 + 90 = 170 \]

- **A** 200
- **B** 150
- **C** 100
- **D** 170
- **E** None of the above

3. We roll \(n \) fair dice. The \(i \)-th dice has \(x_i \) sides, so takes on one of the values 1, 2, \ldots, \(x_i \). What is the expected sum of the values of these \(n \) dice?

\[E\left[\sum_{i=1}^{n} x_i\right] = \sum_{i=1}^{n} E[x_i] = \sum_{i=1}^{n} \frac{1}{2} (x_i + 1) = \frac{n}{2} + \frac{1}{2} \sum_{i=1}^{n} (x_i + 1) = \frac{n}{2} + \frac{1}{2} \sum_{i=1}^{n} x_i \]

- **A** \(\frac{n}{2} + \frac{1}{2} \sum_{i=1}^{n} x_i\)
- **B** \(\frac{n}{2} + \frac{1}{2} \sum_{i=1}^{n} x_i\)
- **C** \(\frac{n}{2} \sum_{i=1}^{n} x_i\)
- **D** \(\frac{n+1}{2}\)
- **E** None of the above

4. \(X \) is a random variable that represents a roll of a fair six-sided die. What is the variance of \(X \)?

\[\text{Var}(X) = E((X-E[X])^2) = \frac{1}{6} \sum_{i=1}^{6} (i - \frac{7}{2})^2 = \frac{35}{12} \]

- **A** \(\frac{7}{2}\)
- **B** \(\frac{11}{6}\)
- **C** \(\frac{47}{12}\)
- **D** \(\frac{91}{12}\)
- **E** None of the above

5. Which of the following are countable?

(I) \(\mathbb{Z} \times \mathbb{Z} = \{(u,v) | u \in \mathbb{Z} \text{ and } v \in \mathbb{Z}\} \)

(II) The set of unrecognizable languages

(III) The set of solvable problems

- **A** I & III
- **B** I only

(I) is countable b/c of the Cantor diagonalization argument

(III) is the set of Turing deciders, which is contained in the set of Turing machines, which is countable, so (III) is countable
6. Which of the following strings match the regular expression \(\{0, 01\}^* \cdot \{1, 10\}^* \)?

(I) 101110 (II) 00111 (III) 00100 (IV) 01100

- A) II and IV
- B) III
- C) all except IV
- D) all except I
- E) all

7. What is the correct relationship between the cardinalities of these sets:

(I) \(\mathcal{A} \), the set of all languages

(II) \(\mathcal{I} \), the interval \([0, 1]\)

(III) \(\mathcal{C} \), the set of C programs that compile successfully and halt eventually when run

- |\(\mathcal{C} \)| \(\leq |\mathcal{A}| \)
- |\(\mathcal{C} \)| \(= |\mathcal{A}| \)
- |\(\mathcal{A} \)| \(= |\mathcal{I}| \)
- |\(\mathcal{I} \)| \(= |\mathcal{A}| \)
- |\(\mathcal{A} \)| \(< |\mathcal{I}| \)

8. Consider the following DFA. Which of these strings will it accept:

(I) 011011 (II) 100110 (III) 111101

- A) I & II
- B) II & III
- C) III only
- D) I only
- E) none
9. Which is the following claims is true about the language $L = \{\omega \# \omega^R \# \omega \mid w \in \{0, 1\}^*\}$?

- A. Its complement is regular
- B. It is not decidable but is recognizable
- C. It is context-free
- D. It is not context-free but is decidable
- E. It can be recognized with a PDA

10. Which of the following languages will not be accepted by this DFA?

```
  start -> q0 0 q1 0 q2 1
            ↓ 1
```

- A. $\{00\} \cdot \{1\}^*$
- B. $\{00\} \cdot \{1^*00\}^*$
- C. $\{0\} \cdot \{1\}^* \cdot \{0\} \cdot \{0\}^* \cdot \{1\}$
- D. $\{100\} \cdot \{100\}^*$
- E. $\{0\} \cdot \{10\}^* \cdot \{01\}$

11. If L_1 and L_2 are both undecidable but recognizable languages, which of the following are also recognizable:

(I) L_1^c (II) $L_1 \cap L_2$ (III) $L_1 \cup L_2$

Hint: Given recognizers for L_1 and L_2, how could you build recognizers for these languages?

- A. I
- B. I and II
- C. II
- D. II and III
- E. III

12. How many strings of length four are accepted by this DFA?

```
Enumerate and check:
```

- A. 5
- B. 6
- C. 8
- D. 10
- E. 12
13. Generate a random two digit binary string by choosing each digit independently and identically, selecting zero with probability $1/3$ and one with probability $2/3$. What is the probability that the automaton from the previous problem will accept a string generated in this manner?

\[
\begin{align*}
A & \quad \frac{2}{9} \\
B & \quad \frac{4}{9} \\
C & \quad \frac{5}{9} \\
D & \quad \frac{1}{3} \quad \text{this should have been } \frac{3}{9} \\
E & \quad \frac{7}{9}
\end{align*}
\]

\[
P(\text{accept}) = P(01 \text{ or } 10) = P(01) + P(11) = \frac{1}{3} \cdot \frac{2}{3} + \left(\frac{2}{3}\right)^2 = \frac{2}{9} + \frac{4}{9} = \frac{6}{9}
\]

14. If the complement of a language is countable, which of the following are necessarily true: (I) the language is regular (II) the language is decidable (III) the language is context-free

\[
\begin{align*}
A & \quad \text{all} \\
B & \quad \text{none} \\
C & \quad \text{II only} \\
D & \quad \text{I only} \\
E & \quad \text{III only}
\end{align*}
\]

15. Describe the language generated by this CFG.

1. \(S \rightarrow A1B\)
2. \(A \rightarrow \varepsilon | 0A\)
3. \(B \rightarrow \varepsilon | 0B | 1B\)

\[
\begin{align*}
A & \quad \text{The set of strings that starts with zero and contains a one} \\
B & \quad \text{The set of strings with an odd number of zeros} \\
C & \quad \text{The set of strings containing a one} \\
D & \quad \text{The set of strings with more ones than zeros} \\
E & \quad \text{None of the above}
\end{align*}
\]

16. Consider the CFG

1. \(S \rightarrow 0 | S A\)
2. \(A \rightarrow AA | S1\)

Which string is in the language described by this CFG?

\[
\begin{align*}
A & \quad 10101 \\
B & \quad 001 \\
C & \quad 011 \\
D & \quad 101 \\
E & \quad \text{None of the above}
\end{align*}
\]

17. Which of the following CFGs generates all finite binary strings?

(I) \(S \rightarrow \varepsilon | 0S | 1S\)
18. If \(L \) is undecidable, which of the following cannot be true?

A There is a recognizer for \(L \)
B \(L \subseteq L_{\text{Halt}} \)
C \(L \) is decidable
D \(L \) is countable
E Any of the above could be true

19. Which CFG generates the same language as

1: \(S \rightarrow 00S1 \)
2: \(T \rightarrow 0S1 \)
3: \(S \rightarrow 0T \)
4: \(S \rightarrow \varepsilon|01 \)

A \(S \rightarrow \varepsilon|01|00S11 \)
B \(S \rightarrow \varepsilon|01|0S1|00S1 \)
C \(S \rightarrow \varepsilon|01|00S1 \)
D \(S \rightarrow \varepsilon|01|000S11 \)
E \(S \rightarrow \varepsilon|01|000S1 \)

20. Under which of the following operations is the class of decidable problems closed: (I) complementation (II) union (III) intersection (IV) Kleene-Star?

Hint: how would you construct deciders for languages defined using these operations?

A all except IV
B II and III
C all except I
D all
E none

(I) get a decider for \(L \) by inverting the output of the decider for \(L \)
(II) ACCEPT if either \(\delta_1 \) or \(\delta_2 \) deciders accept, REJECT otherwise
(III) ACCEPT if both \(\delta_1 \) and \(\delta_2 \) decide accept, REJECT otherwise
(IV) write an algorithm that generates all partitions of \(w \) into substrings and runs the decider for \(L \) on each part of the partitions ACCEPT if there's a partition whose parts are all in \(L \), else REJECT