Making Precise Statements

Propositions
Compound Propositions and Truth Tables
Predicates and Quantifiers

Last Time

- Sets, \{3, 5, 11\}
- Sequences, 100111001
- Graphs,
- Examples of basic proofs:
 - In 4 rounds of group dating, no one meets more than 12 people.
 - \(x^2 \) is even "is the same as" \(x \) is even.
 - In any group of 6 people there is an orgy of 3 mutual friends or a war of 3 mutual enemies.
 - **Axiom:** The Well Ordering Principle
 - \(\sqrt{2} \) is not rational.

Today: Making Precise Statements

- Making a precise statement: the proposition
- Complicated precise statements: the compound proposition
 - Truth tables
- Claims about many things
 - Predicates
 - Quantifiers
 - Proofs with quantifiers

Statements can be Ambiguous

- \(2+2=4. \) **T**
- \(2+2=5. \) **F**
- You may have cake or ice-cream. *(Can you have both?)*
- **IF** pigs can fly **THEN** you get an A. *(Pigs can’t fly. So, can you get an A?)*
- **EVERY** person has a soul mate.
 - There is a single soul mate that **EVERY** person shares.
 - **EVERY** person has their own special soul mate.

Why is ambiguity bad? **Proof!**

We asked questions of our friends to prove 5(b).

Pop Quiz: How to prove 5(a)?

A says Sue’s their soul mate;
B says Joe’s their soul mate;
C says Sue’s their soul mate;
D’s soul mate is a red Porsche;
E says Sue’s their soul mate;
F says Sam’s their soul mate.
Propositions are T or F

We use the letters \(p, q, r, s, \ldots\) to represent propositions.

\[p: \text{Porky the pig can fly.} \quad F \]
\[q: \text{You got an A.} \quad T? \]
\[r: \text{Kilam is an American.} \quad T? \]
\[s: 4^2 \text{ is even.} \quad T \]

To get complex statements, combine basic propositions using logical connectors.

Negation (NOT), \(\neg p\)

The negation \(\neg p\) is T when \(p\) is F, and the negation \(\neg p\) is F when \(p\) is T.

"Porky the pig can fly" is F

So,

\text{IT IS NOT THE CASE THAT} (Porky the pig can fly) is T

Compound Propositions

\[p: \text{Porky the pig can fly.} \quad F \]
\[q: \text{You got an A.} \quad T? \]
\[r: \text{Kilam is an American.} \quad T? \]
\[s: 4^2 \text{ is even.} \quad T \]

<table>
<thead>
<tr>
<th>Connector</th>
<th>Symbol</th>
<th>An example in words</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOT</td>
<td>(\neg p)</td>
<td>IT IS NOT THE CASE THAT (Porky the pig can fly)</td>
</tr>
<tr>
<td>AND</td>
<td>(p \land q)</td>
<td>(Porky the pig can fly) AND (You got an A)</td>
</tr>
<tr>
<td>OR</td>
<td>(p \lor q)</td>
<td>(Porky the pig can fly) OR (You got an A)</td>
</tr>
<tr>
<td>IF... THEN...</td>
<td>(p \rightarrow q)</td>
<td>IF (Porky the pig can fly) THEN (You got an A)</td>
</tr>
</tbody>
</table>

Conjunction (AND), \(p \land q\)

Both \(p\) and \(q\) must be T for \(p \land q\) to be T; otherwise \(p \land q\) is F.

"Porky the pig can fly" is F

We don’t know whether “You got an A”.

It does not matter.

\((\text{Porky the pig can fly}) \land (\text{You got an A})\) is F
Disjunction (OR), $p \lor q$

Both p and q must be F for $p \lor q$ to be F, otherwise $p \lor q$ is T.

"Porky the pig can fly" is F.

We don't know whether "You got an A".

Now it matters.

(Porky the pig can fly) \lor (You got an A) is T or F

(Depends on whether you got an A.)

Pop Quiz: "You can have cake" OR "You can have ice-cream." Can you have both?

Implication (IF... THEN...), $p \to q$

IF "Porky the pig can fly" **THEN** "You got an A." **(T/F?)**

Suppose T. Since pigs can’t fly, does it mean you can’t get an A?

IF "n^2 is even" **THEN** "n is even." **(T)**

Suppose n^2 is even. Can we conclude $n \neq 5$?

IF "it rained last night" **THEN** "the grass is wet." **(T)**

$p :$ it rained last night
$q :$ the grass is wet

$p \to q$

What does it *mean* for this common-sense implication to be true? What can you conclude? Did it rain last night? Is the grass wet?

Adding New Information to a True Implication: p is T

IF "it rained last night" **THEN** "the grass is wet." **p \to q**

$p :$ it rained last night
$q :$ the grass is wet

$p \to q$

Weather report in morning paper: rain last night. **← new information**

IF (it rained last night) **THEN** (the grass is wet) **T**

It rained last night (from the weather report) **T**

Is the grass wet? **YES!** $\therefore q$ **T**

For a true implication $p \to q$, when p is T, you can conclude q is T.
Adding New Information to a True Implication: q is T

\[
\text{IF "it rained last night" THEN "the grass is wet."} \\
p : \text{it rained last night} \\
q : \text{the grass is wet} \\
p \rightarrow q
\]

While picking up the morning paper, you see wet grass.

\[
\text{IF (it rained last night) THEN (the grass is wet) } T \\
The grass is wet (from walking outside) \quad T \\
\text{Did it rain last night?} \quad \therefore \quad p \quad T \text{ or } F
\]

For a true implication $p \rightarrow q$, when q is T, you cannot conclude p is T.

Adding New Information to a True Implication: q is F

\[
\text{IF "it rained last night" THEN "the grass is wet."} \\
p : \text{it rained last night} \\
q : \text{the grass is wet} \\
p \rightarrow q
\]

While picking up the paper, you see dry grass.

\[
\text{IF (it rained last night) THEN (the grass is wet) } F \\
\text{If grass is wet (from walking outside)} \quad F \\
\text{Did it rain last night?} \quad \therefore \quad p \quad F
\]

For a true implication $p \rightarrow q$, when q is F, you can conclude p is F.

Adding New Information to a True Implication: p is F

\[
\text{IF "it rained last night" THEN "the grass is wet."} \\
p : \text{it rained last night} \\
q : \text{the grass is wet} \\
p \rightarrow q
\]

Weather report in morning paper: no rain last night.

\[
\text{IF (it rained last night) THEN (the grass is wet) } F \\
\text{It rained last night (from the weather report)} \quad F \\
\text{Is the grass wet?} \quad \therefore \quad q \quad T \text{ or } F
\]

For a true implication $p \rightarrow q$, when p is F, you cannot conclude q is F.

Implication: Inferences When New Information Comes

\[
\text{IF (Porky the pig can fly) THEN (You got an A)} \\
\text{can be } T \text{ or } F \text{ (phew)}
\]

For a true implication $p \rightarrow q$:

When p is T, you can conclude that q is T.

When q is T, you cannot conclude p is T.

When p is F, you cannot conclude q is F.

When q is F, you can conclude p is F.
Falsifying “IF (it rained last night) THEN (the grass is wet)”

- You are a scientist collecting data to verify that the implication is valid (true).
- One night it rained. That morning the grass was dry.
- What do you think about the implication now?

This is a falsifying scenario.

\[p \implies q \text{ only when } p \text{ is } T \text{ and } q \text{ is } F. \text{ In all other cases } p \implies q \text{ is } T. \]

Example: IF (you are hungry OR you are thirsty) THEN you visit the cafeteria

\[(p \lor q) \implies r \]

- \(p \) : you are hungry
- \(q \) : you are thirsty
- \(r \) : you visit the cafeteria

\[(p \lor q) \implies r \]

- You are thirsty: \(q = T \). In both cases \(r = T \). (you visit the cafeteria)
- You did visit the cafeteria: \(r = T \).
- You did not visit the cafeteria: \(r = F \).
- You are neither hungry nor thirsty.

Implication is \textit{Extremely Important}, \(p \implies q \)

All these are \(p \implies q \) (\(p \) = “it rained last night” and \(q \) = “the grass is wet”):

- If it rained last night then the grass is wet. \(\text{ IF } p \text{ THEN } q \)
- It rained last night implies the grass is wet. \(p \implies q \)
- It rained last night only if the grass is wet. \(p \text{ ONLY IF } q \)
- The grass is wet if it rained last night. \(q \text{ IF } p \)
- The grass is wet whenever it rains. \(q \text{ WHENEVER } p \)

Truth Tables:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(\neg p)</th>
<th>(p \land q)</th>
<th>(p \lor q)</th>
<th>(p \implies q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

\[p \implies q \equiv \neg q \implies \neg p \equiv \neg p \lor q \]

Order is very important: \(p \implies q \) and \(q \implies p \) do \textbf{not} mean the same thing.

IF I’m dead, THEN my eyes are closed \textbf{vs.} IF my eyes are closed, THEN I’m dead

Equivalent Compound Statements

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \implies q)</th>
<th>(\neg q \implies \neg p)</th>
<th>(\neg p \lor q)</th>
<th>(q \implies p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Pop Quiz 3.5. Compound propositions are used for program control flow, especially \(\text{ IF... THEN... } \)

\[\text{if}(x > 0 \land (y > 1 \land x < y)) \]
\[\text{Execute some instructions.} \]
\[\text{if}(x > 0 \land y > 1) \]
\[\text{Execute some instructions.} \]

Use truth-tables to show that both do the same thing. Which do you prefer and why?
Proving an Implication: Reasoning Without Facts

IF \((n^2 \text{ is even}) \text{ THEN } (n \text{ is even}) \).

<table>
<thead>
<tr>
<th></th>
<th>(p: n^2 \text{ is even})</th>
<th>(q: n \text{ is even})</th>
<th>(p \rightarrow q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>(q)</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

What is \(n \)? How to prove?

We must show that the highlighted row cannot occur.

In this row, \(q \) is F: \(n = 2k + 1 \).

\[n^2 = (2k + 1)^2 = 2(2k^2 + 2k) + 1 \]

\(p \) cannot be T. This row cannot happen: \(p \rightarrow q \) is always T.

Predicates Are Like Functions

ALL cars have four wheels

Define predicate \(P(c) \) and its domain

\[
C = \{ c | c \text{ is a car} \}
\]

\[P(c) = \text{"car } c \text{ has four wheels"} \]

"for all \(c \) in \(C \), the statement \(P(c) \) is true."

\(\forall c \in C : P(c) \).

(\(\forall \) means "for all")

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(c)) = "car (c) has four wheels"</td>
<td>(f(x) = x^2)</td>
</tr>
<tr>
<td>(\text{Input parameter } c \in C)</td>
<td>(\text{parameter } z \in \mathbb{R})</td>
</tr>
<tr>
<td>(\text{Output statement } P(c))</td>
<td>(\text{value } f(x))</td>
</tr>
<tr>
<td>(\text{Example } P(\text{Jen's VW}) = \text{"car 'Jen's VW' has four wheels"})</td>
<td>(f(5) = 25)</td>
</tr>
<tr>
<td>(\forall x \in \mathbb{R}, f(x) \geq 0)</td>
<td>(\forall x \in \mathbb{R}, f(x) \geq 0)</td>
</tr>
<tr>
<td>(\text{Meaning } \forall c \in C, \text{the statement } P(c) \text{ is true.})</td>
<td>(\forall x \in \mathbb{R}, f(x) \geq 0)</td>
</tr>
</tbody>
</table>

Quantifiers

'EVEN' person has A soulmate.

Kilam has some gray hair.

Everyone has some gray hair.

Any map can be colored with 4 colors with adjacent countries having different colors.

Every even integer \(n > 2 \) is the sum of 2 primes (Goldbach, 1742).

Socrates broke this fact.

There exists a creature with blue eyes and blonde hair.

All cars have four wheels.

These statements are more complex because of quantifiers:

EVEN; A; SOME; ANY; ALL; THERE EXISTS.

Compare:

My Ford Escort has four wheels;
All cars have four wheels.

There EXISTS a Creature with Blue eyes and Blonde Hair

Define predicate \(Q(a) \) and its domain

\[
A = \{ a | a \text{ is a creature} \}
\]

\[Q(a) = \text{"a has blue eyes and blonde hair"} \]

"there exists \(a \) in \(A \) for which the statement \(Q(a) \) is true."

\[\exists a \in A : Q(a). \]

(\(\exists \) means "there exists")

\[G(a) = \text{"a has blue eyes"} \]

\[H(a) = \text{"a has blonde hair"} \]

\[\exists a \in A : (G(a) \land H(a)) \]

(When the domain is understood, we don’t need to keep repeating it. We write \(\exists a : Q(a) \), or \(\exists a : (G(a) \land H(a)) \),...
Negating Quantifiers

IT IS NOT THE CASE THAT (There is creature with blue eyes and blonde hair)
Same as: “All creatures don’t have blue eyes and blonde hair”
\[-(\exists a \in A : Q(a)) \iff \forall a \in A : \neg Q(a)\]

IT IS NOT THE CASE THAT (All cars have four wheels)
Same as: “There is a car which does not have four wheels”
\[-(\forall c \in C : P(c)) \iff \exists c \in C : \neg P(c)\]

When you take the negation inside the quantifier and negate the predicate, you must switch quantifiers: \(\forall \rightarrow \exists, \exists \rightarrow \forall\)

Proofs with Quantifiers

Claim 1. \(\forall n > 2: \text{if } n \text{ is even, then } n \text{ is a sum of two primes.}\) *(Goldbach, 1742)*

Claim 2. \(\exists (a, b, c) \in \mathbb{N}^3: a^2 + b^2 = c^2.\) \((a, b, c) \in \mathbb{N}^3 \text{ means triples of natural numbers}\)

Claim 3. \(\neg \exists (a, b, c) \in \mathbb{N}^3: a^3 + b^3 = c^3.\)

Claim 4. \(\forall (a, b, c) \in \mathbb{N}^3: a^3 + b^3 \neq c^3.\)

Think about what it would take to prove these claims.

Every Person Has a Soul Mate

Define domains and a predicate.
\[A = \{a : a \text{ is a person}\}.\]

\[P(a, b) = “\text{Person } a \text{ has as a soul mate person } b.”\]

- There is some special person \(b\) who is a soul mate to every person \(b\).
 \(\exists b : (\forall a : P(a, b)).\)

- For every person \(a\), they have their own personal soul mate \(b\).
 \(\forall a : (\exists b : P(a, b)).\)

When quantifiers are mixed, the order in which they appear is important for the meaning. Order generally cannot be switched.