Foundations of Computer Science
Lecture 5

Induction: Proving “For All ...”

Induction: What and Why?
Induction: Good, Bad and Ugly
Induction, Well-Ordering and the Smallest Counter-Example

Today: Induction, Proving “...forall ...”

@ What is induction.

© Why do we need it?

9 The principle of induction. Toppling the dominos. The induction template.

© Examples.

© Induction, Well-Ordering and the Smallest Counter-Example.

Last Time

@ Proving “IF ..., THEN ...".

@ Proving “...IF AND ONLY IF ...".

© Proof patterns:
» direct proof;
* Ifz,y € Q, thenz+y e Q.
* If 4° — 1 is divisible by 3, then 4**! — 1 is divisible by 3.
» contraposition;

* If r is irrational, then /7 is irrational.
* If 22 is even, then  is even.

» contradiction.

* /2 is irrational.
* a® —4b#2.
* 2y/n+1/Vn+1<2yn+1.

Dispensing Postage Using 5¢ and 7¢ Stamps

19¢ | 20c | 21 2¢ | 23
75| 855S| 1T 5557 |7

Perseverance is a virtue when tinkering.

19¢ | 20¢ | 20¢ | 22¢ 23 | 24¢ | 2¢ | 2e | 27 | 28
775 | 5555 | TI7 | 5557 - | 1755

=

55555 | 7175 | 55557 | 1777

Can every postage greater than 23¢ can be dispensed?

Intuitively yes.

Induction formalizes that intuition.




Why Do We Need Induction?

Predicate Claim

(i) P(n) = “be and 7¢ stamps can make postage n.” Vn > 24 : P(n)

(ii) P(n)=“n*—n+ 41 a prime number.” Vn>1:P(n)
(iii) P(n) = “4" — 1 is divisible by 3 Yn >1: P(n)
TINKER!
n 1 2 3 4 5 6 7 8 - 40 41

n?—n+41 41/ 43/ AT/ 53/ 61/ T1/ 83/ 97/ --- 1601/ 1681X
(4"—1)/3 1 5 21 85 341 1365 5461 21845

How can we prove something for all n > 17 Verification takes too long!
Prove for general n. Can be tricky.
Induction. Systematic.

N i o R AL 518 e |
4" — 1 is Divisible by 3 for n > 1

P(n) = “4" — 1 is divisible by 3.
P(n) — P(n+1)

NEW INFORMATION:
From tinkering we know that P(1)is T: 4 —3=3 < divisible by 3 (new fact)

v v v v v
P(l) - P(2) - PB) - P4) -+ > Pn—1) - P(n) —---

[s 4" — 1 Divisible by 3 for n > 17

P(n) = “4" — 1 is divisible by 3”

We proved:
IF 4" — 1 is divisible by 3, THEN 4" — 1 is divisible by 3.

P(n) P(n+1)

Proof. We prove the claim using a direct proof.

1: Assume that P(n) is T, that is 4 1 is di

2: This means that 4" — 1 3k for an inte + 1.

3: Observe that 4 L - 4" and since 4 1, it fol that

O 4 4
[herefore 4"+ — 1 = 12k + 3 = 3(4k + 1) is a multiple of 3 (4k + 1 is an integer

1: Since 4 1 is a multiple of 3, we have shown that 4 1 is divisible by 3

). Therefore, P(n+ 1) is T. ]
We proved:

(Reasoning in the absense of facts.)

What use is this?

SeCrEGENERNGEGEETE  Ddution: Proving “For AL 6/18 S
By Induction, 4" — 1 is Divisible by 3 for n > 1

P(n) = “4" — 1 is divisible by 37

Q P()isT./

. . . -1
@ Pln) = Pn+1)is 1./ By induction, P(n) is T for all n > 1

P(l)|— P(2) —» P(3) —» P(4) —» P(5) — - -~

ool |

P(n) form an infinite chain of dominos.
Topple the first and they all fall.

Practice. Exercise 5.2.




Induction Template

Induction to prove: ¥n > 1: P(n).

Proof.  We use induction to prove Yn > 1: P(n).
1. Show that P(1) is T. (“simple” verification.)
2: Show P(n) — P(n+1) forn >1

Prove the implication using direct proof or contraposition.
Direct Contraposition
Assume P(n) is T. Assume P(n +1) is F.
(valid derivations) (valid derivations)
l must show for any n > 1 l must show for any n > 1
must use P(n) here must use =P (n + 1) here
Show P(n+1) is T. Show P(n) is F.

3: Conclude: by induction, ¥n > 1: P(n). ]

[base case]

[induction step]

o Prove the implication P(n) — P(n+1) for a general n > 1. (Often direct proof)
Why is this easier than just proving P(n) for general n?

o Assume P(n) is T, and reformulate it mathematically.
@ Somewhere in the proof you must use P(n) to prove P(n + 1).

o End with a statement that P(n + 1) is T.

Proof: éli = n(n+1)

Proof. (By Induction) P(n) : élz =1in(n+1).
1. [Base case] P(1) claims that 1 =1 x 1 x (1+ 1), which is clearly T.

2. [Induction step] We show P(n) — P(n +1) for all n > 1, using a direct proof.
Assume (induction hypothesis) P(n) is T: 2 i = in(n+1).
Show P(n+1) is T: s/ i = (n 4+ 1)(n + 1+1).
n+1

S o= éi+(n+1)

i=1

[key step]
= %n(n +1)+(n+1) [induction hypothesis P(n)]
= n+1)(n+2) [algebra]
=in+1)n+1+1).

This is exactly what was to be shown. So, P(n+1) is T.

3: By induction, P(n) is T for all n > 1. |

Sum of Integers

o
0o
000
1424+3+--4+(n—-1)+n =7 0000
00000
000000
The GREAT Gauss (age 8-10):
S(n) — 1 + 2 + -+ n Ceo0000
ooee
Smn)y= n + n—-1+ -+ 1 oooe
[elelelel 1 1 )
25(n) = (n+1) + (n+1) + -+ + (n+1) 000008
OO0000e
=nx(Mn+1)

S(n)=1+2+3++n-1)+n=1lnn+1)

VERY BAD! Induction Step

(phew, nothing bad &)

To start, you can NEVER assert (as though its true) what you are trying to prove.




Sum of Integer Squares

Sn)=1"+2+F+-+n—17+n" =7
Replace Gauss with TINKERING: method of differences.

Sm) |1 5 14 30 55 91 140
1st difference  S'(n 4 9 16 25 36 49
2nd difference  S"(n 5 7 9 11 13
3rd difference  S"(n) 2 2 2 2

3'rd difference constant is like 3'rd derivative constant. So guess:

S(n) = ay + a;n + a;n® + azn’. a + a1 + a + a3 = 1
ay + 2a; + 4day + 8az = 5
ay + 3a; + Y9ay + 27a3 = 14
ay + 4a; + 16a; + 6daz = 30
n[123 45 6 7 8 9 10 - :
n+ i+ 101 5 14 30 55 91 140 204 285 385 =0, am =g a=3 =3

Induction Gone Wrong

P(1)|— P(2) = P(3) — P(4) = P(5) = P(6) = P(7) —

No Base Case.
P(1) — P(2)— P(3)— P(4) — ---
False: P(n):n <n-+1foralln>1.
n<n+l—-n+l<n+2 therefore P(n) — P(n+1).
[Every link is proved, but without the base case, you have nothing.]

Broken Chain.
m P(2) — P(3) — P
False: P(n) : “all balls in any set of n balls are the same mlw
Induction step. Suppose any set of n balls have the same color. Cor
n+ 1 balls by, bs, ..., by, b So, by, ba, . . ., b, have the same color and bo, b3, . .., b1
1ave the same color ['hus b // Jbs,..0b have the same color

P(n Pn+1)?

[A single broken link kills the entire proof.]

Proof: s(n)

= é P =in+in’+in’ =In(n+1)2n+1)

Proof. (By induction.) P(n) : .

), claims that 1=

=in(n+1)(2n+1).
%1% 2 x 3, which is clearly T

1. [Base case] P(1),

2. [Induction step] Show P(n) — P(n+1) for all n > 1. Direct proof.
Assume (induction hypothesis) P(n) in(n+1)(2n+1).
Show P(n+1) is T: o/4' i = 1(n+1)(n +2)(2n + 3).

; Lo g2
18 Tr ¥ 1" =

nil it = i 24+ (n+1)° [key step]
i=1
= mn+1)2n+1)+(n+1)

= %(n +1D(n+2)(2n+3) [algebra)

[induction hypothesis P(n)]

This is exactly what was to be shown. So, P(n + 1) is T.

3: By induction, P(n) is T for all n > 1. [

Well Ordering Principle

‘Well-ordering Principle.
Any non-empty set of natural numbers has a minimum element.

Induction follows from well ordering. Let P(1) and P(n) — P(n+1) be T.

Suppose P(n,) fails for the smallest counter-example n, (well-ordering).

= [P(n. = 1)] > P(n.) —

P(1)| = [PQ2)]— PB)| = [PH)]—

Now how can P(n, — 1) = P(n,) be T?




Example Well-Ordering Proof: n < 2" forn > 1

Proof. [Well-ordering] Proof by contradiction.
Assume that there is an n > 1 for which n > 2"
Let n, be the minimum such counter-example, n, > 2". + well ordering

So, n, — 1 is a smaller counter example. FISHY! [ |

Getting Good at Induction

TINKER

PRACTICE

Challenge. A circle has 2n distinct points, n are red and n are blue.
Prove that one can start at a blue point and move clockwise always
having passed as many blue points as red.

Practice. All exercises and pop-quizzes in chapter 5.
Strengthen. Problems in chapter 5.




