Foundations of Computer Science Lecture 5

Induction: Proving "For All ... "

Induction: What and Why? Induction: Good, Bad and Ugly Induction, Well-Ordering and the Smallest Counter-Example

Today: Induction, Proving "... for all ... "

() What is induction.

2 Why do we need it?

The principle of induction. Toppling the dominos. The induction template.

Induction: Proving "For All ... ": 3 / 18

4 Examples.

Induction, Well-Ordering and the Smallest Counter-Example.

Last Time • Proving "IF ..., THEN ...". • Proving "...IF AND ONLY IF ...". • Proof patterns: • direct proof; * If $x, y \in \mathbb{Q}$, then $x + y \in \mathbb{Q}$. * If $4^x - 1$ is divisible by 3, then $4^{x+1} - 1$ is divisible by 3. • contraposition; * If x^2 is even, then \sqrt{r} is irrational. * If x^2 is even, then \sqrt{r} is irrational. * If x^2 is even, then x is even. • contradiction. * $\sqrt{2}$ is irrational. * $a^2 - 4b \neq 2$. * $2\sqrt{n} + 1/\sqrt{n+1} \le 2\sqrt{n+1}$.

Dispensing Postage Using 5¢ and 7¢ Stamps19c20c21c22c23c7,7,55,5,5,57,7,75,5,5,7?

Induction: Proving "For All ... ": 2 / 18

Perseverance is a virtue when tinkering.

19¢	20¢	21¢	22¢	23¢	24¢	25¢	26¢	27¢	28¢
7,7,5	5, 5, 5, 5	7,7,7	5, 5, 5, 7	_	7,7,5,5	5, 5, 5, 5, 5	7,7,7,5	5, 5, 5, 5, 7	7,7,7,7

Induction: Proving "For All .

Can every postage greater than 23¢ can be dispensed?

Intuitively yes.

Induction formalizes that intuition.

Induction: Proving "For All ... ": 7/18

or: Malik Magdon-Ismail Induc

uction: Proving "For All ... ": 8 / 18

Induction Tem

• Prove the *implication* $P(n) \rightarrow P(n+1)$ for a *general* $n \ge 1$. (Often direct proof) Why is this easier than just proving P(n) for general n?

Induction: Proving "For All ... ": 9 / 1

- Assume P(n) is T, and reformulate it mathematically.
- Somewhere in the proof you *must* use P(n) to prove P(n+1).
- End with a statement that P(n+1) is T.

Proof: $\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$

Proof. (By Induction) $P(n) : \sum_{i=1}^{n} i = \frac{1}{2}n(n+1).$

- 1: [Base case] P(1) claims that $1 = \frac{1}{2} \times 1 \times (1+1)$, which is clearly T.
- 2: **[Induction step]** We show $P(n) \to P(n+1)$ for all $n \ge 1$, using a direct proof. Assume (induction hypothesis) P(n) is $T: \sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$. Show P(n+1) is $T: \sum_{i=1}^{n+1} i = \frac{1}{2}(n+1)(n+1+1)$.
 - $\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$ [key step] $= \frac{1}{2}n(n+1) + (n+1)$ [induction hypothesis P(n)] $= \frac{1}{2}(n+1)(n+2)$ [algebra]
 - $= \frac{1}{2}(\boldsymbol{n+1})(\boldsymbol{n+1}+1).$

This is exactly what was to be shown. So, P(n+1) is T.

3: By induction, P(n) is T for all $n \ge 1$.

Sum of Integers	
$1 + 2 + 3 + \dots + (n - 1) + n = ?$	0 00 000 0000 00000 00000
The GREAT Gauss (age 8-10):	
$S(n) = 1 + 2 + \dots + n$ $S(n) = n + n - 1 + \dots + 1$ $2S(n) = (n+1) + (n+1) + \dots + (n+1)$ $= n \times (n+1)$	
$S(n) = 1 + 2 + 3 + \dots + (n - 1) + n =$	$=\frac{1}{2}n(n+1)$
Creator: Malik Magdon-Ismail Induction: Proving "For All ": 10/18	$\sum_{i=1}^{n} i = \frac{1}{2}n(i$
VERY BAD! Induction Step	
$i^{\pm 1}i = \frac{1}{2}(n+1)(n-1)$	$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$

Sum of Integer Squares

S(n) =	$1^2 + 2^2$	$+ 3^2 + \cdot$	$\cdots + (n - $	$(1)^2 + n^2$	= ?
--------	-------------	-----------------	------------------	---------------	-----

Replace Gauss with TINKERING: method of differences.

	n	1	2	3	4	5	6	7
	S(n)	1	5	14	30	55	91	140
1st difference	S'(n)		4	9	16	25	36	49
2nd difference	S''(n)			5	7	9	11	13
3rd difference	S'''(n)				2	2	2	2

3'rd difference constant is like 3'rd derivative constant. So guess:

Induction: Proving "For All ... ": 13/18

Induction Gone Wrong

$$P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow P(5) \rightarrow P(6) \rightarrow P(7) \rightarrow \cdots$$

No Base Case. $\begin{array}{c} P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \\ \text{False: } P(n): n \leq n+1 \text{ for all } n \geq 1. \\ n \leq n+1 \rightarrow n+1 \leq n+2 \quad \text{therefore} \quad P(n) \rightarrow P(n+1). \end{array}$

[Every link is proved, but without the base case, you have *nothing*.]

Broken Chain.

 $\boxed{P(1)} \quad P(2) \to P(3) \to P(4) \to \cdots$

Induction step. Suppose any set of *n* balls have the same color. Consider any set of n + 1 balls $b_1, b_2, \ldots, b_n, b_{n+1}$. So, b_1, b_2, \ldots, b_n have the same color and $b_2, b_3, \ldots, b_{n+1}$ have the same color. Thus $b_1, b_2, b_3, \ldots, b_{n+1}$ have the same color.

 $P(n) \rightarrow P(n+1)?$

 $[\mathbf{A}\ single\ \mathrm{broken}\ \mathrm{link}\ \mathrm{kills}\ \mathrm{the}\ \mathrm{entire}\ \mathrm{proof.}]$

Proof: $S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3 = \frac{1}{6}n(n+1)(2n+1)$

Proof. (By induction.) $P(n) : \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1).$ 1: [**Base case**] P(1), claims that $1 = \frac{1}{6} \times 1 \times 2 \times 3$, which is clearly T.

2: **[Induction step]** Show $P(n) \rightarrow P(n+1)$ for all $n \ge 1$. Direct proof. Assume (induction hypothesis) P(n) is $T: \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$. Show P(n+1) is $T: \sum_{i=1}^{n+1} i^2 = \frac{1}{6}(n+1)(n+2)(2n+3)$.

$$\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n+1)^2 \qquad [key step]$$

= $\frac{1}{6}n(n+1)(2n+1) + (n+1)^2 \qquad [induction hypothesis P(n)]$
= $\frac{1}{6}(n+1)(n+2)(2n+3) \qquad [algebra]$

This is exactly what was to be shown. So, P(n+1) is T.

3: By induction, P(n) is T for all $n \ge 1$.

Well Ordering Principle

Well-ordering Principle. Any non-empty set of natural numbers has a minimum element.

Induction: Proving "For All ... ": 14 / 18

Induction follows from well ordering. Let P(1) and $P(n) \rightarrow P(n+1)$ be T.

Suppose $P(n_*)$ fails for the **smallest** counter-example n_* (well-ordering).

 $\boxed{P(1)} \rightarrow \boxed{P(2)} \rightarrow \boxed{P(3)} \rightarrow \boxed{P(4)} \rightarrow \cdots \rightarrow \boxed{P(n_* - 1)} \rightarrow P(n_*) \rightarrow \cdots$

Now how can $P(n_* - 1) \rightarrow P(n_*)$ be T?

Any induction proof can also be done using well-ordering.

Example Well-Ordering Proof: $n < 2^n$ for $n \ge 1$

Proof. [Induction] $P(n) : n < 2^n$. **Base case.** P(1) is T because $1 < 2^1$. **Induction.** Assume P(n) is T: $n < 2^n$. and show P(n+1) is T: $n+1 < 2^{n+1}$.

Therefore P(n+1) is T and, by induction, P(n) is T for $n \ge 1$.

Proof. [Well-ordering] Proof by **contradiction**. Assume that there is an $n \ge 1$ for which $n \ge 2^n$. Let n_* be the **minimum** such **counter-example**, $n_* \ge 2^{n_*}$. Since $1 < 2^1$, $n_* \ge 2$. Since $n_* \ge 2$, $\frac{1}{2}n_* \ge 1$ and so,

 $n_* - 1 \ge n_* - \frac{1}{2}n_* = \frac{1}{2}n_* \ge \frac{1}{2} \times 2^{n_*} = 2^{n_* - 1}.$

So, $n_* - 1$ is a *smaller* counter example. **FISHY!**

The **method of minimum counter-example** is very powerful.

Induction: Proving "For All ... ": 17/18

Getting Good at Induction TINKER PRACTICE **Challenge.** A circle has 2n distinct points, n are red and n are blue. \leftarrow well ordering Prove that one can start at a blue point and move clockwise always having passed as many blue points as red. All exercises and pop-quizzes in chapter 5. Practice. Strengthen. Problems in chapter 5.

Induction: Proving "For All ... ": 18 / 18