Foundations of Computer Science
Lecture 5

Induction: Proving “For All . . . ”

Induction: What and Why?
Induction: Good, Bad and Ugly
Induction, Well-Ordering and the Smallest Counter-Example
Last Time

Proving “IF . . . , THEN . . . ”.

Proving “. . . IF AND ONLY IF . . . ”.

Proof patterns:
- direct proof;
 - If \(x, y \in \mathbb{Q} \), then \(x + y \in \mathbb{Q} \).
 - If \(4^x - 1 \) is divisible by 3, then \(4^{x+1} - 1 \) is divisible by 3.

- contraposition;
 - If \(r \) is irrational, then \(\sqrt{r} \) is irrational.
 - If \(x^2 \) is even, then \(x \) is even.

- contradiction.
 - \(\sqrt{2} \) is irrational.
 - \(a^2 - 4b \neq 2 \).
 - \(2\sqrt{n + 1}/\sqrt{n + 1} \leq 2\sqrt{n + 1} \).
Today: Induction, Proving “...for all...”

1. What is induction.

2. Why do we need it?

4. Examples.

5. Induction, Well-Ordering and the Smallest Counter-Example.
Dispensing Postage Using 5¢ and 7¢ Stamps

<table>
<thead>
<tr>
<th>19¢</th>
<th>20¢</th>
<th>21¢</th>
<th>22¢</th>
<th>23¢</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,7,5</td>
<td>5,5,5,5</td>
<td>7,7,7</td>
<td>5,5,5,7</td>
<td>?</td>
</tr>
</tbody>
</table>
Dispensing Postage Using 5¢ and 7¢ Stamps

<table>
<thead>
<tr>
<th></th>
<th>19¢</th>
<th>20¢</th>
<th>21¢</th>
<th>22¢</th>
<th>23¢</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7,7,5</td>
<td>5,5,5,5</td>
<td>7,7,7</td>
<td>5,5,5,7</td>
<td>?</td>
</tr>
</tbody>
</table>

Perseverance is a virtue when tinkering.

<table>
<thead>
<tr>
<th></th>
<th>19¢</th>
<th>20¢</th>
<th>21¢</th>
<th>22¢</th>
<th>23¢</th>
<th>24¢</th>
<th>25¢</th>
<th>26¢</th>
<th>27¢</th>
<th>28¢</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7,7,5</td>
<td>5,5,5,5</td>
<td>7,7,7</td>
<td>5,5,5,7</td>
<td>–</td>
<td>7,7,5,5</td>
<td>5,5,5,5,5</td>
<td>7,7,7,5</td>
<td>5,5,5,5,7</td>
<td>7,7,7,7</td>
</tr>
</tbody>
</table>
Dispensing Postage Using 5¢ and 7¢ Stamps

<table>
<thead>
<tr>
<th></th>
<th>19¢</th>
<th>20¢</th>
<th>21¢</th>
<th>22¢</th>
<th>23¢</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7,7,5</td>
<td>5,5,5,5</td>
<td>7,7,7</td>
<td>5,5,5,7</td>
<td>?</td>
</tr>
</tbody>
</table>

Perseverance is a virtue when tinkering.

<table>
<thead>
<tr>
<th></th>
<th>19¢</th>
<th>20¢</th>
<th>21¢</th>
<th>22¢</th>
<th>23¢</th>
<th>24¢</th>
<th>25¢</th>
<th>26¢</th>
<th>27¢</th>
<th>28¢</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7,7,5</td>
<td>5,5,5,5</td>
<td>7,7,7</td>
<td>5,5,5,7</td>
<td>–</td>
<td>7,7,5,5</td>
<td>5,5,5,5,5</td>
<td>7,7,7,5</td>
<td>5,5,5,5,7</td>
<td>7,7,7,7</td>
</tr>
</tbody>
</table>

Can every postage greater than 23¢ can be dispensed?
Dispensing Postage Using 5¢ and 7¢ Stamps

<table>
<thead>
<tr>
<th>19¢</th>
<th>20¢</th>
<th>21¢</th>
<th>22¢</th>
<th>23¢</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,7,5</td>
<td>5,5,5,5</td>
<td>7,7,7</td>
<td>5,5,5,7</td>
<td>?</td>
</tr>
</tbody>
</table>

Perseverance is a virtue when tinkering.

<table>
<thead>
<tr>
<th>19¢</th>
<th>20¢</th>
<th>21¢</th>
<th>22¢</th>
<th>23¢</th>
<th>24¢</th>
<th>25¢</th>
<th>26¢</th>
<th>27¢</th>
<th>28¢</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,7,5</td>
<td>5,5,5</td>
<td>7,7,7</td>
<td>5,5,5,7</td>
<td>–</td>
<td>7,7,5,5</td>
<td>5,5,5,5</td>
<td>7,7,7,5</td>
<td>5,5,5,5,7</td>
<td>7,7,7,7</td>
</tr>
</tbody>
</table>

Can every postage greater than 23¢ can be dispensed?

Intuitively yes.

Induction formalizes that intuition.
Why Do We Need Induction?

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) $P(n) = “5¢ \text{ and } 7¢ \text{ stamps can make postage } n.”$</td>
<td>$\forall n \geq 24 : P(n)$</td>
</tr>
<tr>
<td>(ii) $P(n) = “n^2 - n + 41 \text{ a prime number.}”$</td>
<td>$\forall n \geq 1 : P(n)$</td>
</tr>
<tr>
<td>(iii) $P(n) = “4^n - 1 \text{ is divisible by } 3.”$</td>
<td>$\forall n \geq 1 : P(n)$</td>
</tr>
</tbody>
</table>
Why Do We Need Induction?

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) $P(n) =$ “5¢ and 7¢ stamps can make postage n.”</td>
<td>$\forall n \geq 24 : P(n)$</td>
</tr>
<tr>
<td>(ii) $P(n) =$ “$n^2 - n + 41$ a prime number.”</td>
<td>$\forall n \geq 1 : P(n)$</td>
</tr>
<tr>
<td>(iii) $P(n) =$ “$4^n - 1$ is divisible by 3.”</td>
<td>$\forall n \geq 1 : P(n)$</td>
</tr>
</tbody>
</table>

TINKER!
Why Do We Need Induction?

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) (P(n) = \text{“5¢ and 7¢ stamps can make postage } n.”) (\forall n \geq 24 : P(n))</td>
<td></td>
</tr>
<tr>
<td>(ii) (P(n) = \text{“}n^2 - n + 41\text{ a prime number.”}) (\forall n \geq 1 : P(n))</td>
<td></td>
</tr>
<tr>
<td>(iii) (P(n) = \text{“}4^n - 1\text{ is divisible by 3.”}) (\forall n \geq 1 : P(n))</td>
<td></td>
</tr>
</tbody>
</table>

TINKER!

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>(\cdots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n^2 - n + 41)</td>
<td>41✓</td>
<td>43✓</td>
<td>47✓</td>
<td>53✓</td>
<td>61✓</td>
<td>71✓</td>
<td>83✓</td>
<td>97✓</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>((4^n - 1)/3)</td>
<td>1</td>
<td>5</td>
<td>21</td>
<td>85</td>
<td>341</td>
<td>1365</td>
<td>5461</td>
<td>21845</td>
<td>(\cdots)</td>
</tr>
</tbody>
</table>
Why Do We Need Induction?

Predicate

(i) \(P(n) = \text{“}5\text{¢ and 7\text{¢ stamps can make postage } n.\text{”} } \)

(ii) \(P(n) = \text{“}n^2 - n + 41 \text{ a prime number.\”} \)

(iii) \(P(n) = \text{“}4^n - 1 \text{ is divisible by 3.\”} \)

Claim

\(\forall n \geq 24 : P(n) \)

\(\forall n \geq 1 : P(n) \)

\(\forall n \geq 1 : P(n) \)

TINKER!

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>...</th>
<th>40</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n^2 - n + 41)</td>
<td>41✓</td>
<td>43✓</td>
<td>47✓</td>
<td>53✓</td>
<td>61✓</td>
<td>71✓</td>
<td>83✓</td>
<td>97✓</td>
<td>• • •</td>
<td>1601✓</td>
<td>1681✗</td>
</tr>
<tr>
<td>((4^n - 1)/3)</td>
<td>1</td>
<td>5</td>
<td>21</td>
<td>85</td>
<td>341</td>
<td>1365</td>
<td>5461</td>
<td>21845</td>
<td>• • •</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Why Do We Need Induction?

Predicate Claim

(i) \[P(n) = \text{“5¢ and 7¢ stamps can make postage } n.\text{”} \] \[\forall n \geq 24 : P(n) \]

(ii) \[P(n) = \text{“}n^2 - n + 41\text{ a prime number.”} \] \[\forall n \geq 1 : P(n) \]

(iii) \[P(n) = \text{“}4^n - 1\text{ is divisible by 3.”} \] \[\forall n \geq 1 : P(n) \]

TINKER!

\[n \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad \cdots \quad 40 \quad 41 \]

\[n^2 - n + 41 \quad 41✓ \quad 43✓ \quad 47✓ \quad 53✓ \quad 61✓ \quad 71✓ \quad 83✓ \quad 97✓ \cdots \quad 1601✓ \quad 1681✗ \]

\[(4^n - 1)/3 \quad 1 \quad 5 \quad 21 \quad 85 \quad 341 \quad 1365 \quad 5461 \quad 21845 \cdots \]

How can we prove something for all \(n \geq 1\)? Verification takes too long!
Why Do We Need Induction?

Predicate Claim

(i) \(P(n) = "5\text{¢ and 7\text{¢ stamps can make postage } n."} \) \(\forall n \geq 24 : P(n) \)

(ii) \(P(n) = "n^2 - n + 41 \text{ a prime number."} \) \(\forall n \geq 1 : P(n) \)

(iii) \(P(n) = "4^n - 1 \text{ is divisible by 3."} \) \(\forall n \geq 1 : P(n) \)

TINKER!

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>\cdots</th>
<th>40</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n^2 - n + 41)</td>
<td>(41 \checkmark)</td>
<td>(43 \checkmark)</td>
<td>(47 \checkmark)</td>
<td>(53 \checkmark)</td>
<td>(61 \checkmark)</td>
<td>(71 \checkmark)</td>
<td>(83 \checkmark)</td>
<td>(97 \checkmark)</td>
<td>(\cdots)</td>
<td>(1601 \checkmark)</td>
<td>(1681 \xmark)</td>
</tr>
<tr>
<td>((4^n - 1)/3)</td>
<td>1</td>
<td>5</td>
<td>21</td>
<td>85</td>
<td>341</td>
<td>1365</td>
<td>5461</td>
<td>21845</td>
<td>(\cdots)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How can we prove something for \textit{all} \(n \geq 1 \)? Verification takes too long!

Prove for general \(n \). Can be tricky.
Why Do We Need Induction?

Predicate

(i) \(P(n) = \text{“5¢ and 7¢ stamps can make postage } n.\text{”} \)
\[P(n) = n \geq 24 : P(n) \]

(ii) \(P(n) = \text{“} n^2 - n + 41 \text{ a prime number.”} \)
\[P(n) = \forall n \geq 1 : P(n) \]

(iii) \(P(n) = \text{“} 4^n - 1 \text{ is divisible by 3.”} \)
\[P(n) = \forall n \geq 1 : P(n) \]

TINKER!

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>...</th>
<th>40</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n^2 - n + 41)</td>
<td>41✓</td>
<td>43✓</td>
<td>47✓</td>
<td>53✓</td>
<td>61✓</td>
<td>71✓</td>
<td>83✓</td>
<td>97✓</td>
<td>⋮</td>
<td>1601✓</td>
<td>1681✗</td>
</tr>
<tr>
<td>((4^n - 1)/3)</td>
<td>1</td>
<td>5</td>
<td>21</td>
<td>85</td>
<td>341</td>
<td>1365</td>
<td>5461</td>
<td>21845</td>
<td>⋮</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How can we prove something for \(\text{all } n \geq 1 \)? Verification takes too long!
Prove for general \(n \). Can be tricky.

Induction. Systematic.
Is $4^n - 1$ Divisible by 3 for $n \geq 1$?

$P(n) =$ “$4^n - 1$ is divisible by 3.”
Is \(4^n - 1 \) Divisible by 3 for \(n \geq 1 \)?

\[
P(n) = \text{“} 4^n - 1 \text{ is divisible by 3.} \]

We proved:

\[
\begin{align*}
\text{IF } &4^n - 1 \text{ is divisible by 3,} & \text{THEN } &4^{n+1} - 1 \text{ is divisible by 3.} \\
P(n) & & &P(n+1)
\end{align*}
\]

Proof. We prove the claim using a direct proof.

1: Assume that \(P(n) \) is T, that is \(4^n - 1 \) is divisible by 3.
2: This means that \(4^n - 1 = 3k \) for an integer \(k \), or that \(4^n = 3k + 1 \).
3: Observe that \(4^{n+1} = 4 \cdot 4^n \), and since \(4^n = 3k + 1 \), it follows that
 \[
 4^{n+1} = 4 \cdot (3k + 1) = 12k + 4.
 \]
 Therefore \(4^{n+1} - 1 = 12k + 3 = 3(4k + 1) \) is a multiple of 3 (\(4k + 1 \) is an integer).
4: Since \(4^{n+1} - 1 \) is a multiple of 3, we have shown that \(4^{n+1} - 1 \) is divisible by 3.
5: Therefore, \(P(n + 1) \) is T.
Is $4^n - 1$ Divisible by 3 for $n \geq 1$?

$$P(n) = "4^n - 1 \text{ is divisible by 3.}"

We proved:

<table>
<thead>
<tr>
<th>IF $4^n - 1$ is divisible by 3,</th>
<th>THEN $4^{n+1} - 1$ is divisible by 3.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(n)$</td>
<td>$P(n+1)$</td>
</tr>
</tbody>
</table>

Proof. We prove the claim using a direct proof.
1: Assume that $P(n)$ is T, that is $4^n - 1$ is divisible by 3.
2: This means that $4^n - 1 = 3k$ for an integer k, or that $4^n = 3k + 1$.
3: Observe that $4^{n+1} = 4 \cdot 4^n$, and since $4^n = 3k + 1$, it follows that
 $$4^{n+1} = 4 \cdot (3k + 1) = 12k + 4.$$
 Therefore $4^{n+1} - 1 = 12k + 3 = 3(4k + 1)$ is a multiple of 3 ($4k + 1$ is an integer).
4: Since $4^{n+1} - 1$ is a multiple of 3, we have shown that $4^{n+1} - 1$ is divisible by 3.
5: Therefore, $P(n + 1)$ is T.

We proved:

$$P(n) \rightarrow P(n + 1)$$
Is $4^n - 1$ Divisible by 3 for $n \geq 1$?

$$P(n) = "4^n - 1 \text{ is divisible by } 3."$$

We proved:

$$\begin{align*}
\text{IF } 4^n - 1 \text{ is divisible by } 3, & \quad \text{THEN } 4^{n+1} - 1 \text{ is divisible by } 3. \\
P(n) & \implies P(n+1)
\end{align*}$$

Proof. We prove the claim using a direct proof.
1: Assume that $P(n)$ is T, that is $4^n - 1$ is divisible by 3.
2: This means that $4^n - 1 = 3k$ for an integer k, or that $4^n = 3k + 1$.
3: Observe that $4^{n+1} = 4 \cdot 4^n$, and since $4^n = 3k + 1$, it follows that $4^{n+1} = 4 \cdot (3k + 1) = 12k + 4$.
 Therefore $4^{n+1} - 1 = 12k + 3 = 3(4k + 1)$ is a multiple of 3 ($4k + 1$ is an integer).
4: Since $4^{n+1} - 1$ is a multiple of 3, we have shown that $4^{n+1} - 1$ is divisible by 3.
5: Therefore, $P(n+1)$ is T.

We proved:

$$P(n) \to P(n + 1)$$

What use is this? (Reasoning in the absense of facts.)
$4^n - 1$ is Divisible by 3 for $n \geq 1$

$P(n) = "4^n - 1$ is divisible by 3.”

$P(n) \rightarrow P(n + 1)$
$4^n - 1$ is Divisible by 3 for $n \geq 1$

\[P(n) = \text{“}4^n - 1 \text{ is divisible by } 3\text{.”} \]

\[P(n) \rightarrow P(n + 1) \]

NEW INFORMATION:
From tinkering we know that $P(1)$ is T: $4^1 - 3 = 3$ \hspace{1cm} \leftarrow \text{divisible by } 3 \text{ (new fact)}

✓ $P(1)$
4^n - 1 is Divisible by 3 for \(n \geq 1 \)

\[P(n) = "4^n - 1 \text{ is divisible by 3."} \]

\[P(n) \rightarrow P(n + 1) \]

NEW INFORMATION:

From tinkering we know that \(P(1) \) is T: \(4^1 - 3 = 3 \)

\(\checkmark\) \(P(1) \rightarrow P(2) \)
$4^n - 1$ is Divisible by 3 for $n \geq 1$

$P(n) = \text{"}4^n - 1 \text{ is divisible by 3."}$

$P(n) \rightarrow P(n + 1)$

NEW INFORMATION:
From tinkering we know that $P(1)$ is T: $4^1 - 3 = 3 \leftarrow$ divisible by 3 (new fact)

✓ $P(1) \rightarrow P(2)$
4^n - 1 is Divisible by 3 for \(n \geq 1 \)

\[P(n) = "4^n - 1 \text{ is divisible by 3.}" \]

\[P(n) \rightarrow P(n + 1) \]

NEW INFORMATION:
From tinkering we know that \(P(1) \) is T: \(4^1 - 3 = 3 \) ← divisible by 3 (new fact)

\[\checkmark \ P(1) \rightarrow \checkmark \ P(2) \rightarrow P(3) \]
4^n − 1 is Divisible by 3 for n ≥ 1

\[P(n) = \text{“}4^n − 1 \text{ is divisible by 3.”} \]

\[P(n) \rightarrow P(n + 1) \]

NEW INFORMATION:
From tinkering we know that \(P(1) \) is T: \(4^1 − 3 = 3 \)

\[P(1) \rightarrow P(2) \rightarrow P(3) \]

\(\leftarrow \) divisible by 3 (new fact)
4^n - 1 is Divisible by 3 for \(n \geq 1 \)

\[P(n) = "4^n - 1 is divisible by 3." \]

\[P(n) \rightarrow P(n + 1) \]

NEW INFORMATION:
From tinkering we know that \(P(1) \) is T: \(4^1 - 3 = 3 \)
\[\checkmark \quad P(1) \rightarrow \checkmark \quad P(2) \rightarrow \checkmark \quad P(3) \rightarrow P(4) \]

\(\leftarrow \) divisible by 3 (new fact)
$4^n - 1$ is Divisible by 3 for $n \geq 1$

\[
P(n) = \text{“} 4^n - 1 \text{ is divisible by 3.”}
\]

\[
P(n) \rightarrow P(n + 1)
\]

NEW INFORMATION:
From tinkering we know that $P(1)$ is T: $4^1 - 3 = 3$

\[
\begin{align*}
P(1) & \rightarrow P(2) \\
P(2) & \rightarrow P(3) \\
P(3) & \rightarrow P(4)
\end{align*}
\]

\leftarrow divisible by 3 (new fact)
$4^n - 1$ is Divisible by 3 for $n \geq 1$

\[P(n) = "4^n - 1 \text{ is divisible by } 3." \]

\[P(n) \rightarrow P(n + 1) \]

NEW INFORMATION:
From tinkering we know that $P(1)$ is T: $4^1 - 3 = 3$ \hspace{1cm} \leftarrow divisible by 3 (new fact)

\[\checkmark \ P(1) \rightarrow \checkmark \ P(2) \rightarrow \checkmark \ P(3) \rightarrow \checkmark \ P(4) \rightarrow \cdots \rightarrow \checkmark \ P(n - 1) \]
$4^n - 1$ is Divisible by 3 for $n \geq 1$

\[P(n) = "4^n - 1 \text{ is divisible by 3.}" \]

\[P(n) \rightarrow P(n + 1) \]

NEW INFORMATION:
From tinkering we know that $P(1)$ is T: $4^1 - 3 = 3$ \hspace{1cm} \leftarrow divisible by 3 (new fact)

\[\checkmark P(1) \rightarrow \checkmark P(2) \rightarrow \checkmark P(3) \rightarrow \checkmark P(4) \rightarrow \cdots \rightarrow \checkmark P(n - 1) \rightarrow \checkmark P(n) \]
4^n − 1 is Divisible by 3 for n ≥ 1

\[P(n) = "4^n − 1 is divisible by 3." \]

\[P(n) \rightarrow P(n + 1) \]

NEW INFORMATION:
From tinkering we know that \(P(1) \) is T: \(4^1 − 3 = 3 \)

\[\checkmark \rightarrow \checkmark \rightarrow \checkmark \rightarrow \checkmark \rightarrow \cdots \rightarrow \checkmark \rightarrow \checkmark \rightarrow \cdots \]

← divisible by 3 (new fact)
By Induction, $4^n - 1$ is Divisible by 3 for $n \geq 1$

$P(n) = "4^n - 1$ is divisible by 3."

1. $P(1)$ is T. ✓
2. $P(n) \rightarrow P(n + 1)$ is T. ✓

\[\begin{align*}
&\text{By induction, } P(n) \text{ is T for all } n \geq 1.
\end{align*} \]
By Induction, $4^n - 1$ is Divisible by 3 for $n \geq 1$

$P(n) = \text{"}4^n - 1 \text{ is divisible by 3."}$

1. $P(1)$ is T.✓
2. $P(n) \to P(n+1)$ is T.✓

By induction, $P(n)$ is T for all $n \geq 1$.

$P(1) \to P(2) \to P(3) \to P(4) \to P(5) \to \cdots$

$P(n)$ form an infinite chain of dominos.
Topple the first and they *all* fall.

Practice. Exercise 5.2.
Induction to prove: \(\forall n \geq 1 : P(n) \).

Proof. We use induction to prove \(\forall n \geq 1 : P(n) \).
Induction to prove: $\forall n \geq 1 : P(n)$.

Proof. We use induction to prove $\forall n \geq 1 : P(n)$.

1. Show that $P(1)$ is T. (“simple” verification.) [base case]
Induction to prove: $\forall n \geq 1 : P(n)$.

Proof. We use induction to prove $\forall n \geq 1 : P(n)$.

1. Show that $P(1)$ is T. (“simple” verification.)

2. Show $P(n) \rightarrow P(n + 1)$ for $n \geq 1$
Induction Template

Induction to prove: \(\forall n \geq 1 : P(n) \).

Proof. We use induction to prove \(\forall n \geq 1 : P(n) \).

1. Show that \(P(1) \) is T. ("simple" verification.)

 [base case]

2. Show \(P(n) \rightarrow P(n + 1) \) for \(n \geq 1 \)

 [induction step]

<table>
<thead>
<tr>
<th>Prove the implication using direct proof or contraposition.</th>
</tr>
</thead>
</table>
| **Direct**
| Assume \(P(n) \) is T.
| (valid derivations)
| must show for any \(n \geq 1 \)
| must use \(P(n) \) here
| **Show** \(P(n + 1) \) **is T.** |
| **Contraposition**
| Assume \(\overline{P(n + 1)} \) is F.
| (valid derivations)
| must show for any \(n \geq 1 \)
| must use \(\overline{P(n + 1)} \) here
| **Show** \(P(n) \) **is F.** |
Induction to prove: \(\forall n \geq 1 : P(n) \).

Proof. We use induction to prove \(\forall n \geq 1 : P(n) \).

1: Show that \(P(1) \) is T. ("simple" verification.)

2: Show \(P(n) \rightarrow P(n + 1) \) for \(n \geq 1 \)

<table>
<thead>
<tr>
<th>Prove the implication using direct proof or contraposition.</th>
<th>[base case]</th>
</tr>
</thead>
</table>
| Direct
| Assume \(P(n) \) is T.
| (valid derivations)
| must show for any \(n \geq 1 \)
| must use \(P(n) \) here
| Show \(P(n + 1) \) **is** T. |
| Contraposition
| Assume \(\neg P(n + 1) \) is F.
| (valid derivations)
| must show for any \(n \geq 1 \)
| must use \(\neg P(n + 1) \) here
| Show \(P(n) \) **is** F. |

3: Conclude: by induction, \(\forall n \geq 1 : P(n) \).
Induction Template

Induction to prove: $\forall n \geq 1 : P(n)$.

Proof. We use induction to prove $\forall n \geq 1 : P(n)$.

1. Show that $P(1)$ is T. ("simple" verification.)

2. Show $P(n) \rightarrow P(n + 1)$ for $n \geq 1$

<table>
<thead>
<tr>
<th>Prove the implication using direct proof or contraposition.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
</tr>
<tr>
<td>Assume $P(n)$ is T. (valid derivations)</td>
</tr>
<tr>
<td>must show for any $n \geq 1$</td>
</tr>
<tr>
<td>must use $P(n)$ here</td>
</tr>
<tr>
<td>Show $P(n + 1)$ is T.</td>
</tr>
</tbody>
</table>

 | Contraposition |
 | Assume $P(n + 1)$ is F. (valid derivations) |
 | must show for any $n \geq 1$ |
 | must use $\neg P(n + 1)$ here |
 | **Show $P(n)$ is F.** |

3. Conclude: by induction, $\forall n \geq 1 : P(n)$.

- Prove the implication $P(n) \rightarrow P(n + 1)$ for a *general* $n \geq 1$. (Often direct proof)

 Why is this easier than just proving $P(n)$ for general n?
Induction to prove: $\forall n \geq 1 : P(n)$.

Proof. We use induction to prove $\forall n \geq 1 : P(n)$.

1. Show that $P(1)$ is T. ("simple" verification.)
 [base case]

2. Show $P(n) \rightarrow P(n + 1)$ for $n \geq 1$
 [induction step]

<table>
<thead>
<tr>
<th>Prove the implication using direct proof or contraposition.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
</tr>
</tbody>
</table>
| Assume $P(n)$ is T.
 (valid derivations)
 must show for any $n \geq 1$
 must use $P(n)$ here |
| Contraposition |
| Assume $P(n + 1)$ is F.
 (valid derivations)
 must show for any $n \geq 1$
 must use $\neg P(n + 1)$ here |

3. Conclude: by induction, $\forall n \geq 1 : P(n)$.
 []

- Prove the *implication* $P(n) \rightarrow P(n + 1)$ for a *general* $n \geq 1$. (Often direct proof)
 Why is this easier than just proving $P(n)$ for general n?

- Assume $P(n)$ is T, and reformulate it mathematically.
Induction Template

Induction to prove: $\forall n \geq 1 : P(n)$.

Proof. We use induction to prove $\forall n \geq 1 : P(n)$.

1. Show that $P(1)$ is T. ("simple" verification.)
 - **[base case]**

2. Show $P(n) \rightarrow P(n + 1)$ for $n \geq 1$
 - **[induction step]**

<table>
<thead>
<tr>
<th>Prove the implication using direct proof or contraposition.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
</tr>
<tr>
<td>Assume $P(n)$ is T.</td>
</tr>
<tr>
<td>(valid derivations)</td>
</tr>
<tr>
<td>must show for any $n \geq 1$</td>
</tr>
<tr>
<td>must use $P(n)$ here</td>
</tr>
<tr>
<td>Show $P(n + 1)$ is T.</td>
</tr>
</tbody>
</table>

3. Conclude: by induction, $\forall n \geq 1 : P(n)$.

- Prove the *implication* $P(n) \rightarrow P(n + 1)$ for a *general* $n \geq 1$. (Often direct proof)
 Why is this easier than just proving $P(n)$ for general n?

- Assume $P(n)$ is T, and reformulate it mathematically.

- Somewhere in the proof you must use $P(n)$ to prove $P(n + 1)$.
Induction Template

Induction to prove: \(\forall n \geq 1 : P(n) \).

Proof. We use induction to prove \(\forall n \geq 1 : P(n) \).

1. Show that \(P(1) \) is T. ("simple" verification.)
 [base case]

2. Show \(P(n) \rightarrow P(n + 1) \) for \(n \geq 1 \)
 [induction step]

 Prove the implication using direct proof or contraposition.

 - **Direct**
 Assume \(P(n) \) is T.
 (valid derivations)
 must show for any \(n \geq 1 \)
 must use \(P(n) \) here
 Show \(P(n + 1) \) is T.

 - **Contraposition**
 Assume \(\neg P(n + 1) \) is T.
 (valid derivations)
 must show for any \(n \geq 1 \)
 must use \(\neg P(n + 1) \) here
 Show \(P(n) \) is F.

3. Conclude: by induction, \(\forall n \geq 1 : P(n) \).
 ■

- Prove the *implication* \(P(n) \rightarrow P(n + 1) \) for a *general* \(n \geq 1 \). (Often direct proof)

 Why is this easier than just proving \(P(n) \) for general \(n \)?

- Assume \(P(n) \) is T, and reformulate it mathematically.

- Somewhere in the proof you *must* use \(P(n) \) to prove \(P(n + 1) \).

- End with a statement that \(P(n + 1) \) is T.
Sum of Integers

\[1 + 2 + 3 + \cdots + (n - 1) + n = ? \]
Sum of Integers

\[1 + 2 + 3 + \cdots + (n - 1) + n = ? \]

The GREAT Gauss (age 8-10):

\[
\begin{align*}
S(n) &= 1 + 2 + \cdots + n \\
S(n) &= n + n - 1 + \cdots + 1 \\
2S(n) &= (n + 1) + (n + 1) + \cdots + (n + 1) \\
&= n \times (n + 1)
\end{align*}
\]
Sum of Integers

\[
1 + 2 + 3 + \cdots + (n-1) + n = ?
\]

The GREAT Gauss (age 8-10):

\[
S(n) = 1 + 2 + \cdots + n
\]
\[
S(n) = n + n-1 + \cdots + 1
\]
\[
2S(n) = (n+1) + (n+1) + \cdots + (n+1)
\]
\[
= n \times (n+1)
\]

\[
S(n) = 1 + 2 + 3 + \cdots + (n-1) + n = \frac{1}{2}n(n+1)
\]
Proof: \(\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \)

Proof. (By Induction) \(P(n) : \sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \).
Proof: \[\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \]

Proof. (By Induction) \(P(n) : \sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \).

1: [Base case] \(P(1) \) claims that \(1 = \frac{1}{2} \times 1 \times (1 + 1) \), which is clearly T.
Proof: $\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1)$

Proof. (By Induction) $P(n) : \sum_{i=1}^{n} i = \frac{1}{2}n(n + 1)$.

1. [Base case] $P(1)$ claims that $1 = \frac{1}{2} \times 1 \times (1 + 1)$, which is clearly T.

2. [Induction step] We show $P(n) \rightarrow P(n + 1)$ for all $n \geq 1$, using a direct proof.
Proof: \(\sum_{i=1}^{n} i = \frac{1}{2} n(n + 1) \)

Proof. (By Induction) \(P(n) : \sum_{i=1}^{n} i = \frac{1}{2} n(n + 1) \).

1: **[Base case]** \(P(1) \) claims that \(1 = \frac{1}{2} \times 1 \times (1 + 1) \), which is clearly \(T \).

2: **[Induction step]** We show \(P(n) \rightarrow P(n + 1) \) for all \(n \geq 1 \), using a direct proof.

 Assume (induction hypothesis) \(P(n) \) is \(T \): \(\sum_{i=1}^{n} i = \frac{1}{2} n(n + 1) \).

 Show \(P(n + 1) \) is \(T \): \(\sum_{i=1}^{n+1} i = \frac{1}{2} (n + 1)(n + 1 + 1) \).
Proof. (By Induction) $P(n) : \sum_{i=1}^{n} i = \frac{1}{2}n(n + 1)$.

1: [Base case] $P(1)$ claims that $1 = \frac{1}{2} \times 1 \times (1 + 1)$, which is clearly true.

2: [Induction step] We show $P(n) \rightarrow P(n + 1)$ for all $n \geq 1$, using a direct proof.

Assume (induction hypothesis) $P(n)$ is true: $\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1)$.

Show $P(n + 1)$ is true: $\sum_{i=1}^{n+1} i = \frac{1}{2}(n + 1)(n + 1 + 1)$.

\[
\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n + 1) \quad \text{[key step]}
\]
Proof: \(\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \)

Proof. (By Induction) \(P(n) : \sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \).

1: [Base case] \(P(1) \) claims that \(1 = \frac{1}{2} \times 1 \times (1 + 1) \), which is clearly true.

2: [Induction step] We show \(P(n) \to P(n + 1) \) for all \(n \geq 1 \), using a direct proof.

Assume (induction hypothesis) \(P(n) \) is true: \(\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \).

Show \(P(n + 1) \) is true: \(\sum_{i=1}^{n+1} i = \frac{1}{2}(n + 1)(n + 1 + 1) \).

\[
\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n + 1) \quad \text{[key step]}
\]

\[
= \frac{1}{2}n(n + 1) + (n + 1) \quad \text{[induction hypothesis \(P(n) \)]}
\]
Proof: \(\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \)

Proof. (By Induction) P(n) : \(\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \).

1. **[Base case]** P(1) claims that \(1 = \frac{1}{2} \times 1 \times (1 + 1) \), which is clearly true.

2. **[Induction step]** We show P(n) \(\rightarrow \) P(n + 1) for all \(n \geq 1 \), using a direct proof.

 Assume (induction hypothesis) P(n) is true: \(\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \).

 Show P(n + 1) is true: \(\sum_{i=1}^{n+1} i = \frac{1}{2}(n + 1)(n + 1 + 1) \).

\[
\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n + 1) \quad \text{[key step]}
\]

\[
= \frac{1}{2}n(n + 1) + (n + 1) \quad \text{[induction hypothesis P(n)]}
\]

\[
= \frac{1}{2}(n + 1)(n + 2) \quad \text{[algebra]}
\]

\[
= \frac{1}{2}(n + 1)(n + 1 + 1).
\]
Proof: \(\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \)

Proof. (By Induction) \(P(n) : \sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \).

1: [Base case] \(P(1) \) claims that \(1 = \frac{1}{2} \times 1 \times (1 + 1) \), which is clearly \(T \).

2: [Induction step] We show \(P(n) \to P(n + 1) \) for all \(n \geq 1 \), using a direct proof.

Assume (induction hypothesis) \(P(n) \) is \(T \): \(\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \).

Show \(P(n + 1) \) is \(T \): \(\sum_{i=1}^{n+1} i = \frac{1}{2}(n + 1)(n + 1 + 1) \).

\[
\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n + 1) \quad \text{[key step]}
\]
\[
= \frac{1}{2}n(n + 1) + (n + 1) \quad \text{[induction hypothesis \(P(n) \)]}
\]
\[
= \frac{1}{2}(n + 1)(n + 2) \quad \text{[algebra]}
\]
\[
= \frac{1}{2}(n + 1)(n + 1 + 1).
\]

This is exactly what was to be shown. So, \(P(n + 1) \) is \(T \).
Proof: \(\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \)

Proof. (By Induction) \(P(n) : \sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \).

1: [Base case] \(P(1) \) claims that \(1 = \frac{1}{2} \times 1 \times (1 + 1) \), which is clearly \(\top \).

2: [Induction step] We show \(P(n) \rightarrow P(n + 1) \) for all \(n \geq 1 \), using a direct proof.
 \begin{align*}
 \text{Assume (induction hypothesis) } & P(n) \text{ is } \top : \sum_{i=1}^{n} i = \frac{1}{2}n(n + 1). \\
 \text{Show } P(n + 1) \text{ is } & \top : \sum_{i=1}^{n+1} i = \frac{1}{2}(n + 1)(n + 1 + 1).
 \end{align*}

\[
\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n + 1) \quad \text{[key step]}
\]

\[
= \frac{1}{2}n(n + 1) + (n + 1) \quad \text{[induction hypothesis } P(n)\text{]}
\]

\[
= \frac{1}{2}(n + 1)(n + 2) \quad \text{[algebra]}
\]

\[
= \frac{1}{2}(n + 1)(n + 1 + 1).
\]

This is exactly what was to be shown. So, \(P(n + 1) \) is \(\top \).

3: By induction, \(P(n) \) is \(\top \) for all \(n \geq 1 \).

\[\blacksquare\]
\[
\sum_{i=1}^{n+1} i = \frac{1}{2}(n + 1)(n + 2)
\]

(What we want)
VERY BAD! Induction Step

\[\sum_{i=1}^{n+1} i = \frac{1}{2}(n + 1)(n + 2) \quad \text{(What we want)} \]

\[\sum_{i=1}^{n+1} i - (n + 1) = \frac{1}{2}(n + 1)(n + 2) - (n + 1) \]
Induction Step

\[\sum_{i=1}^{n+1} i = \frac{1}{2}(n + 1)(n + 2) \]
(What we want)

\[\sum_{i=1}^{n+1} i - (n + 1) = \frac{1}{2}(n + 1)(n + 2) - (n + 1) \]

\[\sum_{i=1}^{n} i = \frac{1}{2}(n + 1)(n + 2) - (n + 1) \]
Induction Step

\[\sum_{i=1}^{n+1} i = \frac{1}{2}(n + 1)(n + 2) \]
(What we want)

\[\sum_{i=1}^{n+1} i - (n + 1) = \frac{1}{2}(n + 1)(n + 2) - (n + 1) \]

\[\sum_{i=1}^{n} i = \frac{1}{2}(n + 1)(n + 2) - (n + 1) \]

\[\sum_{i=1}^{n} i = (n + 1)\left(\frac{n}{2} + 1 - 1\right) \]
Induction Step

\[
\sum_{i=1}^{n+1} i = \frac{1}{2}(n + 1)(n + 2) \quad \text{(What we want)}
\]

\[
\sum_{i=1}^{n+1} i - (n + 1) = \frac{1}{2}(n + 1)(n + 2) - (n + 1)
\]

\[
\sum_{i=1}^{n} i = \frac{1}{2}(n + 1)(n + 2) - (n + 1)
\]

\[
\sum_{i=1}^{n} i = (n + 1)\left(\frac{n}{2} + 1 - 1\right)
\]

\[
\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \checkmark \quad \text{(phew, nothing bad 😊)}
\]
Very Bad! Induction Step

\[
\sum_{i=1}^{n+1} i = \frac{1}{2} (n + 1)(n + 2) \quad \text{(What we want)}
\]

\[
\sum_{i=1}^{n+1} i - (n + 1) = \frac{1}{2} (n + 1)(n + 2) - (n + 1)
\]

\[
\sum_{i=1}^{n} i = \frac{1}{2} (n + 1)(n + 2) - (n + 1)
\]

\[
\sum_{i=1}^{n} i = (n + 1)\left(\frac{n}{2} + 1 - 1\right)
\]

\[
\sum_{i=1}^{n} i = \frac{1}{2} n(n + 1) \checkmark \quad \text{(phew, nothing bad 😊)}
\]
VERY BAD! Induction Step

\[
\sum_{i=1}^{n+1} i = \frac{1}{2}(n + 1)(n + 2) \\
\sum_{i=1}^{n+1} i - (n + 1) = \frac{1}{2}(n + 1)(n + 2) - (n + 1)
\]

\[
\sum_{i=1}^{n} i = \frac{1}{2}(n + 1)(n + 2) - (n + 1)
\]

\[
\sum_{i=1}^{n} i = (n + 1)\left(\frac{n}{2} + 1 - 1\right)
\]

\[
\sum_{i=1}^{n} i = \frac{1}{2}n(n + 1) \checkmark
\]

Compare: \[
\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n + 1)
\]

To start, you can **NEVER** assert (as though its true) what you are trying to prove.
$S(n) = 1^2 + 2^2 + 3^2 + \cdots + (n - 1)^2 + n^2 = ?$

Where’s the GREAT Gauss when you need him?
Sum of Integer Squares

\[S(n) = 1^2 + 2^2 + 3^2 + \cdots + (n - 1)^2 + n^2 = ? \]

Replace Gauss with TINKERING: *method of differences*.

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S(n))</td>
<td>1</td>
<td>5</td>
<td>14</td>
<td>30</td>
<td>55</td>
<td>91</td>
<td>140</td>
</tr>
</tbody>
</table>
Sum of Integer Squares

\[S(n) = 1^2 + 2^2 + 3^2 + \cdots + (n - 1)^2 + n^2 = ? \]

Replace Gauss with TINKERING: \textit{method of differences}.

\[
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
S(n) & 1 & 5 & 14 & 30 & 55 & 91 & 140 \\
\hline
1st difference S'(n) & 4 & 9 & 16 & 25 & 36 & 49 \\
\hline
\end{array}
\]
Sum of Integer Squares

\[S(n) = 1^2 + 2^2 + 3^2 + \cdots + (n - 1)^2 + n^2 = ? \]

Replace Gauss with TINKERING: *method of differences.*

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S(n))</td>
<td>1</td>
<td>5</td>
<td>14</td>
<td>30</td>
<td>55</td>
<td>91</td>
<td>140</td>
</tr>
<tr>
<td>1st difference (S'(n))</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>2nd difference (S''(n))</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sum of Integer Squares

\[S(n) = 1^2 + 2^2 + 3^2 + \cdots + (n-1)^2 + n^2 = ? \]

Replace Gauss with TINKERING: *method of differences*.

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S(n))</td>
<td>1</td>
<td>5</td>
<td>14</td>
<td>30</td>
<td>55</td>
<td>91</td>
<td>140</td>
</tr>
<tr>
<td>1st difference</td>
<td>(S'(n))</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
</tr>
<tr>
<td>2nd difference</td>
<td>(S''(n))</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>3rd difference</td>
<td>(S'''(n))</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3\'rd difference constant is like 3\'rd derivative constant.
Sum of Integer Squares

\[S(n) = 1^2 + 2^2 + 3^2 + \cdots + (n - 1)^2 + n^2 = ? \]

Replace Gauss with TINKERING: \textit{method of differences}.

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S(n))</td>
<td>1</td>
<td>5</td>
<td>14</td>
<td>30</td>
<td>55</td>
<td>91</td>
<td>140</td>
</tr>
<tr>
<td>1st difference</td>
<td>(S'(n))</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
</tr>
<tr>
<td>2nd difference</td>
<td>(S''(n))</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>3rd difference</td>
<td>(S'''(n))</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3’rd difference constant is like 3’rd derivative constant. So guess:

\[S(n) = a_0 + a_1 n + a_2 n^2 + a_3 n^3. \]
Sum of Integer Squares

\[S(n) = 1^2 + 2^2 + 3^2 + \cdots + (n - 1)^2 + n^2 = ? \]

Replace Gauss with TINKERING: *method of differences.*

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S(n))</td>
<td>1</td>
<td>5</td>
<td>14</td>
<td>30</td>
<td>55</td>
<td>91</td>
<td>140</td>
</tr>
<tr>
<td>1st difference (S'(n))</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>2nd difference (S''(n))</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd difference (S'''(n))</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3’rd difference constant is like 3’rd derivative constant. So guess:

\[S(n) = a_0 + a_1 n + a_2 n^2 + a_3 n^3. \]

\[
\begin{align*}
a_0 + a_1 + a_2 + a_3 &= 1 \\
a_0 + 2a_1 + 4a_2 + 8a_3 &= 5 \\
a_0 + 3a_1 + 9a_2 + 27a_3 &= 14 \\
a_0 + 4a_1 + 16a_2 + 64a_3 &= 30 \\
\end{align*}
\]

\[a_0 = 0, \ a_1 = \frac{1}{6}, \ a_2 = \frac{1}{2}, \ a_3 = \frac{1}{3} \]
Sum of Integer Squares

\[S(n) = 1^2 + 2^2 + 3^2 + \cdots + (n-1)^2 + n^2 = ? \]

Replace Gauss with TINKERING: *method of differences*.

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S(n))</td>
<td>1</td>
<td>5</td>
<td>14</td>
<td>30</td>
<td>55</td>
<td>91</td>
<td>140</td>
</tr>
<tr>
<td>1st difference</td>
<td>(S'(n))</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
</tr>
<tr>
<td>2nd difference</td>
<td>(S''(n))</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>3rd difference</td>
<td>(S'''(n))</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3’rd difference constant is like 3’rd derivative constant. So guess:

\[S(n) = a_0 + a_1 n + a_2 n^2 + a_3 n^3. \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{6} n + \frac{1}{2} n^2 + \frac{1}{3} n^3)</td>
<td>1</td>
<td>5</td>
<td>14</td>
<td>30</td>
<td>55</td>
<td>91</td>
<td>140</td>
<td>204</td>
<td>285</td>
<td>385</td>
</tr>
</tbody>
</table>

\[a_0 + \frac{1}{6}, \ a_1 = \frac{1}{6}, \ a_2 = \frac{1}{2}, \ a_3 = \frac{1}{3} \]
Proof: $S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3 = \frac{1}{6}n(n+1)(2n+1)$

Proof. (By induction.) $P(n): \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$.
Proof: \(S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6} n + \frac{1}{2} n^2 + \frac{1}{3} n^3 = \frac{1}{6} n(n + 1)(2n + 1) \)

Proof. (By induction.) \(P(n) : \sum_{i=1}^{n} i^2 = \frac{1}{6} n(n + 1)(2n + 1). \)

1: **[Base case]** \(P(1) \), claims that \(1 = \frac{1}{6} \times 1 \times 2 \times 3 \), which is clearly true.
Proof: \(S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3 = \frac{1}{6}n(n+1)(2n+1) \)

Proof. (By induction.) \(P(n) : \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1) \).

1: [Base case] \(P(1) \), claims that \(1 = \frac{1}{6} \times 1 \times 2 \times 3 \), which is clearly \(\text{T} \).

2: [Induction step] Show \(P(n) \to P(n+1) \) for all \(n \geq 1 \). Direct proof.
Proof: \(S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3 = \frac{1}{6}n(n+1)(2n+1) \)

Proof. (By induction.) \(P(n) : \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1) \).

1: [Base case] \(P(1) \), claims that \(1 = \frac{1}{6} \times 1 \times 2 \times 3 \), which is clearly \(\text{T} \).

2: [Induction step] Show \(P(n) \rightarrow P(n+1) \) for all \(n \geq 1 \). Direct proof.

Assume (induction hypothesis) \(P(n) \) is \(\text{T} \): \(\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1) \).

Show \(P(n+1) \) is \(\text{T} \): \(\sum_{i=1}^{n+1} i^2 = \frac{1}{6}(n + 1)(n + 2)(2n + 3) \).
Proof: \(S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n^3 + \frac{1}{2}n^2 + \frac{1}{3}n = \frac{1}{6}n(n + 1)(2n + 1) \)

Proof. (By induction.) \(P(n) : \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n + 1)(2n + 1) \).

1: [Base case] \(P(1) \), claims that \(1 = \frac{1}{6} \times 1 \times 1 \times 2 \times 3 \), which is clearly true.

2: [Induction step] Show \(P(n) \rightarrow P(n + 1) \) for all \(n \geq 1 \). Direct proof.

Assume (induction hypothesis) \(P(n) \) is true: \(\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n + 1)(2n + 1) \).

Show \(P(n + 1) \) is true: \(\sum_{i=1}^{n+1} i^2 = \frac{1}{6}(n + 1)(n + 2)(2n + 3) \).

\[
\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n + 1)^2 \quad \text{[key step]}
\]
Proof: \(S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3 = \frac{1}{6}n(n + 1)(2n + 1) \)

Proof. (By induction.) \(P(n) : \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n + 1)(2n + 1) \).

1: [Base case] \(P(1) \), claims that \(1 = \frac{1}{6} \times 1 \times 2 \times 3 \), which is clearly true.

2: [Induction step] Show \(P(n) \to P(n + 1) \) for all \(n \geq 1 \). Direct proof.

Assume (induction hypothesis) \(P(n) \) is true: \(\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n + 1)(2n + 1) \).

Show \(P(n + 1) \) is true: \(\sum_{i=1}^{n+1} i^2 = \frac{1}{6}(n + 1)(n + 2)(2n + 3) \).

\[
\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n + 1)^2 \quad \text{[key step]}
\]

\[
= \frac{1}{6}n(n + 1)(2n + 1) + (n + 1)^2 \quad \text{[induction hypothesis \(P(n) \)]}
\]
Proof: \(S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n^3 + \frac{1}{2}n^2 + \frac{1}{3}n^3 = \frac{1}{6}n(n + 1)(2n + 1) \)

Proof. (By induction.) \(P(n) : \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n + 1)(2n + 1). \)

1. **[Base case]** \(P(1) \), claims that 1 = \(\frac{1}{6} \times 1 \times 2 \times 3 \), which is clearly true.

2. **[Induction step]** Show \(P(n) \rightarrow P(n + 1) \) for all \(n \geq 1 \). Direct proof.

 Assume (induction hypothesis) \(P(n) \) is true: \(\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n + 1)(2n + 1) \).

 Show \(P(n + 1) \) is true: \(\sum_{i=1}^{n+1} i^2 = \frac{1}{6}(n + 1)(n + 2)(2n + 3) \).

 \[
 \sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n + 1)^2 \quad \text{[key step]}
 \]

 \[
 = \frac{1}{6}n(n + 1)(2n + 1) + (n + 1)^2 \quad \text{[induction hypothesis \(P(n) \)]}
 \]

 \[
 = \frac{1}{6}(n + 1)(n + 2)(2n + 3) \quad \text{[algebra]}
 \]

 This is exactly what was to be shown. So, \(P(n + 1) \) is true.
Proof: \(S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3 = \frac{1}{6}n(n+1)(2n+1) \)

Proof. (By induction.) \(P(n) : \sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1) \).

1: [Base case] \(P(1) \), claims that \(1 = \frac{1}{6} \times 1 \times 2 \times 3 \), which is clearly T.

2: [Induction step] Show \(P(n) \rightarrow P(n+1) \) for all \(n \geq 1 \). Direct proof.

Assume (induction hypothesis) \(P(n) \) is T: \(\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1) \).

Show \(P(n+1) \) is T: \(\sum_{i=1}^{n+1} i^2 = \frac{1}{6}(n+1)(n+2)(2n+3) \).

\[
\sum_{i=1}^{n+1} i^2 = \sum_{i=1}^{n} i^2 + (n+1)^2 \quad \text{[key step]}
\]

\[
= \frac{1}{6}n(n+1)(2n+1) + (n+1)^2 \quad \text{[induction hypothesis \(P(n) \)]}
\]

\[
= \frac{1}{6}(n+1)(n+2)(2n+3) \quad \text{[algebra]}
\]

This is exactly what was to be shown. So, \(P(n+1) \) is T.

3: By induction, \(P(n) \) is T for all \(n \geq 1 \).
Induction Gone Wrong

\[P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow P(5) \rightarrow P(6) \rightarrow P(7) \rightarrow \cdots \]
Induction Gone Wrong

\[P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow P(5) \rightarrow P(6) \rightarrow P(7) \rightarrow \cdots \]

No Base Case.

\[P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \]

False: \(P(n) : n \leq n + 1 \) for all \(n \geq 1 \).

\[n \leq n + 1 \rightarrow n + 1 \leq n + 2 \] therefore \(P(n) \rightarrow P(n + 1) \).
Induction Gone Wrong

\[\begin{align*}
P(1) & \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow P(5) \rightarrow P(6) \rightarrow P(7) \rightarrow \cdots \\
\end{align*} \]

No Base Case.

\[P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \]

False: \(P(n) : n \leq n + 1 \) for all \(n \geq 1 \).

\[n \leq n + 1 \rightarrow n + 1 \leq n + 2 \quad \text{therefore} \quad P(n) \rightarrow P(n + 1). \]

[Every link is proved, but without the base case, you have nothing.]
Induction Gone Wrong

\[P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow P(5) \rightarrow P(6) \rightarrow P(7) \rightarrow \cdots \]

No Base Case.

\[P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \]

False: \(P(n) : n \leq n + 1 \) for all \(n \geq 1 \).

\[n \leq n + 1 \rightarrow n + 1 \leq n + 2 \quad \text{therefore} \quad P(n) \rightarrow P(n + 1). \]

[Every link is proved, but without the base case, you have nothing.]

Broken Chain.

\[P(1) \quad P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \]

False: \(P(n) : \) “all balls in any set of \(n \) balls are the same color.”

Induction step. Suppose any set of \(n \) balls have the same color. Consider any set of \(n + 1 \) balls \(b_1, b_2, \ldots, b_n, b_{n+1} \). So, \(b_1, b_2, \ldots, b_n \) have the same color and \(b_2, b_3, \ldots, b_{n+1} \) have the same color. Thus \(b_1, b_2, b_3, \ldots, b_{n+1} \) have the same color.

\[P(n) \rightarrow P(n + 1)? \]
Induction Gone Wrong

\[P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow P(5) \rightarrow P(6) \rightarrow P(7) \rightarrow \cdots \]

No Base Case.

\[P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \]

False: \(P(n) : n \leq n + 1 \) for all \(n \geq 1 \).

\[n \leq n + 1 \rightarrow n + 1 \leq n + 2 \quad \text{therefore} \quad P(n) \rightarrow P(n + 1). \]

[Every link is proved, but without the base case, you have nothing.]

Broken Chain.

\[P(1) \quad P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \]

False: \(P(n) : \) “all balls in any set of \(n \) balls are the same color.”

Induction step. Suppose any set of \(n \) balls have the same color. Consider any set of \(n + 1 \) balls \(b_1, b_2, \ldots, b_n, b_{n+1} \). So, \(b_1, b_2, \ldots, b_n \) have the same color and \(b_2, b_3, \ldots, b_{n+1} \) have the same color. Thus \(b_1, b_2, b_3, \ldots, b_{n+1} \) have the same color.

\[P(n) \rightarrow P(n + 1)? \]

[A single broken link kills the entire proof.]
Well-ordering Principle.

Any non-empty set of natural numbers has a minimum element.
Well Ordering Principle

Well-ordering Principle.

Any non-empty set of natural numbers has a minimum element.

Induction follows from well ordering.
Well-ordering Principle.

Any non-empty set of natural numbers has a minimum element.

Induction follows from well ordering. Let \(P(1) \) and \(P(n) \rightarrow P(n + 1) \) be \(\top \).
Well-ordering Principle.

Any non-empty set of natural numbers has a minimum element.

Induction follows from well ordering. Let $P(1)$ and $P(n) \rightarrow P(n + 1)$ be true.

Suppose $P(n_*)$ fails for the smallest counter-example n_* (well-ordering).
Well Ordering Principle

Well-ordering Principle.

Any non-empty set of natural numbers has a minimum element.

Induction follows from well ordering. Let $P(1)$ and $P(n) \rightarrow P(n + 1)$ be \top.

Suppose $P(n_*)$ fails for the *smallest* counter-example n_* (well-ordering).

\[
\begin{align*}
P(1) & \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \rightarrow P(n_* - 1) \rightarrow P(n_*) \rightarrow \cdots
\end{align*}
\]
Well-ordering Principle.

Any non-empty set of natural numbers has a minimum element.

Induction follows from well ordering. Let $P(1)$ and $P(n) \to P(n + 1)$ be \top.

Suppose $P(n_*)$ fails for the *smallest* counter-example n_* (well-ordering).

\[
P(1) \to P(2) \to P(3) \to P(4) \to \cdots \to P(n_* - 1) \to P(n_*) \to \cdots
\]

Now how can $P(n_* - 1) \to P(n_*)$ be \top?
Well Ordering Principle

Well-ordering Principle.

Any non-empty set of natural numbers has a minimum element.

Induction follows from well ordering. Let $P(1)$ and $P(n) \rightarrow P(n + 1)$ be T.

Suppose $P(n_*)$ fails for the **smallest** counter-example n_* (well-ordering).

\[
P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \rightarrow P(n_* - 1) \rightarrow P(n_*) \rightarrow \cdots
\]

Now how can $P(n_* - 1) \rightarrow P(n_*)$ be T?

Any induction proof can also be done using well-ordering.
Example Well-Ordering Proof: \(n < 2^n \) for \(n \geq 1 \)

\textit{Proof.} [Induction] \(P(n) : n < 2^n \).
Example Well-Ordering Proof: $n < 2^n$ for $n \geq 1$

Proof. [Induction] $P(n) : n < 2^n$.

Base case. $P(1)$ is T because $1 < 2^1$.

Example Well-Ordering Proof: \(n < 2^n \) for \(n \geq 1 \)

Proof. [Induction] \(P(n) \): \(n < 2^n \).

Base case. \(P(1) \) is T because \(1 < 2^1 \).

Induction. Assume \(P(n) \) is T: \(n < 2^n \) and show \(P(n + 1) \) is T: \(n + 1 < 2^{n+1} \).

\[
 n + 1 \leq n + n = 2n \leq 2 \times 2^n = 2^{n+1}.
\]
Example Well-Ordering Proof: $n < 2^n$ for $n \geq 1$

Proof. [Induction] $P(n) : n < 2^n$.

Base case. $P(1)$ is T because $1 < 2^1$.

Induction. Assume $P(n)$ is T: $n < 2^n$ and show $P(n + 1)$ is T: $n + 1 < 2^{n+1}$.

\[
n + 1 \leq n + n = 2n \leq 2 \times 2^n = 2^{n+1}.
\]

Therefore $P(n + 1)$ is T and, by induction, $P(n)$ is T for $n \geq 1$. \[
\]

Creator: Malik Magdon-Ismail

Induction: Proving “For All…”: 17/18

Getting Good at Induction →
Example Well-Ordering Proof: $n < 2^n$ for $n \geq 1$

Proof. [Induction] $P(n): n < 2^n$.

Base case. $P(1)$ is T because $1 < 2^1$.

Induction. Assume $P(n)$ is T: $n < 2^n$ and show $P(n + 1)$ is T: $n + 1 < 2^{n+1}$.

\[n + 1 \leq n + n = 2n \leq 2 \times 2^n = 2^{n+1}. \]

Therefore $P(n + 1)$ is T and, by induction, $P(n)$ is T for $n \geq 1$.

Proof. [Well-ordering] Proof by **contradiction**.
Example Well-Ordering Proof: \(n < 2^n \) for \(n \geq 1 \)

Proof. [Induction] \(P(n) : n < 2^n \).

Base case. \(P(1) \) is \(\text{T} \) because \(1 < 2^1 \).

Induction. Assume \(P(n) \) is \(\text{T} \): \(n < 2^n \). and show \(P(n + 1) \) is \(\text{T} \): \(n + 1 < 2^{n+1} \).

\[
\begin{align*}
 n + 1 & \leq n + n = 2n \\
 & \leq 2 \times 2^n = 2^{n+1}.
\end{align*}
\]

Therefore \(P(n + 1) \) is \(\text{T} \) and, by induction, \(P(n) \) is \(\text{T} \) for \(n \geq 1 \).

Proof. [Well-ordering] Proof by **contradiction**.

Assume that there is an \(n \geq 1 \) for which \(n \geq 2^n \).
Example Well-Ordering Proof: \(n < 2^n \) for \(n \geq 1 \)

Proof. [Induction] \(P(n) : n < 2^n \).

Base case. \(P(1) \) is \(T \) because \(1 < 2^1 \).

Induction. Assume \(P(n) \) is \(T \): \(n < 2^n \). and show \(P(n+1) \) is \(T \): \(n + 1 < 2^{n+1} \).

\[
\begin{align*}
n + 1 & \leq n + n = 2n \\
& \leq 2 \times 2^n = 2^{n+1}.
\end{align*}
\]

Therefore \(P(n+1) \) is \(T \) and, by induction, \(P(n) \) is \(T \) for \(n \geq 1 \).

Assume that there is an \(n \geq 1 \) for which \(n \geq 2^n \).

Let \(n^* \) be the minimum such counter-example, \(n^* \geq 2^{n^*} \).
Example Well-Ordering Proof: $n < 2^n$ for $n \geq 1$

Proof. [Induction] $P(n) : n < 2^n$.

Base case. $P(1)$ is T because $1 < 2^1$.

Induction. Assume $P(n)$ is T: $n < 2^n$. and show $P(n + 1)$ is T: $n + 1 < 2^{n+1}$.

\[
\begin{align*}
n + 1 & \leq n + n = 2n \\
& \leq 2 \times 2^n = 2^{n+1}.
\end{align*}
\]

Therefore $P(n + 1)$ is T and, by induction, $P(n)$ is T for $n \geq 1$.

Assume that there is an $n \geq 1$ for which $n \geq 2^n$.

Let n_* be the minimum such counter-example, $n_* \geq 2^{n_*}$.

Since $1 < 2^1$, $n_* \geq 2$. Since $n_* \geq 2$, $\frac{1}{2}n_* \geq 1$ and so,

\[
n_* - 1 \geq n_* - \frac{1}{2}n_* = \frac{1}{2}n_* \geq \frac{1}{2} \times 2^{n_*} = 2^{n_*-1}.
\]
Example Well-Ordering Proof: $n < 2^n$ for $n \geq 1$

Proof. [Induction] $P(n) : n < 2^n$.

Base case. $P(1)$ is T because $1 < 2^1$.

Induction. Assume $P(n)$ is T: $n < 2^n$. and show $P(n + 1)$ is T: $n + 1 < 2^{n+1}$.

\[
n + 1 \leq n + n = 2n \leq 2 \times 2^n = 2^{n+1}.
\]

Therefore $P(n + 1)$ is T and, by induction, $P(n)$ is T for $n \geq 1$.

Proof. [Well-ordering] Proof by **contradiction**.

Assume that there is an $n \geq 1$ for which $n \geq 2^n$.

Let n_* be the **minimum** such **counter-example**, $n_* \geq 2^{n_*}$.

Since $1 < 2^1$, $n_* \geq 2$. Since $n_* \geq 2$, $\frac{1}{2}n_* \geq 1$ and so,

\[
n_* - 1 \geq n_* - \frac{1}{2}n_* = \frac{1}{2}n_* \geq \frac{1}{2} \times 2^{n_*} = 2^{n_*-1}.
\]

So, $n_* - 1$ is a **smaller** counter example. **FISHY!**
Example Well-Ordering Proof: \(n < 2^n \) for \(n \geq 1 \)

Proof. [Induction] \(P(n) : n < 2^n \).

Base case. \(P(1) \) is T because \(1 < 2^1 \).

Induction. Assume \(P(n) \) is T: \(n < 2^n \). and show \(P(n + 1) \) is T: \(n + 1 < 2^{n+1} \).

\[
 n + 1 \leq n + n = 2n \leq 2 \times 2^n = 2^{n+1}.
\]

Therefore \(P(n + 1) \) is T and, by induction, \(P(n) \) is T for \(n \geq 1 \).

Proof. [Well-ordering] Proof by **contradiction**.

Assume that there is an \(n \geq 1 \) for which \(n \geq 2^n \).

Let \(n_* \) be the **minimum** such **counter-example**, \(n_* \geq 2^{n_*} \). \hfill \leftarrow \text{well ordering}

Since \(1 < 2^1 \), \(n_* \geq 2 \). Since \(n_* \geq 2 \), \(\frac{1}{2} n_* \geq 1 \) and so,

\[
 n_* - 1 \geq n_* - \frac{1}{2} n_* = \frac{1}{2} n_* \geq \frac{1}{2} \times 2^{n_*} = 2^{n_*-1}.
\]

So, \(n_* - 1 \) is a **smaller** counter example. **FISHY!**

The **method of minimum counter-example** is very powerful.
Challenge. A circle has $2n$ distinct points, n are red and n are blue. Prove that one can start at a blue point and move clockwise always having passed as many blue points as red.

Practice. All exercises and pop-quizzes in chapter 5.
Strengthen. Problems in chapter 5.