Foundations of Computer Science
Lecture 7

Recursion

Powerful but Dangerous
Recursion and Induction
Recursive Sets and Structures
With induction, it may be easier to prove a stronger claim.

Leaping induction.
- \(n^3 < 2^n \) for \(n \geq 10 \).
- Postage.

Strong induction.
- Representation theorems: \textbf{FTA}, binary expansion.
- Games: Nim with 2 equal piles.
Today: Recursion

1 Recursive functions
 - Analysis using induction
 - Recurrences
 - Recursive programs

2 Recursive sets
 - Formal Definition of \mathbb{N}
 - The Finite Binary Strings Σ^*

3 Recursive structures
 - Rooted binary trees (RBT)
Online lecture tool “Demo”: allows lecturer to see screen of remote student.
Online lecture tool “Demo”: allows lecturer to see screen of remote student.

PROFESSOR
Online lecture tool “Demo”: allows lecturer to see screen of remote student.

PROFESSOR

STUDENT
Online lecture tool “Demo”: allows lecturer to see screen of remote student.
Online lecture tool “Demo”: allows lecturer to see screen of remote student.
Online lecture tool “Demo”: allows lecturer to see screen of remote student.
Online lecture tool “Demo”: allows lecturer to see screen of remote student.
Online lecture tool “Demo”: allows lecturer to see screen of remote student.
Online lecture tool “Demo”: allows lecturer to see screen of remote student.
A Fantastic Recursion

Online lecture tool “Demo”: allows lecturer to see screen of remote student.

PROFESSOR

HANG!, CRASH!, BANG!, reboot required

*/%&# 😞@$#!
The tool shows the student’s screen, i.e. my previous screen, which is what the tool showed,

The tool *shows* what the tool *showed.*

– self reference
Examples of Recursion: Self Reference

The tool shows the student’s screen, i.e. my previous screen, which is what the tool showed,

The tool \textit{shows} what the tool \textit{showed}. – self reference

\textit{look-up} (word): Get definition; if a word \(x \) in the definition is unknown, \(\text{look-up}(x) \).
Examples of Recursion: Self Reference

The tool shows the student’s screen, i.e my previous screen, which is what the tool showed,

The tool \textit{shows} what the tool \textit{showed}. \hspace{3cm} - self reference

\textit{look-up} (word): Get definition; if a word \(x \) in the definition is unknown, \textit{look-up} \((x)\).

\[
f(n) = f(n - 1) + 2n - 1.
\]

What is \(f(2) \)?
Examples of Recursion: Self Reference

The tool shows the student’s screen, i.e my previous screen, which is what the tool showed,

The tool shows what the tool showed.

– self reference

look-up(word): Get definition; if a word x in the definition is unknown, look-up(x).

\[f(n) = f(n - 1) + 2n - 1. \]

What is \(f(2) \)?

\[f(2) = f(1) + 3 \]
Examples of Recursion: Self Reference

The tool shows the student’s screen, i.e my previous screen, which is what the tool showed,

The tool *shows* what the tool *showed*. – *self reference*

look-up (word): Get definition; if a word *x* in the definition is unknown, *look-up* (*x*).

\[
f(n) = f(n - 1) + 2n - 1.\]

What is \(f(2) \)?

\[
f(2) = f(1) + 3 = f(0) + 4
\]
Examples of Recursion: Self Reference

The tool shows the student’s screen, i.e my previous screen, which is what the tool showed,

The tool shows what the tool showed. – self reference

look-up (word): Get definition; if a word x in the definition is unknown, look-up (x).

$$f(n) = f(n - 1) + 2n - 1.$$ What is $f(2)$?

$$f(2) = f(1) + 3 = f(0) + 4 = f(-1) + 3$$
Examples of Recursion: Self Reference

The tool shows the student’s screen, i.e. my previous screen, which is what the tool showed,

The tool *shows* what the tool *showed*.

– *self reference*

look-up (word): Get definition; if a word x in the definition is unknown, $\text{look-up}(x)$.

$$f(n) = f(n - 1) + 2n - 1.$$

What is $f(2)$?

$$f(2) = f(1) + 3 = f(0) + 4 = f(-1) + 3 = \cdots$$

*/?%&# 😞@$#!"
Recursion Must Have Base Cases: *Partial* Self Reference.

look-up (word) works if there are some known words to which everything reduces.

Similarly with recursive functions,

$$f(n) = \begin{cases}
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0.
\end{cases}$$

$$f(2) = f(1) + 3$$
Recursion Must Have Base Cases: *Partial Self Reference.*

look-up (word) works if there are some known words to which everything reduces.

Similarly with recursive functions,

\[
f(n) = \begin{cases}
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0.
\end{cases}
\]

\[f(2) = f(1) + 3 = f(0) + 4\]
Recursion Must Have Base Cases: \textit{Partial} Self Reference.

\textit{look-up (word)} works if there are some known words to which everything reduces.

Similarly with recursive functions,

\[
f(n) = \begin{cases}
0 & n \leq 0; \\
f(n - 1) + 2n - 1 & n > 0.
\end{cases}
\]

\[f(2) = f(1) + 3 = f(0) + 4 = 0 + 4 = 4.\] (ends at a base case)
Recursion Must Have Base Cases: *Partial Self Reference.*

look-up (word) works if there are some known words to which everything reduces.

Similarly with recursive functions,

\[
f(n) = \begin{cases}
0 & n \leq 0; \\
f(n - 1) + 2n - 1 & n > 0.
\end{cases}
\]

\[f(2) = f(1) + 3 = f(0) + 4 = 0 + 4 = 4.\]

(ends at a base case)

Must have **base cases:**

In this case \(f(0) \).
Recursion Must Have Base Cases: *Partial* Self Reference.

look-up (word) works if there are some known words to which everything reduces.

Similarly with recursive functions,

\[
 f(n) = \begin{cases}
 0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0.
 \end{cases}
\]

\[
 f(2) = f(1) + 3 = f(0) + 4 = 0 + 4 = 4.
\]

(ends at a base case)

Must have **base cases:**

In this case \(f(0)\).

Must make **recursive progress:**

To compute \(f(n)\) you must move *closer* to the base case \(f(0)\).
Recursion and Induction

\[f(n) = \begin{cases}
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]
Recursion and Induction

\[f(n) = \begin{cases}
0 & \text{if } n \leq 0; \\
 f(n-1) + 2n - 1 & \text{if } n > 0.
\end{cases} \]

\[f(0) \rightarrow f(1) \]
Recursion and Induction

\[f(n) = \begin{cases}
0 & n \leq 0; \\
\ f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]

\[
\begin{align*}
\text{f(0)} & \rightarrow f(1) \rightarrow f(2)
\end{align*}
\]
Recursion and Induction

\[f(n) = \begin{cases}
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]

\begin{align*}
\boxed{f(0)} \rightarrow f(1) & \rightarrow f(2) & \rightarrow f(3) & \rightarrow f(4) & \rightarrow \cdots
\end{align*}
Recursion and Induction

\[f(n) = \begin{cases}
0 & n \leq 0; \\
(f(n-1) + 2n - 1) & n > 0.
\end{cases} \]

Induction

\(P(0) \) is T; \(P(n) \rightarrow P(n+1) \)
(you can conclude \(P(n+1) \) if \(P(n) \) is T)

\[P(0) \rightarrow P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \]

\(P(n) \) is T for all \(n \geq 0 \).

Recursion

\[f(0) \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow f(4) \rightarrow \cdots \]
Recursion and Induction

\[f(n) = \begin{cases}
0 & n \leq 0; \\
& \text{Induction} \\
& \text{Recursion} \\
f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]

\[f(0) \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow f(4) \rightarrow \cdots \]

Induction

\(P(0) \) is \(T \); \(P(n) \rightarrow P(n + 1) \)
(\(P(n) \) is \(T \) for all \(n \geq 0 \).

\[P(0) \rightarrow P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \]

Recursion

\(f(0) = 0; f(n + 1) = f(n) + 2n + 1 \)
(\(f(n) \) is known)

\[f(0) \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow f(4) \rightarrow \cdots \]

We can compute \(f(n) \) for all \(n \geq 0 \).
Recursion and Induction

\[f(n) = \begin{cases}
0 & n \leq 0; \\
\ f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]

Induction

\(P(0) \) is \(T \); \(P(n) \rightarrow P(n + 1) \)

(you can conclude \(P(n + 1) \) if \(P(n) \) is \(T \))

\[P(0) \rightarrow P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \]

\(P(n) \) is \(T \) for all \(n \geq 0 \).

Recursion

\(f(0) = 0; \ f(n + 1) = f(n) + 2n + 1 \)

(we can compute \(f(n + 1) \) if \(f(n) \) is known)

\[f(0) \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow f(4) \rightarrow \cdots \]

We can compute \(f(n) \) for all \(n \geq 0 \).

Example: More Base Cases

\[f(n) = \begin{cases}
1 & n = 0; \\
\ f(n - 2) + 2 & n > 0.
\end{cases} \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>1</td>
<td>(\times)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recursion and Induction

\[f(n) = \begin{cases}
0 & n \leq 0; \\
(f(n-1) + 2n - 1 & n > 0.
\end{cases} \]

Induction

\(P(0) \) is \(\top \); \(P(n) \rightarrow P(n + 1) \)

(you can conclude \(P(n + 1) \) if \(P(n) \) is \(\top \))

\[P(0) \rightarrow P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \]

\(P(n) \) is \(\top \) for all \(n \geq 0 \).

Recursion

\(f(0) = 0; f(n + 1) = f(n) + 2n + 1 \)

(we can compute \(f(n + 1) \) if \(f(n) \) is known)

\[f(0) \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow f(4) \rightarrow \cdots \]

We can compute \(f(n) \) for all \(n \geq 0 \).

Example: More Base Cases

\[f(n) = \begin{cases}
1 & n = 0; \\
f(n - 2) + 2 & n > 0.
\end{cases} \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>1</td>
<td>(\times)</td>
<td>3</td>
<td>(\times)</td>
<td>5</td>
<td>(\times)</td>
<td>7</td>
<td>(\times)</td>
<td>9</td>
</tr>
</tbody>
</table>

Creator: Malik Magdon-Ismail
Recursion: 7/16
Analysing Recursion →
Recursion and Induction

\[f(n) = \begin{cases}
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]

Induction

\[P(0) \text{ is } T; \ P(n) \rightarrow P(n + 1) \]

(you can conclude \(P(n + 1) \) if \(P(n) \) is \(T \))

\[P(0) \rightarrow P(1) \rightarrow P(2) \rightarrow P(3) \rightarrow P(4) \rightarrow \cdots \]

\(P(n) \) is \(T \) for all \(n \geq 0 \).

Recursion

\[f(0) = 0; \ f(n + 1) = f(n) + 2n + 1 \]

(we can compute \(f(n + 1) \) if \(f(n) \) is known)

\[f(0) \rightarrow f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow f(4) \rightarrow \cdots \]

We can compute \(f(n) \) for all \(n \geq 0 \).

Example: More Base Cases

\[f(n) = \begin{cases}
1 & n = 0; \\
 f(n - 2) + 2 & n > 0.
\end{cases} \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>1</td>
<td>✘</td>
<td>3</td>
<td>✘</td>
<td>5</td>
<td>✘</td>
<td>7</td>
<td>✘</td>
<td>9</td>
</tr>
</tbody>
</table>

How to fix \(f(n) \)? Hint: leaping induction.

Practice. Exercise 7.4
Using Induction to Analyze a Recursion

\[f(n) = \begin{cases}
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]
Using Induction to Analyze a Recursion

\[f(n) = \begin{cases}
0 & n \leq 0; \\
(f(n - 1) + 2n - 1) & n > 0.
\end{cases} \]

\[
\begin{array}{c|cccccccccc}
 n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \cdots \\
 f(n) & 0 & 1 & 4 & 9 & 16 & 25 & 36 & 49 & 64 & \cdots
\end{array}
\]
Using Induction to Analyze a Recursion

\[f(n) = \begin{cases}
0 & \text{if } n \leq 0; \\
 f(n - 1) + 2n - 1 & \text{if } n > 0.
\end{cases} \]

Unfolding the Recursion

\[f(n) = f(n - 1) + 2n - 1 \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

Creator: Malik Magdon-Ismail

Recursion: 8 / 16

Checklist for Analyzing Recursion →
Using Induction to Analyze a Recursion

\[f(n) = \begin{cases}
0 & \text{if } n \leq 0; \\
 f(n - 1) + 2n - 1 & \text{if } n > 0.
\end{cases} \]

Unfolding the Recursion

\[
\begin{align*}
 f(n) &= f(n - 1) + 2n - 1 \\
f(n - 1) &= f(n - 2) + 2n - 3
\end{align*}
\]
Using Induction to Analyze a Recursion

\[f(n) = \begin{cases}
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(n)</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

Unfolding the Recursion

\[
\begin{align*}
 f(n) &= f(n - 1) + 2n - 1 \\
 f(n - 1) &= f(n - 2) + 2n - 3 \\
 f(n - 2) &= f(n - 3) + 2n - 5
\end{align*}
\]
Using Induction to Analyze a Recursion

\[
f(n) = \begin{cases}
0 & n \leq 0; \\
(f(n - 1) + 2n - 1) & n > 0.
\end{cases}
\]

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

Unfolding the Recursion

\[
\begin{align*}
 f(n) &= f(n - 1) + 2n - 1 \\
 f(n - 1) &= f(n - 2) + 2n - 3 \\
 f(n - 2) &= f(n - 3) + 2n - 5 \\
 & \vdots \\
 f(2) &= f(1) + 3 \\
 f(1) &= f(0) + 1
\end{align*}
\]
Using Induction to Analyze a Recursion

\[f(n) = \begin{cases}
0 & n \leq 0; \\
\frac{f(n-1) + 2n - 1}{n > 0}.
\end{cases} \]

\[
\begin{array}{c|cccccccc}
\text{n} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \cdots \\
\hline
f(n) & 0 & 1 & 4 & 9 & 16 & 25 & 36 & 49 & 64 & \cdots \\
\end{array}
\]

Unfolding the Recursion

\[
\begin{align*}
f(n) &= f(n-1) + 2n - 1 \\
f(n-1) &= f(n-2) + 2n - 3 \\
f(n-2) &= f(n-3) + 2n - 5 \\
&\vdots \\
f(2) &= f(1) + 3 \\
f(1) &= f(0) + 1 \\
\end{align*}
\]
Using Induction to Analyze a Recursion

\[f(n) = \begin{cases}
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

Unfolding the Recursion

\[
\begin{align*}
f(n) &= f(n-1) + 2n - 1 \\
f(n-1) &= f(n-2) + 2n - 3 \\
f(n-2) &= f(n-3) + 2n - 5 \\
& \vdots \\
f(2) &= f(1) + 3 \\
f(1) &= f(0) + 1 \\
\end{align*}
\]
Using Induction to Analyze a Recursion

\[f(n) = \begin{cases}
0 & n \leq 0; \\
 f(n-1) + 2n - 1 & n > 0.
\end{cases} \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

Unfolding the Recursion

\[
\begin{align*}
 f(n) &= f(n-1) + 2n - 1 \\
 f(n-1) &= f(n-2) + 2n - 3 \\
 f(n-2) &= f(n-3) + 2n - 5 \\
 & \vdots \\
 f(2) &= f(1) + 3 \\
 f(1) &= f(0) + 1 \\
 \hline
 f(n) &= 1 + 3 + \cdots + 2n - 1
\end{align*}
\]
Using Induction to Analyze a Recursion

\[f(n) = \begin{cases}
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]

Unfolding the Recursion

\[
\begin{align*}
 f(n) &= f(n-1) + 2n - 1 \\
 f(n-1) &= f(n-2) + 2n - 3 \\
 f(n-2) &= f(n-3) + 2n - 5 \\
&\vdots \\
f(2) &= f(1) + 3 \\
f(1) &= f(0) + 1 \\
\end{align*}
\]

\[+ \quad f(n) = 1 + 3 + \cdots + 2n - 1 \]

Proof by induction that \(f(n) = n^2 \).

\[P(n) : f(n) = n^2 \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>\cdots</td>
</tr>
</tbody>
</table>
Using Induction to Analyze a Recursion

\[f(n) = \begin{cases}
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>81</td>
<td>100</td>
<td>121</td>
<td>144</td>
<td>169</td>
<td>196</td>
<td>225</td>
<td>256</td>
</tr>
</tbody>
</table>

Unfolding the Recursion

\[
\begin{align*}
 f(n) &= f(n-1) + 2n - 1 \\
 f(n-1) &= f(n-2) + 2n - 3 \\
 f(n-2) &= f(n-3) + 2n - 5 \\
 &\vdots \\
 f(2) &= f(1) + 3 \\
 f(1) &= f(0) + 1 \\
 f(n) &= 1 + 3 + \cdots + 2n - 1
\end{align*}
\]

Proof by induction that \(f(n) = n^2 \).

\(P(n) : f(n) = n^2 \)

[Base case] \(P(0) : f(0) = 0^2 \) (clearly T).
Using Induction to Analyze a Recursion

\[f(n) = \begin{cases}
0 & n \leq 0; \\
(f(n-1) + 2n - 1) & n > 0.
\end{cases} \]

Unfolding the Recursion

\[
\begin{align*}
f(n) &= f(n-1) + 2n - 1 \\
f(n-1) &= f(n-2) + 2n - 3 \\
f(n-2) &= f(n-3) + 2n - 5 \\
& \vdots \\
f(2) &= f(1) + 3 \\
f(1) &= f(0) + 1 \\
\end{align*}
\]

\[f(n) = 1 + 3 + \cdots + 2n - 1 \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

Proof by induction that \(f(n) = n^2 \).

Base case \(P(0) : f(0) = 0^2 \) (clearly true).

Induction Show \(P(n) \rightarrow P(n+1) \) for \(n \geq 0 \).
Using Induction to Analyze a Recursion

\[f(n) = \begin{cases}
0 & n \leq 0; \\
(f(n - 1) + 2n - 1) & n > 0.
\end{cases} \]

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>⋯</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(n)</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>⋯</td>
</tr>
</tbody>
</table>

Unfolding the Recursion

\[
\begin{align*}
 f(n) &= f(n-1) + 2n - 1 \\
 f(n-1) &= f(n-2) + 2n - 3 \\
 f(n-2) &= f(n-3) + 2n - 5 \\
 &\vdots \\
 f(2) &= f(1) + 3 \\
 f(1) &= f(0) + 1 \\
 f(n) &= 1 + 3 + \cdots + 2n - 1
\end{align*}
\]

Proof by induction that \(f(n) = n^2 \).

\[P(n) : f(n) = n^2 \]

[Base case] \(P(0) : f(0) = 0^2 \) (clearly true).

[Induction] Show \(P(n) \rightarrow P(n+1) \) for \(n \geq 0 \).

Assume \(P(n) : f(n) = n^2 \).
Using Induction to Analyze a Recursion

\[f(n) = \begin{cases}
0 & n \leq 0; \\
(f(n - 1) + 2n - 1) & n > 0.
\end{cases} \]

Unfolding the Recursion

\[
\begin{align*}
f(n) &= f(n-1) + 2n - 1 \\
f(n-1) &= f(n-2) + 2n - 3 \\
f(n-2) &= f(n-3) + 2n - 5 \\
&\vdots \\
f(2) &= f(1) + 3 \\
f(1) &= f(0) + 1 \\
\hline
f(n) &= 1 + 3 + \cdots + 2n - 1
\end{align*}
\]

Proof by induction that \(f(n) = n^2 \).

\[P(n) : f(n) = n^2 \]

[Base case] \(P(0) : f(0) = 0^2 \) (clearly T).

[Induction] Show \(P(n) \rightarrow P(n + 1) \) for \(n \geq 0 \).

Assume \(P(n) : f(n) = n^2 \).

\[f(n + 1) \]
Using Induction to Analyze a Recursion

\[f(n) = \begin{cases}
0 & n \leq 0; \\
(f(n - 1) + 2n - 1) & n > 0.
\end{cases} \]

Unfolding the Recursion

\[
\begin{align*}
 f(n) &= f(n - 1) + 2n - 1 \\
 f(n - 1) &= f(n - 2) + 2n - 3 \\
 f(n - 2) &= f(n - 3) + 2n - 5 \\
 &\vdots \\
 f(2) &= f(1) + 3 \\
 f(1) &= f(0) + 1 \\
 f(0) &= 1 + 3 + \cdots + 2n - 1
\end{align*}
\]

Proof by induction that \(f(n) = n^2 \).

\[P(n) : f(n) = n^2 \]

[Base case] \(P(0) : f(0) = 0^2 \) (clearly true).

[Induction] Show \(P(n) \rightarrow P(n + 1) \) for \(n \geq 0 \).

Assume \(P(n) : f(n) = n^2 \).

\[
\begin{align*}
 f(n + 1) &= f(n) + 2(n + 1) - 1 \\
 &= f(n) + 2n + 1 \quad \text{(recursion)}
\end{align*}
\]
Using Induction to Analyze a Recursion

\[f(n) = \begin{cases}
0 & \text{if } n \leq 0; \\
(f(n-1) + 2n - 1) & \text{if } n > 0.
\end{cases} \]

Unfolding the Recursion

\[
\begin{align*}
f(n) &= f(n-1) + 2n - 1 \\
f(n-1) &= f(n-2) + 2n - 3 \\
f(n-2) &= f(n-3) + 2n - 5 \\
& \vdots \\
f(2) &= f(1) + 3 \\
f(1) &= f(0) + 1 \\
\hline
f(n) &= 1 + 3 + \cdots + 2n - 1
\end{align*}
\]

Proof by induction that \(f(n) = n^2 \).

Base case \(P(0) : f(0) = 0^2 \) (clearly T).

Induction Show \(P(n) \implies P(n+1) \) for \(n \geq 0 \).

Assume \(P(n) : f(n) = n^2 \).

\[
\begin{align*}
f(n+1) &= f(n) + 2(n+1) - 1 \\
&= n^2 + 2n + 1
\end{align*}
\] (recursion) \((f(n) = n^2) \)
Using Induction to Analyze a Recursion

\[f(n) = \begin{cases}
0 & n \leq 0; \\
(f(n-1) + 2n - 1) & n > 0.
\end{cases} \]

| \(n \) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | \cdots \\
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

Unfolding the Recursion

\[
\begin{align*}
 f(n) &= f(n-1) + 2n - 1 \\
f(n-1) &= f(n-2) + 2n - 3 \\
f(n-2) &= f(n-3) + 2n - 5 \\
&\vdots \\
f(2) &= f(1) + 3 \\
f(1) &= f(0) + 1 \\
\Rightarrow f(n) &= 1 + 3 + \cdots + 2n - 1
\end{align*}
\]

Proof by induction that \(f(n) = n^2 \).

\[P(n) : f(n) = n^2 \]

[Base case] \(P(0) : f(0) = 0^2 \) (clearly T).

[Induction] Show \(P(n) \rightarrow P(n+1) \) for \(n \geq 0 \).

Assume \(P(n) : f(n) = n^2 \).

\[
\begin{align*}
 f(n+1) &= f(n) + 2(n+1) - 1 \\
&= n^2 + 2n + 1 \\
&= (n+1)^2
\end{align*}
\] (recursion) \((f(n) = n^2) \) \((P(n+1) \text{ is T}) \)
Using Induction to Analyze a Recursion

\[f(n) = \begin{cases}
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>(\cdots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>(\cdots)</td>
</tr>
</tbody>
</table>

Unfolding the Recursion

\[
\begin{align*}
f(n) &= f(n - 1) + 2n - 1 \\
f(n - 1) &= f(n - 2) + 2n - 3 \\
f(n - 2) &= f(n - 3) + 2n - 5 \\
&\vdots \\
f(2) &= f(1) + 3 \\
f(1) &= f(0) + 1 \\
\end{align*}
\]

\[
\begin{align*}
f(n) &= 1 + 3 + \cdots + 2n - 1 \\
\end{align*}
\]

Proof by induction that \(f(n) = n^2 \).

\(P(n) : f(n) = n^2 \)

[Base case] \(P(0) : f(0) = 0^2 \) (clearly T).

[Induction] Show \(P(n) \rightarrow P(n + 1) \) for \(n \geq 0 \).

Assume \(P(n) : f(n) = n^2 \).

\[
\begin{align*}
f(n + 1) &= f(n) + 2(n + 1) - 1 \\
&= n^2 + 2n + 1 \\
&= (n + 1)^2 \\
\end{align*}
\]

So, \(P(n + 1) \) is T.
Using Induction to Analyze a Recursion

\[f(n) = \begin{cases}
0 & n \leq 0; \\
 f(n - 1) + 2n - 1 & n > 0.
\end{cases} \]

Unfolding the Recursion

\[
\begin{align*}
f(n) &= f(n - 1) + 2n - 1 \\
f(n - 1) &= f(n - 2) + 2n - 3 \\
f(n - 2) &= f(n - 3) + 2n - 5 \\
&\vdots \\
f(2) &= f(1) + 3 \\
f(1) &= f(0) + 1 \\
+ f(n) &= 1 + 3 + \cdots + 2n - 1
\end{align*}
\]

Proof by induction that \(f(n) = n^2 \).

\[P(n) : f(n) = n^2 \]

[Base case] \(P(0) : f(0) = 0^2 \) (clearly T).

[Induction] Show \(P(n) \rightarrow P(n + 1) \) for \(n \geq 0 \).

Assume \(P(n) : f(n) = n^2 \).

\[
\begin{align*}
f(n + 1) &= f(n) + 2(n + 1) - 1 \\
&= n^2 + 2n + 1 \\
&= (n + 1)^2 \\
&= (P(n + 1) \text{ is } T)
\end{align*}
\]

So, \(P(n + 1) \) is T.

Hard Example: A halving recursion (see text)

\[f(n) = \begin{cases}
1 & n = 1; \\
 f(\frac{n}{2}) + 1 & n > 1, \text{ even;} \\
 f(n + 1) & n > 1, \text{ odd;}
\end{cases} \]

(Looks esoteric? Often, you halve a problem (if it is even) or pad it by one to make it even, and then halve it.)

Prove \(f(n) = 1 + \lceil \log_2 n \rceil \).

Practice. Exercise 7.5
Tinker. Draw the implication arrows. Is the function well defined?
Checklist for Analyzing Recursion

- Tinker. Draw the implication arrows. Is the function well defined?
- Tinker. Compute $f(n)$ for small values of n.
Checklist for Analyzing Recursion

- Tinker. Draw the implication arrows. Is the function well defined?
- Tinker. Compute $f(n)$ for small values of n.
- Make a guess for $f(n)$. “Unfolding” the recursion can be helpful here.
Checklist for Analyzing Recursion

- Tinker. Draw the implication arrows. Is the function well defined?
- Tinker. Compute $f(n)$ for small values of n.
- Make a guess for $f(n)$. “Unfolding” the recursion can be helpful here.
- Prove your conjecture for $f(n)$ by induction.
Checklist for Analyzing Recursion

- Tinker. Draw the implication arrows. Is the function well defined?
- Tinker. Compute $f(n)$ for small values of n.
- Make a guess for $f(n)$. “Unfolding” the recursion can be helpful here.
- Prove your conjecture for $f(n)$ by induction.
 - The type of induction to use will often be related to the type of recursion.
 - In the induction step, use the recursion to relate the claim for $n+1$ to lower values.
Checklist for Analyzing Recursion

- Tinker. Draw the implication arrows. Is the function well defined?
- Tinker. Compute $f(n)$ for small values of n.
- Make a guess for $f(n)$. “Unfolding” the recursion can be helpful here.
- Prove your conjecture for $f(n)$ by induction.
 - The type of induction to use will often be related to the type of recursion.
 - In the induction step, use the recursion to relate the claim for $n + 1$ to lower values.

Practice. Exercise 7.6
Recurrences: Fibonacci Numbers

Growth rate of rabbits, Sanskrit poetry, family trees of bees,

\[F_1 = 1; \quad F_2 = 1; \quad F_n = F_{n-1} + F_{n-2} \quad \text{for } n > 2. \]
Growth rate of rabbits, Sanskrit poetry, family trees of bees, ….

\[F_1 = 1; \quad F_2 = 1; \quad F_n = F_{n-1} + F_{n-2} \quad \text{for } n > 2. \]

<table>
<thead>
<tr>
<th>(F_1)</th>
<th>(F_2)</th>
<th>(F_3)</th>
<th>(F_4)</th>
<th>(F_5)</th>
<th>(F_6)</th>
<th>(F_7)</th>
<th>(F_8)</th>
<th>(F_9)</th>
<th>(F_{10})</th>
<th>(F_{11})</th>
<th>(F_{12})</th>
<th>(\cdots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>(\cdots)</td>
</tr>
</tbody>
</table>
Recurrences: Fibonacci Numbers

Growth rate of rabbits, Sanskrit poetry, family trees of bees,

\[F_1 = 1; \quad F_2 = 1; \quad F_n = F_{n-1} + F_{n-2} \quad \text{for } n > 2. \]

<table>
<thead>
<tr>
<th>(F_1)</th>
<th>(F_2)</th>
<th>(F_3)</th>
<th>(F_4)</th>
<th>(F_5)</th>
<th>(F_6)</th>
<th>(F_7)</th>
<th>(F_8)</th>
<th>(F_9)</th>
<th>(F_{10})</th>
<th>(F_{11})</th>
<th>(F_{12})</th>
<th>. . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>. . .</td>
</tr>
</tbody>
</table>

Let us prove \(P(n) : F_n \leq 2^n \) by \textbf{strong induction}.

Recurrences: Fibonacci Numbers

Growth rate of rabbits, Sanskrit poetry, family trees of bees,

\[F_1 = 1; \quad F_2 = 1; \quad F_n = F_{n-1} + F_{n-2} \quad \text{for } n > 2. \]

<table>
<thead>
<tr>
<th>(F_1)</th>
<th>(F_2)</th>
<th>(F_3)</th>
<th>(F_4)</th>
<th>(F_5)</th>
<th>(F_6)</th>
<th>(F_7)</th>
<th>(F_8)</th>
<th>(F_9)</th>
<th>(F_{10})</th>
<th>(F_{11})</th>
<th>(F_{12})</th>
<th>(\cdots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>(\cdots)</td>
</tr>
</tbody>
</table>

Let us prove \(P(n) : F_n \leq 2^n \) by strong induction.

Base Cases: \(F_1 = 1 \leq 2^1 \checkmark \) and \(F_2 = 1 \leq 2^2 \checkmark \)

(why 2 base cases?)
Recurrences: Fibonacci Numbers

Growth rate of rabbits, Sanskrit poetry, family trees of bees,

\[F_1 = 1; \quad F_2 = 1; \quad F_n = F_{n-1} + F_{n-2} \quad \text{for } n > 2. \]

\[
\begin{array}{cccccccccccc}
F_1 & F_2 & F_3 & F_4 & F_5 & F_6 & F_7 & F_8 & F_9 & F_{10} & F_{11} & F_{12} & \ldots \\
1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 & 144 & \ldots \\
\end{array}
\]

Let us prove \(P(n) : F_n \leq 2^n \) by strong induction.

Base Cases: \(F_1 = 1 \leq 2^1 \checkmark \) and \(F_2 = 1 \leq 2^2 \checkmark \)

(why 2 base cases?)

Strong Induction: Prove \(P(1) \land P(2) \land \cdots \land P(n) \rightarrow P(n+1) \) for \(n \geq 2. \)
Recurrences: Fibonacci Numbers

Growth rate of rabbits, Sanskrit poetry, family trees of bees,

\[F_1 = 1; \ F_2 = 1; \ F_n = F_{n-1} + F_{n-2} \text{ for } n > 2. \]

\[
\begin{array}{cccccccccccc}
F_1 & F_2 & F_3 & F_4 & F_5 & F_6 & F_7 & F_8 & F_9 & F_{10} & F_{11} & F_{12} & \cdots \\
1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 & 144 & \cdots \\
\end{array}
\]

Let us prove \(P(n) : F_n \leq 2^n \) by strong induction.

Base Cases: \(F_1 = 1 \leq 2^1 \checkmark \text{ and } F_2 = 1 \leq 2^2 \checkmark \) (why 2 base cases?)

Strong Induction: Prove \(P(1) \land P(2) \land \cdots \land P(n) \rightarrow P(n + 1) \) for \(n \geq 2 \).

Assume: \(P(1) \land P(2) \land \cdots \land P(n) : F_i \leq 2^i \) for \(1 \leq i \leq n \).
Recurrences: Fibonacci Numbers

Growth rate of rabbits, Sanskrit poetry, family trees of bees, . . .

\[F_1 = 1; \quad F_2 = 1; \quad F_n = F_{n-1} + F_{n-2} \quad \text{for } n > 2. \]

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_1)</td>
<td>(F_2)</td>
<td>(F_3)</td>
<td>(F_4)</td>
<td>(F_5)</td>
<td>(F_6)</td>
<td>(F_7)</td>
<td>(F_8)</td>
<td>(F_9)</td>
<td>(F_{10})</td>
<td>(F_{11})</td>
<td>(F_{12})</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
</tr>
</tbody>
</table>

Let us prove \(P(n) : F_n \leq 2^n \) by **strong induction**.

Base Cases: \(F_1 = 1 \leq 2^1 \✓ \) and \(F_2 = 1 \leq 2^2 \✓ \)

(why 2 base cases?)

Strong Induction: Prove \(P(1) \land P(2) \land \cdots \land P(n) \implies P(n + 1) \) for \(n \geq 2 \).

Assume: \(P(1) \land P(2) \land \cdots \land P(n) : F_i \leq 2^i \) for \(1 \leq i \leq n \).

\[F_{n+1} \]
Recurrences: Fibonacci Numbers

Growth rate of rabbits, Sanskrit poetry, family trees of bees,

\[F_1 = 1; \quad F_2 = 1; \quad F_n = F_{n-1} + F_{n-2} \quad \text{for } n > 2. \]

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_1)</td>
<td>(F_2)</td>
<td>(F_3)</td>
<td>(F_4)</td>
<td>(F_5)</td>
<td>(F_6)</td>
<td>(F_7)</td>
<td>(F_8)</td>
<td>(F_9)</td>
<td>(F_{10})</td>
<td>(F_{11})</td>
<td>(F_{12})</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
<td>...</td>
</tr>
</tbody>
</table>

Let us prove \(P(n) : F_n \leq 2^n \) by strong induction.

Base Cases: \(F_1 = 1 \leq 2^1 \) ✓ and \(F_2 = 1 \leq 2^2 \) ✓

(why 2 base cases?)

Strong Induction: Prove \(P(1) \land P(2) \land \cdots \land P(n) \rightarrow P(n+1) \) for \(n \geq 2 \).

Assume: \(P(1) \land P(2) \land \cdots \land P(n) : F_i \leq 2^i \) for \(1 \leq i \leq n \).

\[F_{n+1} = F_n + F_{n-1} \quad \text{(needs } n \geq 2) \]
Recurrences: Fibonacci Numbers

Growth rate of rabbits, Sanskrit poetry, family trees of bees,

\[F_1 = 1; \quad F_2 = 1; \quad F_n = F_{n-1} + F_{n-2} \quad \text{for } n > 2. \]

\[
\begin{array}{cccccccccccccc}
F_1 & F_2 & F_3 & F_4 & F_5 & F_6 & F_7 & F_8 & F_9 & F_{10} & F_{11} & F_{12} & \cdots \\
1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 & 144 & \cdots \\
\end{array}
\]

Let us prove \(P(n) : F_n \leq 2^n \) by strong induction.

Base Cases: \(F_1 = 1 \leq 2^1 \) ✔ and \(F_2 = 1 \leq 2^2 \) ✔ (why 2 base cases?)

Strong Induction: Prove \(P(1) \land P(2) \land \cdots \land P(n) \rightarrow P(n + 1) \) for \(n \geq 2 \).

Assume: \(P(1) \land P(2) \land \cdots \land P(n) : F_i \leq 2^i \) for \(1 \leq i \leq n \).

\[
F_{n+1} = F_n + F_{n-1} \leq 2^n + 2^{n-1} \quad \text{(needs } n \geq 2) \quad \text{(strong induction hypothesis)}
\]
Recurrences: Fibonacci Numbers

Growth rate of rabbits, Sanskrit poetry, family trees of bees,

\[F_1 = 1; \; F_2 = 1; \; F_n = F_{n-1} + F_{n-2} \quad \text{for } n > 2. \]

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F_1</td>
<td>F_2</td>
<td>F_3</td>
<td>F_4</td>
<td>F_5</td>
<td>F_6</td>
<td>F_7</td>
<td>F_8</td>
<td>F_9</td>
<td>F_{10}</td>
<td>F_{11}</td>
<td>F_{12}</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
<td>144</td>
</tr>
</tbody>
</table>

Let us prove \(P(n) : F_n \leq 2^n \) by strong induction.

Base Cases: \(F_1 = 1 \leq 2^1 \) ✔ and \(F_2 = 1 \leq 2^2 \) ✔

(why 2 base cases?)

Strong Induction: Prove \(P(1) \land P(2) \land \cdots \land P(n) \rightarrow P(n+1) \) for \(n \geq 2 \).

Assume: \(P(1) \land P(2) \land \cdots \land P(n) : F_i \leq 2^i \) for \(1 \leq i \leq n \).

\[
F_{n+1} = F_n + F_{n-1} \\
\leq 2^n + 2^{n-1} \quad \text{(needs } n \geq 2) \\
\leq 2 \times 2^n = 2^{n+1} \quad \text{(strong induction hypothesis)}
\]

So, \(F_{n+1} \leq 2^{n+1} \), concluding the proof.
Recurrences: Fibonacci Numbers

Growth rate of rabbits, Sanskrit poetry, family trees of bees,

\[F_1 = 1; \quad F_2 = 1; \quad F_n = F_{n-1} + F_{n-2} \quad \text{for } n > 2. \]

\[
\begin{array}{cccccccccccc}
F_1 & F_2 & F_3 & F_4 & F_5 & F_6 & F_7 & F_8 & F_9 & F_{10} & F_{11} & F_{12} \\
1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 & 144 \\
\end{array}
\]

Let us prove \(P(n) : F_n \leq 2^n \) by strong induction.

Base Cases: \(F_1 = 1 \leq 2^1 \checkmark \) and \(F_2 = 1 \leq 2^2 \checkmark \) (why 2 base cases?)

Strong Induction: Prove \(P(1) \land P(2) \land \cdots \land P(n) \rightarrow P(n+1) \) for \(n \geq 2 \).

Assume: \(P(1) \land P(2) \land \cdots \land P(n) : F_i \leq 2^i \) for \(1 \leq i \leq n. \)

\[
F_{n+1} = F_n + F_{n-1} \quad \text{(needs } n \geq 2) \\
\leq 2^n + 2^{n-1} \quad \text{(strong induction hypothesis)} \\
\leq 2 \times 2^n = 2^{n+1}
\]

So, \(F_{n+1} \leq 2^{n+1} \), concluding the proof.

Practice. Prove \(F_n \geq (\frac{3}{2})^n \) for \(n \geq 11. \)
Recursive Programs

out=Big(n)
if(n==0) out=1;
else out=2*Big(n-1);

Does this function compute 2^n?
Proving correctness: let’s prove $\text{Big}(n) = 2^n$ for $n \geq 1$

```
out=Big(n)
if(n==0) out=1;
else out=2*Big(n-1);
```

Does this function compute 2^n?
Proving correctness: let’s prove $\text{Big}(n) = 2^n$ for $n \geq 1$

Induction.

```plaintext
out=Big(n)
if(n==0) out=1;
else out=2*Big(n-1);
```

Does this function compute 2^n?
Proving correctness: let’s prove $\text{Big}(n) = 2^n$ for $n \geq 1$

Induction.

When $n = 0$, $\text{Big}(0) = 1 = 2^0$ ✓

Does this function compute 2^n?
Recursive Programs

Proving correctness: let’s prove $\text{Big}(n) = 2^n$ for $n \geq 1$

Induction.
When $n = 0$, $\text{Big}(0) = 1 = 2^0$ ✓
Assume $\text{Big}(n) = 2^n$ for $n \geq 0$

\[
\text{out=Big(n)}
\]
\[
\text{if(n==0) out=1; else out=2*Big(n-1);}
\]

Does this function compute 2^n?
Proving correctness: let’s prove $\text{Big}(n) = 2^n$ for $n \geq 1$

Induction.
When $n = 0$, $\text{Big}(0) = 1 = 2^0 \checkmark$
Assume $\text{Big}(n) = 2^n$ for $n \geq 0$

$$\text{Big}(n + 1) = 2 \times \text{Big}(n) = 2 \times 2^n = 2^{n+1}.$$
Recursive Programs

Proving correctness: let’s prove $\text{Big}(n) = 2^n$ for $n \geq 1$

Induction.

When $n = 0$, $\text{Big}(0) = 1 = 2^0$ ✓

Assume $\text{Big}(n) = 2^n$ for $n \geq 0$

$$\text{Big}(n + 1) = 2 \times \text{Big}(n) = 2 \times 2^n = 2^{n+1}. $$

What is the runtime?

Let $T_n =$ runtime of Big for input n.

```
out=Big(n)
if(n==0) out=1;
else out=2*Big(n-1);
```

Does this function compute 2^n?
Proving correctness: let’s prove $\text{Big}(n) = 2^n$ for $n \geq 1$

Induction.

When $n = 0$, $\text{Big}(0) = 1 = 2^0$ ✓

Assume $\text{Big}(n) = 2^n$ for $n \geq 0$

$$\text{Big}(n + 1) = 2 \times \text{Big}(n) = 2 \times 2^n = 2^{n+1}.$$

What is the runtime?

Let $T_n =$ runtime of Big for input n.

$$T_0 = 2$$"
Proving correctness: let’s prove \(\text{Big}(n) = 2^n \) for \(n \geq 1 \)

Induction.
When \(n = 0 \), \(\text{Big}(0) = 1 = 2^0 \) √
Assume \(\text{Big}(n) = 2^n \) for \(n \geq 0 \)
\[
\text{Big}(n + 1) = 2 \times \text{Big}(n) = 2 \times 2^n = 2^{n+1}.
\]

What is the runtime?
Let \(T_n = \) runtime of \(\text{Big} \) for input \(n \).
\[
T_0 = 2 \\
T_n = T_{n-1} + (\text{check } n==0) + (\text{multiply by 2}) + (\text{assign to } \text{out})
\]

```c
out=Big(n)
if(n==0) out=1;
else out=2*Big(n-1);
Does this function compute \( 2^n \)?
```
Proving correctness: let’s prove $\text{Big}(n) = 2^n$ for $n \geq 1$

Induction.
When $n = 0$, $\text{Big}(0) = 1 = 2^0$ ✓
Assume $\text{Big}(n) = 2^n$ for $n \geq 0$

$$\text{Big}(n + 1) = 2 \times \text{Big}(n) = 2 \times 2^n = 2^{n+1}.$$

What is the runtime?
Let $T_n =$ runtime of Big for input n.

$$T_0 = 2$$
$$T_n = T_{n-1} + (\text{check } n==0) + (\text{multiply by 2}) + (\text{assign to out})$$
$$= T_{n-1} + 3$$

out=$\text{Big}(n)$
if(n==0) out=1;
else out=2*$\text{Big}(n-1)$;

Does this function compute 2^n?
Proving correctness: let’s prove \(\text{Big}(n) = 2^n \) for \(n \geq 1 \)

Induction.

When \(n = 0 \), \(\text{Big}(0) = 1 = 2^0 \) ✓

Assume \(\text{Big}(n) = 2^n \) for \(n \geq 0 \)

\[
\text{Big}(n + 1) = 2 \times \text{Big}(n) = 2 \times 2^n = 2^{n+1}.
\]

What is the runtime?

Let \(T_n = \) runtime of \(\text{Big} \) for input \(n \).

\[
T_0 = 2 \\
T_n = T_{n-1} + \text{(check } n==0) + \text{(multiply by 2)} + \text{(assign to } \text{out}) \\
= T_{n-1} + 3
\]

Exercise. Prove by induction that \(T_n = 3n + 2 \).
Recursive definition of the natural numbers \mathbb{N}.

1. $1 \in \mathbb{N}$.
 [basis]

\[\mathbb{N} = \{ 1, \} \]
Recursive definition of the natural numbers \mathbb{N}.

1. $1 \in \mathbb{N}$. \[\text{[basis]}\]
2. $x \in \mathbb{N} \rightarrow x + 1 \in \mathbb{N}$. \[\text{[constructor]}\]

$\mathbb{N} = \{1, 2, \}$
Recursive definition of the natural numbers \mathbb{N}.

1. $1 \in \mathbb{N}$. [basis]
2. $x \in \mathbb{N} \rightarrow x + 1 \in \mathbb{N}$. [constructor]

$$\mathbb{N} = \{1, 2, 3, \ldots\}$$
Recursive definition of the natural numbers \mathbb{N}.

1. $1 \in \mathbb{N}$. [basis]
2. $x \in \mathbb{N} \rightarrow x + 1 \in \mathbb{N}$. [constructor]

$\mathbb{N} = \{1, 2, 3, 4, \ldots\}$
Recursive definition of the natural numbers \mathbb{N}.

1. $1 \in \mathbb{N}$. \hspace{1cm} [basis]
2. $x \in \mathbb{N} \rightarrow x + 1 \in \mathbb{N}$. \hspace{1cm} [constructor]
3. Nothing else is in \mathbb{N}. \hspace{1cm} [minimality]

$\mathbb{N} = \{1, 2, 3, 4, \ldots\}$

Technically, by bullet 3, we mean that \mathbb{N} is the *smallest* set satisfying bullets 1 and 2.
Recursive Sets: \(\mathbb{N} \)

Recursive definition of the natural numbers \(\mathbb{N} \).

1. \(1 \in \mathbb{N} \). \hspace{1cm} \textbf{[basis]}
2. \(x \in \mathbb{N} \rightarrow x + 1 \in \mathbb{N} \). \hspace{1cm} \textbf{[constructor]}
3. Nothing else is in \(\mathbb{N} \). \hspace{1cm} \textbf{[minimality]}

\[\mathbb{N} = \{1, 2, 3, 4, \ldots \} \]

Technically, by bullet 3, we mean that \(\mathbb{N} \) is the \textit{smallest} set satisfying bullets 1 and 2.

Pop Quiz. Is \(\mathbb{R} \) a set that satisfies bullets 1 and 2 alone? Is it the smallest?
Let ε be the \textit{empty string} (similar to the empty set).
Let ε be the *empty string* (similar to the empty set).

Recursive definition of Σ^* (finite binary strings).

1. $\varepsilon \in \Sigma^*$.

 [basis]
Let ε be the *empty string* (similar to the empty set).

Recursive definition of Σ^* (finite binary strings).

1. $\varepsilon \in \Sigma^*$.
2. $x \in \Sigma^* \rightarrow x \cdot 0 \in \Sigma^*$ AND $x \cdot 1 \in \Sigma^*$.

[basis] [constructor]
Recursive Sets: Finite Binary Strings, Σ^*

Let ε be the *empty string* (similar to the empty set).

Recursive definition of Σ^* (finite binary strings).

1. $\varepsilon \in \Sigma^*$.
2. $x \in \Sigma^* \rightarrow x \cdot 0 \in \Sigma^*$ AND $x \cdot 1 \in \Sigma^*$.

[basis] [constructor]

Minimality is there by default: nothing else is in Σ^*.
Let \(\varepsilon \) be the *empty string* (similar to the empty set).

Recursive definition of \(\Sigma^* \) (finite binary strings).

1. \(\varepsilon \in \Sigma^* \). [basis]
2. \(x \in \Sigma^* \rightarrow x \cdot 0 \in \Sigma^* \) AND \(x \cdot 1 \in \Sigma^* \). [constructor]

Minimality is there by default: nothing else is in \(\Sigma^* \).
Let ε be the *empty string* (similar to the empty set).

Recursive definition of Σ^* (finite binary strings).

1. $\varepsilon \in \Sigma^*$. [basis]
2. $x \in \Sigma^* \rightarrow x \cdot 0 \in \Sigma^*$ AND $x \cdot 1 \in \Sigma^*$. [constructor]

Minimality is there by default: nothing else is in Σ^*.

$$\varepsilon \rightarrow 0, 1$$
Let \(\varepsilon \) be the \emph{empty string} (similar to the empty set).

Recursive definition of \(\Sigma^* \) (finite binary strings).

1. \(\varepsilon \in \Sigma^* \).
 [basis]

2. \(x \in \Sigma^* \rightarrow x \cdot 0 \in \Sigma^* \) AND \(x \cdot 1 \in \Sigma^* \).
 [constructor]

Minimality is there by default: nothing else is in \(\Sigma^* \).

\[
\varepsilon \rightarrow 0, 1 \rightarrow 00, 01, 10, 11
\]
Let ε be the *empty string* (similar to the empty set).

Recursive definition of Σ^* (finite binary strings).

1. $\varepsilon \in \Sigma^*$.
2. $x \in \Sigma^* \rightarrow x \cdot 0 \in \Sigma^*$ AND $x \cdot 1 \in \Sigma^*$.

Minimality is there by default: nothing else is in Σ^*.

\[\varepsilon \rightarrow 0, 1 \rightarrow 00, 01, 10, 11 \rightarrow 000, 001, 010, 011, 100, 101, 110, 111 \rightarrow \cdots.\]
Recursive Sets: Finite Binary Strings, Σ^*

Let ε be the *empty string* (similar to the empty set).

Recursive definition of Σ^* (finite binary strings).

1. $\varepsilon \in \Sigma^*$. [basis]
2. $x \in \Sigma^* \rightarrow x \cdot 0 \in \Sigma^*$ AND $x \cdot 1 \in \Sigma^*$. [constructor]

Minimality is there by default: nothing else is in Σ^*.

\[
\varepsilon \rightarrow 0, 1 \rightarrow 00, 01, 10, 11 \rightarrow 000, 001, 010, 011, 100, 101, 110, 111 \rightarrow \cdots.
\]

\[
\Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, \ldots \}
\]

Practice. Exercise 7.12
Sir Arthur Cayley discovered trees when modeling chemical hydrocarbons,

\[
\text{methane, } CH_4
\]

\[
\begin{array}{c}
\text{H} \\
\text{H} \cdot \text{C} \cdot \text{H} \\
\text{H} \\
\end{array}
\]
Sir Aurthur Cayley discovered trees when modeling chemical hydrocarbons,

\[
\begin{align*}
\text{methane, } CH_4 & & \text{ethane, } C_2H_6 \\
\text{H} & & \text{H} \\
\text{H-CH} & & \text{H-H} \\
\text{H} & & \text{H} \\
\text{H} & & \text{H} \\
\end{align*}
\]
Sir Arthur Cayley discovered trees when modeling chemical hydrocarbons,
Sir Aurthur Cayley discovered trees when modeling chemical hydrocarbons,

<table>
<thead>
<tr>
<th>Methane, CH_4</th>
<th>Ethane, C_2H_6</th>
<th>Propane, C_3H_8</th>
<th>Butane, C_4H_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>H [beam] C [beam] H</td>
<td>H [beam] H [beam] C [beam] H</td>
<td>H [beam] H [beam] H [beam] C [beam] H</td>
<td>H [beam] H [beam] H [beam] C [beam] C [beam] C [beam] C [beam] H</td>
</tr>
<tr>
<td>H [beam] H [beam]</td>
<td>H [beam] H [beam] C [beam] C [beam] H</td>
<td>H [beam] H [beam] H [beam] C [beam] C [beam] C [beam] C [beam] H</td>
<td>H [beam] H [beam] H [beam] H [beam] H [beam] C [beam] C [beam] C [beam] C [beam] C [beam] H</td>
</tr>
</tbody>
</table>
Sir Arthur Cayley discovered trees when modeling chemical hydrocarbons,

- methane, CH_4
- ethane, C_2H_6
- propane, C_3H_8
- butane, C_4H_{10}
- iso-butane, C_4H_{10}
Recursive Structures: Trees

Sir Aurthur Cayley discovered trees when modeling chemical hydrocarbons,

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Formula</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>CH_4</td>
<td></td>
</tr>
<tr>
<td>Ethane</td>
<td>C_2H_6</td>
<td></td>
</tr>
<tr>
<td>Propane</td>
<td>C_3H_8</td>
<td></td>
</tr>
<tr>
<td>Butane</td>
<td>C_4H_{10}</td>
<td></td>
</tr>
<tr>
<td>Iso-butane</td>
<td>C_4H_{10}</td>
<td></td>
</tr>
</tbody>
</table>

Trees have many uses in computer science

- Search trees.
- Game trees.
- Decision trees.
- Compression trees.
- Multi-processor trees.
- Parse trees.
- Expression trees.
- Ancestry trees.
- Organizational trees.
- ...
Sir Arthur Cayley discovered trees when modeling chemical hydrocarbons,

- **methane,** CH_4
- **ethane,** C_2H_6
- **propane,** C_3H_8
- **butane,** C_4H_{10}
- **iso-butane,** C_4H_{10}

Trees have many uses in computer science:

- Search trees.
- Game trees.
- Decision trees.
- Compression trees.
- Multi-processor trees.
- Parse trees.
- Expression trees.
- Ancestry trees.
- Organizational trees.
- ...
Recursive Structures: Trees

Sir Aurthur Cayley discovered trees when modeling chemical hydrocarbons,

- Methane, CH_4
 - $\text{H} \cdot \text{C} \cdot \text{H}$
 - $\text{H} \cdot \text{H}$
 - H

- Ethane, C_2H_6
 - $\text{H} \cdot \text{C} \cdot \text{H}$
 - $\text{H} \cdot \text{H}$
 - H

- Propane, C_3H_8
 - $\text{H} \cdot \text{C} \cdot \text{C} \cdot \text{H}$
 - $\text{H} \cdot \text{H}$
 - H

- Butane, C_4H_{10}
 - $\text{H} \cdot \text{C} \cdot \text{C} \cdot \text{C} \cdot \text{H}$
 - $\text{H} \cdot \text{H}$
 - H

- Iso-butane, C_4H_{10}
 - $\text{H} \cdot \text{C} \cdot \text{C} \cdot \text{C} \cdot \text{H}$
 - $\text{H} \cdot \text{H}$
 - H

Trees have many uses in computer science

- Search trees.
- Game trees.
- Decision trees.
- Compression trees.
- Multi-processor trees.
- Parse trees.
- Expression trees.
- Ancestry trees.
- Organizational trees.
- ...

Tree.

Not a tree.
Recursive definition of Rooted Binary Trees (RBT).

- The empty tree ε is an RBT.
Recursive definition of Rooted Binary Trees (RBT).

1. The empty tree ε is an RBT.
2. If T_1, T_2 are disjoint RBTs with roots r_1 and r_2, then linking r_1 and r_2 to a new root r gives a new RBT with root r.

\[T_1 \quad T_2 \]
Recursive definition of Rooted Binary Trees (RBT).

1. The empty tree ε is an RBT.
2. If T_1, T_2 are disjoint RBTs with roots r_1 and r_2, then linking r_1 and r_2 to a new root r gives a new RBT with root r.

![Diagram of recursive definition of RBTs]

- T_1 and T_2 are disjoint RBTs with roots r_1 and r_2.
- Linking r_1 and r_2 to a new root r forms a new RBT.
The empty tree ε is an RBT.

If T_1, T_2 are disjoint RBTs with roots r_1 and r_2, then linking r_1 and r_2 to a new root r gives a new RBT with root r.

ε
Recursive definition of Rooted Binary Trees (RBT).
1. The empty tree \(\varepsilon \) is an RBT.
2. If \(T_1, T_2 \) are disjoint RBTs with roots \(r_1 \) and \(r_2 \), then linking \(r_1 \) and \(r_2 \) to a \textit{new} root \(r \) gives a new RBT with root \(r \).

\[
\begin{align*}
\varepsilon & \quad T_1 = \varepsilon \\
T_2 & = \varepsilon
\end{align*}
\]
Recursive definition of Rooted Binary Trees (RBT).

1. The empty tree ε is an RBT.
2. If T_1, T_2 are disjoint RBTs with roots r_1 and r_2, then linking r_1 and r_2 to a new root r gives a new RBT with root r.

\[
\begin{align*}
\varepsilon & \rightarrow T_1 = \varepsilon \\
T_2 & = \varepsilon \\
\end{align*}
\]
Recursive definition of Rooted Binary Trees (RBT).

1. The empty tree ε is an RBT.
2. If T_1, T_2 are disjoint RBTs with roots r_1 and r_2, then linking r_1 and r_2 to a new root r gives a new RBT with root r.

\[
\begin{align*}
\varepsilon & \quad T_1 = \varepsilon \\
T_2 & \quad T_2 = \varepsilon
\end{align*}
\]
Recursive definition of Rooted Binary Trees (RBT).

1. The empty tree ε is an RBT.
2. If T_1, T_2 are disjoint RBTs with roots r_1 and r_2, then linking r_1 and r_2 to a new root r gives a new RBT with root r.

$\begin{align*}
\varepsilon & \quad T_1 = \varepsilon \\
T_2 = \varepsilon \\
\end{align*}$

$\begin{align*}
T_1 = & \quad T_2 = \varepsilon \\
T_1 = & \quad T_2 = \\
\end{align*}$
Recursive definition of Rooted Binary Trees (RBT).

1. The empty tree ε is an RBT.
2. If T_1, T_2 are disjoint RBTs with roots r_1 and r_2, then linking r_1 and r_2 to a new root r gives a new RBT with root r.

\[
\begin{align*}
\varepsilon \quad T_1 & = \varepsilon \\
T_2 & = \varepsilon
\end{align*}
\]
Recursive definition of Rooted Binary Trees (RBT).

- The empty tree \(\varepsilon \) is an RBT.
- If \(T_1, T_2 \) are disjoint RBTs with roots \(r_1 \) and \(r_2 \), then linking \(r_1 \) and \(r_2 \) to a new root \(r \) gives a new RBT with root \(r \).
Recursive definition of Rooted Binary Trees (RBT).

- The empty tree ε is an RBT.
- If T_1, T_2 are disjoint RBTs with roots r_1 and r_2, then linking r_1 and r_2 to a new root r gives a new RBT with root r.

\[
\begin{align*}
\varepsilon &= T_1 = \varepsilon \\
T_2 &= T_2 = \varepsilon \\
T_1 &= T_1 = . \\
T_2 &= T_2 = . \\
T_1 &= T_1 = . \\
T_2 &= T_2 = . \\
\end{align*}
\]
Trees Are Important: Food for Thought

- Tree.
- Not a tree.
- Do we *know* the right structure is not a tree?
Trees Are Important: Food for Thought

- Tree.
- Not a tree.

Do we *know* the right structure is not a tree?

Are we *sure* it can’t be derived?
Trees Are Important: Food for Thought

- Tree.
- Not a tree.

Do we know the right structure is not a tree?

Are we sure it can’t be derived?

Is there only one way to derive a tree?
Trees Are Important: Food for Thought

- Tree.
- Not a tree.
- Do we *know* the right structure is not a tree?
- Are we *sure* it can’t be derived?

Is there only one way to derive a tree?

- Trees are more general than just RBT and have many interesting properties.
 - A tree is a connected graph with n nodes and $n - 1$ edges.
 - A tree is a connected graph with no cycles.
 - A tree is a graph in which any two nodes are connected by exactly one path.
Trees Are Important: Food for Thought

- Tree. Not a tree.

Do we know the right structure is not a tree?
Are we sure it can’t be derived?

- Is there only one way to derive a tree?

- Trees are more general than just RBT and have many interesting properties.
 - A tree is a connected graph with \(n \) nodes and \(n - 1 \) edges.
 - A tree is a connected graph with no cycles.
 - A tree is a graph in which any two nodes are connected by exactly one path.

Can we be sure every RBT has these properties?