Foundations of Computer Science
Lecture 8
Proofs with Recursive Objects

Structural Induction: Induction on Recursively Defined Objects
Proving an object is *not* in a recursive set
Examples: sets, sequences, trees

Two Types of Questions About a Recursive Set

\[\mathcal{A} = \{0, 4, 8, 12, 16, \ldots\} \]

Recursive definition of \(\mathcal{A} \).
1. \(0 \in \mathcal{A} \).
2. \(x \in \mathcal{A} \rightarrow x + 4 \in \mathcal{A} \).

(i) What is in \(\mathcal{A} \)? Is some feature common to every element of \(\mathcal{A} \)? Is everything in \(\mathcal{A} \) even?

\[x \in \mathcal{A} \rightarrow x \text{ is even} \quad (T) \]

(ii) Is everything with some property in \(\mathcal{A} \)? Is every even number in \(\mathcal{A} \)?

\[x \text{ is even} \rightarrow x \in \mathcal{A} \quad (F) \]

Very very different statements!

Every leopard has 4 legs.
Everything with 4 legs is a leopard?

Structural induction shows every member of a recursive set has a property, question (i).

Last Time

- Recursion.
- Recurrences are recursive functions on \(\mathbb{N} \).
- Recursive programs.
- Recursive sets.
- Rooted binary trees (RBT).
Orks and blue Eyes

- The first two Orks had blue eyes.
- When two Orks mate, if they both have blue eyes, then the child has blue eyes.

Do all Orks have blue eyes?

When could a green-eyed ork have arisen?

Structural Induction
1. The ancestors have a trait.
2. The trait is passed on from parents to children.

Conclusion: Everyone today has that trait.

Strings in \mathcal{M} are Balanced

Balanced means the number of opening and closing parentheses are equal.

The constructor, $x, y \in \mathcal{M} \rightarrow [x] \cdot y \in \mathcal{M}$, adds one opening and closing parenthesis.

If the “parent” strings x and y are balanced, then the child $[x] \cdot y$ is balanced.

(Orks inherit blue eyes. Here, parents pass along balance to the children.)

Just as all Orks will have blue eyes, all strings in \mathcal{M} will be balanced.

Proof: Strings in \mathcal{M} are Balanced

$\mathcal{M} = \{s_1, s_2, s_3, s_4, s_5, \ldots, s_n, \ldots\}$

$P(n)$: string s_n is balanced, i.e., the number of ‘[’ equals the number of ‘]’.

Proof. Strong induction on n.
1. **[Base case]** The base case is $s_1 = \varepsilon$ which is clearly balanced, so $P(1)$ is T.
2. **[Induction step]** Show $P(1) \land \cdots \land P(n) \rightarrow P(n+1)$ (direct proof).

 Assume $P(1) \land P(2) \land \cdots \land P(n)$: s_1, s_2, \ldots, s_n are all balanced.

 Show $P(n+1)$: s_{n+1} is balanced.

 s_{n+1} is the child of two earlier strings: $s_{n+1} = [s_i] \cdot s_i$ (constructor rule):

 s_i, s_i appeared earlier than s_{n+1}, so s_i and s_i are balanced (induction hypothesis).

 Therefore s_{n+1} is balanced (because you add one opening and closing parenthesis).

3. By induction, $P(n)$ is T for $n \geq 1$.

Question. Is every balanced string in \mathcal{M}?

Exercise. Prove that $[[]] \notin \mathcal{M}$.
Structural Induction

Strong induction with recursively defined sets is called **structural induction**.

Let \(S \) be a recursive set. This means you have:
- **Bases cases** \(s_1, \ldots, s_k \) that are in \(S \).
- **Constructor rules** that use elements in \(S \) to create a new element of \(S \).

Let \(P(s) \) be a property defined for any element \(s \in S \). To show \(P(s) \) for every element in \(S \), you must show:
1. **[Base cases]** \(P(s_1), P(s_2), \ldots, P(s_k) \) are true.
2. **[Induction step]** For every constructor rule, show:
 - If \(P \) is true for the parents, then \(P \) is true for children.
3. By structural induction, conclude that \(P(s) \) is true for all \(s \in S \). ■

- **MUST** show for every base case.
- **MUST** show for every constructor rule.
- Structural induction can be used with any recursive set.

Structural Induction on \(\mathbb{N} \)

\(\mathbb{N} = \{1, 2, 3, \ldots\} \) is a recursively defined set,
- \(1 \in \mathbb{N} \).
- \(x \in \mathbb{N} \rightarrow x + 1 \in \mathbb{N} \).

Consider any property of the natural numbers, for example
\[P(n) : 5^n - 1 \text{ is divisible by 4}. \]

Structural induction to prove \(P(n) \) holds for every \(n \in \mathbb{N} \):
1. **[Prove for all base cases]** Only one base case \(P(1) \).
2. **[Prove every constructor rule preserves \(P(n) \)]** Only one constructor:
 - If \(P \) is true for \(x \) (the parent), then \(P \) is true for \(x + 1 \) (the child).
3. By structural induction, \(P(n) \) is true for all \(n \in \mathbb{N} \). ■

That’s just ordinary induction! ☺

Every String in \(\mathcal{M} \) is Matched

Going from left to right:
\[[[]] [] \]
- Opening: 3
- Closing: 3

Opening is always at least closing: parentheses are arithmetically matched. **Important Exercise.** Prove this by structural induction.

Key step is to show that constructor preserves “matchedness”.

Hard Exercise. Prove this (see Exercise 8.3).

Palindromes \(\mathcal{P} \)

“Was it a rat I saw”

\[(0110)^n = 00110 \quad \text{not a palindrome} \]
\[(0110)^n = 0110 \quad \text{palindrome} \]

Recursive definition of palindromes \(\mathcal{P} \):
- There are three base cases: \(\epsilon \in \mathcal{P} \), \(0 \in \mathcal{P} \), \(1 \in \mathcal{P} \).
- There are two constructor rules:
 1. \(x \in \mathcal{P} \rightarrow 0 \bullet x \bullet 0 \in \mathcal{P} \);
 2. \(x \in \mathcal{P} \rightarrow 1 \bullet x \bullet 1 \in \mathcal{P} \).

Constructor rules preserves palindromicity:
- \((0 \bullet 0110 \bullet 0)^n = 001100 \)
- \((1 \bullet 0110 \bullet 1)^n = 101101 \)

Therefore, we can prove by structural induction that all strings in \(\mathcal{P} \) are palindromes.

Hard Exercise. Prove that all palindromes are in \(\mathcal{P} \) (Exercise 8.7).

Creator: Malik Magdon-Ismail
Proofs with Recursive Objects: 12/15
Structural Induction on \(\mathbb{N} \)
Fact known to all kindergartners: $((1 + 1 + 1) \times (1 + 1 + 1 + 1 + 1)) = 15,$ value $^2((1 + 1 + 1) \times (1 + 1 + 1 + 1 + 1)) = 15.$

A recursive set of well formed arithmetic expression strings A_{eco}:

- One base case: $1 \in A_{\text{eco}}$.
- There are two constructor rules: (i) $x \in A_{\text{eco}} \rightarrow (x + 1 + 1) \in A_{\text{eco}}$; (ii) $x, y \in A_{\text{eco}} \rightarrow (x \times y) \in A_{\text{eco}}$.

$$1 \rightarrow (1 + 1 + 1) \rightarrow ((1 + 1 + 1) + 1 + 1)$$
$$((1 \times 1) + (1 + 1 + 1))$$

The constructors add 2 to the parent or multiply the parents. If the parents have odd value, then so does the child. Constructors preserve “oddness” → all strings in A_{eco} have odd value.

Rooted Binary Tree with $n \geq 1$ Vertices Have $n - 1$ Edges

- The empty tree ε is an RBT.
- Disjoint RBTs T_1, T_2 give a new RBT by linking their roots to a new root.

$P(T)$: if T is a rooted binary tree with $n \geq 1$ vertices, then T has $n - 1$ links.

1. **[Base case]** $P(\varepsilon)$ is vacuously \top because ε is not a tree with $n \geq 1$ vertices.
2. **[Induction step]** Consider the constructors with parent RBTs T_1 and T_2.
 - Parents: T_1 with n_1 vertices and ℓ_1 edges and T_2 with n_2 vertices and ℓ_2 edges.
 - Child: T with n vertices and ℓ edges.

 Case 1: $T_1 = T_2 = \varepsilon$. Child is a single node with $n = 1$, $\ell = 0$, and $\ell = n - 1. \checkmark$

 Case 2: $T_1 = \varepsilon$, $T_2 \neq \varepsilon$. The child one more node and one more link, $n = n_2 + 1$ and $\ell = \ell_2 + 1 \implies n_2 - 1 + 1 = n_2 = n - 1. \checkmark$

 Case 3: $T_1 \neq \varepsilon$, $T_2 = \varepsilon$. (Similar to case 2) $n = n_1 + 1$ and $\ell = \ell_1 + 1 \implies n_1 - 1 + 1 = n_1 = n - 1. \checkmark$

 Case 4: $T_1 \neq \varepsilon$, $T_2 \neq \varepsilon$. Now, $n = n_1 + n_2 + 1$ and there are two new links, so $\ell = \ell_1 + \ell_2 + 2 \implies n_1 - 1 + n_2 - 1 + 2 = n_1 + n_2 = n - 1. \checkmark$

 Constructor always preserves property P.

3. By structural induction, $P(T)$ is true $\forall T \in \text{RBT}$.

Checklist for Structural Induction

- **Analogy:** if the first ancestors had blue eyes, and blue eyes are inherited from one generation to the next, then all of society will have blue eyes.
- You have a recursively defined set S.
- You want to prove a property P for all members of S.
- Does the property P hold for the base cases?
- Is the property P preserved by all the constructor rules?
- Structural induction is not how to prove all objects with property P are in S.

Rooted Binary Tree with

$$\varepsilon \Rightarrow$$

$1 \Rightarrow$