
Foundations of Computer Science
Lecture 26

Turing Machines
The Turing Machine: DFA with Random Access Memory (RAM)
Transducer Turing Machines
In�nite Loops
Encodings of Turing Machines

Last Time: CFGs and Pushdown Automata

L = f w#wr j w 2 f 0; 1g� g

S ! # j 0S0 j 1S1

q0
q7

q6

q5
q4

q3

q2

q1 yes
or
no

0 1 1 0 0 # 0 0 1 1 0

0

DFA with stack memory (push, pop, read).

Push the �rst half of the string.

For each bit in the second half, pop the stack and compare.

DFAs with stack memory closely related to CFGs.

Creator: Malik Magdon-Ismail Turing Machines: 2 / 13 Non Context Free !

Non Context Free

f w#wg repetition
f 0� n1� n0� ng multiple-equality

f 0� n2

g; f 0� n1� n2

g squaring
f 0� 2n

g; f 0� n1� 2n

g exponentiation

w#wr w#w 0� n1� n0� n

0
0
1
1

0 0 1 10 0 1 1#1 1 0 0

match
; pop

0
0
1
1

0 0 1 10 0 1 1#0 0 1 1

m
at

ch
; p

op

0
0
0
1
1
1

0 0 0 1 1 10 0 0 1 1 10 0 0

match
; pop

0011is pushed.
DFA matches1100by popping.

0011is pushed.
DFA needs bottom-access to match.

000111is pushed onto the stack.
DFA needs random access to match.

The �le clerk who only has access to the top of hisstack of papers has fundamentally less
power than the �le clerk who has a�ling cabinet with access to all his papers.

We need a new model, one with Random Access Memory (RAM).

Creator: Malik Magdon-Ismail Turing Machines: 3 / 13 Today !

Today: Turing Machines

1 Solving a non context free language:w# wr .

2 Transducer Turing Machines.

3 In�nite Loops

4 Encodings of Turing Machines

Creator: Malik Magdon-Ismail Turing Machines: 4 / 13 Turing's 1936 Miracle !

Turing's 1936 Miracle

�On Computable Numbers with an Application to the Entscheidungsproblem�

A classic which epitomizes the beauty of pure thought, whereAlan Turing

Invented a notion of what it means for a number to be computable.

Invented the computer.

Invented and used subroutines.

Invented theprogrammablecomputer.

Gave a negative answer to Hilbert's Entscheidungsproblem.

All this before the world even saw its �rst computer. Wow!

(Oh, and by the way, he helped Britain win WWII against Hitlerby decrypting the Enigma machine.)

. . . and for all this, society drove him to suicide. Go �gure!

Creator: Malik Magdon-Ismail Turing Machines: 5 / 13 Turing's Machine !

Turing's Machine

* 0 0 1 # 0 0 1

q0
q5

q4
q3

q2

q1

L R

States.
Can move L/R (or stay put) giving random access to an in�nite read-write tape.
Input written on the tape to start.
Instructions specify what to do based on state and what is on the tape.
Beacon symbol� (start of the tape).

Let's see the capabilities of this machine on the non contextfree problem

L = f w#wg:

Creator: Malik Magdon-Ismail Turing Machines: 6 / 13 Solving w#w !

Solvingw#w

001#001

1: Check for one �#�, otherwisereject (a DFA can do this).

2: Return to �� �.
3: Move right to �rst non-marked bitbefore� #�.

Mark the location andrememberthe bit.
(If you reach �#� before any non-marked bit,goto step 5.)

4: Move right to �rst non-marked bitafter � #�.
If you reach � � before any non-marked bit,reject .
If the bit does not match the bit from step 3,reject .
Otherwise (bit matches), mark the location.goto step 2.

5: Move right to �rst non-marked bitafter � #�.
If you reach � � before any non-marked bit,accept .
If you �nd a bit (string on the right is too long),reject .

* 0 0 1 # 0 0 1

* 0 0 1 # 0 0 1 3

* 0 0 1 # 0 0 1 3 3

2: * 0 0 1 # 0 0 1 3 3

3: * 0 0 1 # 0 0 1 3 3 3

4: * 0 0 1 # 0 0 1 3 3 3 3

2: * 0 0 1 # 0 0 1 3 3 3 3

3: * 0 0 1 # 0 0 1 3 3 3 3 3

4: * 0 0 1 # 0 0 1 3 3 3 3 3 3

2: * 0 0 1 # 0 0 1 3 3 3 3 3 3

3,5: * 0 0 1 # 0 0 1 3 3 3 3 3 3

yes

Creator: Malik Magdon-Ismail Turing Machines: 7 / 13 Turing Machine Instructions !

Turing Machine Instructions

DFA instruction:q10q3 if in q1 and read 0, transition toq3

f q1g f 0g ! f q3g f 1g { R}

current state read next state write move
q1 q3

{0}{1}{ R}

* 0 0 1 # 0 0 1

q0q3

q2 q1

* 1 0 1 # 0 0 1

q0q3

q2 q1

Creator: Malik Magdon-Ismail Turing Machines: 8 / 13 Building the Turing Machine !

Building the Turing Machine that Solvesw#w

1 Check for one �#�, otherwise reject (a DFA can do this).
2 Return to � � �.
3 Move right to �rst non-marked bit before� #�.

Mark and rememberthe bit. If you reached �#� before any non-marked bit,goto step 5.
4 Move right to �rst non-marked bit after � #�.

If you reach � � or bit does not match, reject . If bit matches, mark the location. goto step 2.
5 Move right to �rst non-marked bit after � #�.

If you reach � �, accept . If you come to a non-marked bit,reject .

step 1 q1

E step 2

{ � ,0,1}{}{ R}

{ #}{}{ R}

{ }{}{}

{0,1}{}{ R}

{ }{}{}

{ #
}{}

{}

step 2 step 3

{ ,0,1,#}{}{ L}

{ � }{}{}
step 3

st
ep

4

z4

o4
step 5

{ � ,3 }{}{ R}

{0}{
3 }{

R}

{1}{ 3 }{ R}{ #}{}{ R}

z4

o4

z5

o5

E step 2

{0,1}{}{ R}

{0,1}{}{ R}

{ #}{}{ R}

{ #}{}{ R}

{ 3 }{}{ R}

{ 3 }{}{ R}

{0, }{}{}

{1, }{}{}

{1}{
3 }{}

{0}{ 3 }{}

step 5

A
{ 3 }{}{ R}

{0,1}{}{}

{ }{}{}
A halt and accept

E halt and reject

Creator: Malik Magdon-Ismail Turing Machines: 9 / 13 Turing Machine for Multiplication !

Turing Machine for Multiplication

L mult = f 0� i#1� j #0� k j i; j > 0 andk = i � j g * 0 0 # 1 1 1 # 0 0 0 0 0 0

Multiplication is repeated addition.
Pair each left-0 with a block of right-0s equal to the number of 1s

1: Verify the input format is 0� i#1� j #0� k (A DFA can solve this).
2: Return to � .
3: Move right to mark �rst unmarked left-0, then right to � #�.

If no unmarked left-0's (you reach �#�), goto step 6.
4: Move right and mark �rst unmarked 1.

If all 1's marked (reach �#�) move left, unmarking 1's. goto step 2.
5: Move right to �nd an unmarked right-0.

If no unmarked right-0's (come to � �), reject
Otherwise, mark the 0, move left to �rst marked 1.goto step 4.

6: Move right to verify there are no unmarked right-zeros.
If come to unmarked right-zero,reject ; if come to � � accept .

* 0 0 # 1 1 1 # 0 0 0 0 0 0
33 33 3 3

* 0 0 # 1 1 1 # 0 0 0 0 0 0
3 3 3 3 3

* 0 0 # 1 1 1 # 0 0 0 0 0 0
3 3 3 3 3

* 0 0 # 1 1 1 # 0 0 0 0 0 0
3 3 3 3 3 3 3

* 0 0 # 1 1 1 # 0 0 0 0 0 0
3 3 3 3 3 3 3

* 0 0 # 1 1 1 # 0 0 0 0 0 0
3 3 3 3 3 3 3

* 0 0 # 1 1 1 # 0 0 0 0 0 0
3 3 3 3

Creator: Malik Magdon-Ismail Turing Machines: 10 / 13 Transducer Turing Machine !

Transducer Turing Machine That Multiplies

* 0 0 # 1 1 1 ! * 0 0 # 1 1 1 # 0 0 0 0 0 0

Algorithm is basically the same.

Instead of marking right-0s, write.

* 0 0 # 1 1 1 #0 0 # 1 1 1 # 0
33 3

* 0 0 # 1 1 1 # 0 0
3 3 3

* 0 0 # 1 1 1 # 0 0
3 3 3

* 0 0 # 1 1 1 # 0 0 0
3 3 3 3

* 0 0 # 1 1 1 # 0 0 0
3 3 3 3

* 0 0 # 1 1 1 # 0 0 0
3 3 3 3

* 0 0 # 1 1 1 # 0 0 0
3

Creator: Malik Magdon-Ismail Turing Machines: 11 / 13 In�nite Loops !

In�nite Loops

q0 q1

AE

{0}{}{ R}

{ #, }{}{} {0,#, }{}{}

{ � ,1}{}{ R}

{1}{}{ L}

What happens if the input is 01?

M (w) =

8
>>>>>>><

>>>>>>>:

Halts in an accept state! accept

Halts in a reject state ! reject

Loops forever ! ?

Turing MachineM is arecognizerfor languageL (M):
w 2 L (M) $ M (w) = halt with a yes ;
w 62 L(M) $ M (w) = halt with a no or loop forever.

Turing MachineM is adeciderfor languageL (M):
w 2 L (M) $ M (w) = halt with a yes ;
w 62 L(M) $ M (w) = halt with a no .

Practicalalgorithmsmust halt! Practical algorithms correspond to deciders.

Creator: Malik Magdon-Ismail Turing Machines: 12 / 13 Encoding a Turing Machine !

Encoding a Turing Machine as A Bit-String

Mathematical Description of a Turing Machine
1. States Q. The �rst state is the start state, the halting states area,r .
2. Symbols � . By default these are {� , 0, 1, , #}.
3. Machine-level transition instructions. Each instruction has the form

{state}{read-symbol}{next-state}{written-symbol}{move}

The instructions map each (state,symbol) pair to a (state,symbol,move) triple and thus
form atransition function � : Q � � 7! Q � � � {L,R,S} .

1 States. f q0; q1; a; eg
2 Symbols. { � , 0, 1, , #}
3 Machine-level transition instructions.

f q0gf � gf q0gf � gf Rg
f q0gf 1gf q0gf 1gf Rg
f q0gf 0gf q1gf 0gf Rg
f q0gf #gf eg f #gf Sg
f q0gf gf eg f gf Sg
f q1gf 1gf q0gf 1gf Lg
f q1gf 0gf ag f 0gf Sg
f q1gf #gf ag f #gf Sg
f q1gf gf ag f gf Sg

q0 q1

AE

{0}{}{ R}

{ #, }{}{} {0,#, }{}{}

{ � ,1}{}{ R}

{1}{}{ L}

The description of a Turing Machine is a�nite binary string.
Turing machines are countable and can be listed:f M1; M2; : : :g.
The problems solvable by an algorithm are countable:fL (M1); L (M2); : : :g.

Creator: Malik Magdon-Ismail Turing Machines: 13 / 13

	Solving a non context free language: w#wr.
	Transducer Turing Machines.
	Infinite Loops

