Foundations of Computer Science Last Time Lecture 4 Proofs Proving "IF ... THEN ... " (Implication): Direct proof; Contraposition Contradiction Proofs About Sets • How to make precise statements. Quantifiers which allow us to make staements about many things. YOU WANT PROOF? I'LL GIVE YOU PROOF! Proofs: 2/ Today: Proofs Implications: Reasoning in the Absence of Facts Reasoning: It rained last night (fact); the grass is wet ("deduced"). Proving "IF ..., THEN". Reasoning in the absense of facts: IF it rained last night, THEN the grass is wet. Proof Patterns • We like to prove such statements even though, at this moment, it is not much use. • Direct Proof • Later, you may learn that it rained last night and *infer* the grass is wet • Contraposition • Equivalence, ... IF AND ONLY IF ... More Relevant Example: Friendship cliques and radio frequencies. IF we can quickly find the largest friend-clique in a friendship network, Contradiction THEN we can quickly determine how to assign non-conflicting frequencies to radio stations using a minimum number of frequencies. Proofs about sets. More Mathematical Example: Quadratic formula. IF $ax^2 + bx + c = 0$ and $a \neq 0$, THEN $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ or $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$. Proofs: 4/1

Proving an Implication

obvious that ... " If it is so obvious, give a short explanation. **End your proof.** Explain why what you set out to show is true.

Read your proof. Finally, check correctness; edit; simplify.

5: Therefore, the statement claimed in q is T.

Proofs: 8 / 18

Question. Is $4^x - 1$ divisible by 3?

We Made No Assumptions About x

P(x): "IF $4^x - 1$ is divisible by 3, THEN $4^{x+1} - 1$ is divisible by 3"

Since we made no assumptions about x, we proved:

 $\forall x \in \mathbb{R} : P(x)$

Exercise. Prove: For all pairs of odd integers m, n, the sum m + n is an even integer.

Practice. Exercise 4.2.

Contraposition

IF $\underbrace{x^2 \text{ is even}}_{p}$, THEN $\underbrace{x \text{ is even}}_{q}$.

 $\begin{array}{c|cc} p & q & p \rightarrow q \\ \hline F & F & T \end{array}$

Proofs: 9 / 18

Proof. We must show that the row p = T, q = F can't happen.

Let us see what happens if q = F.

 $x ext{ is odd}, x = 2k + 1.$

$$\begin{array}{rcl} x^2 &=& (2k+1)^2 \\ &=& 4k^2 + 4k + 1 \;=\; 2(2k^2 + 2k) + 1 & \leftarrow \; \mathrm{odd} \end{array}$$

That means p is F.

The row p = T, q = F cannot occur!

The implication is proved.

Disproving an Implication

IF
$$\underbrace{x^2 > y^2}_{p}$$
, THEN $\underbrace{x > y}_{q}$.

FALSE!

Counter-example: x = -8, y = -4.

 $x^2 > y^2$ so, p = T

 $\begin{array}{c|ccc} p & q & p \rightarrow q \\ \hline F & F & T \\ \hline F & T & T \\ \hline T & F & F \\ \hline T & T & T \end{array}$

x < y so, q = FThe row p = T, q = F has occurred!

A single **counter-example** suffices to disprove an implication.

Proofs: 10 / 18

Template: Contraposition Proof of an Implication $p \to q$

Proof. We prove the theorem using contraposition.
1: Start by assuming that the statement claimed in q is F.
2: Restate your assumption in mathematical terms.
3: Use mathematical and logical derivations to relate your assumption to p.
4: Argue that you have shown that p must be F.
5: End by concluding that p is F.

Theorem. If x² is even, then x is even. *Proof.* We prove the theorem by contraposition.

1: Assume that x is odd.

2: Then x = 2k + 1 for some $k \in \mathbb{Z}$ (that's what it means for x to be odd)

- 3: Then $x^2 = 2(2k^2 + 2k) + 1$ (high-school algebra).
- 4: Which means x^2 is 1 plus a multiple of 2, and hence is odd.
- 5: We have shown that x^2 is odd, concluding the proof.

Exercise. Prove: IF r is irrational, THEN \sqrt{r} is irrational.

Equivalence: ... IF AND ONLY IF...

p IF AND ONLY IF q or

p	q	$p \leftrightarrow q$
F	F	Т
\mathbf{F}	Т	F
Т	F	F
Т	Т	Т

[we proved this]

 $p \leftrightarrow q$

• You are a US citizen IF AND ONLY IF you were born on US soil.

• Sets A and B are equal IF AND ONLY IF $A \subseteq B$ and $B \subseteq A$.

• Integer x is divisible by 3 IF AND ONLY IF x^2 is divisible by 3.

To prove $p \leftrightarrow q$ is T, you must prove:

• Row p = T, q = F cannot occur: that is $p \to q$.

2 Row p = F, q = T cannot occur: that is $q \to p$.

Contradictions

 $1 = 2; \qquad n^2 < n \text{ (for integer } n); \qquad |x| < x; \qquad p \land \neg p.$ Contradictions are **FISHY**. In mathematics you cannot derive contradictions.

Principle of Contradiction. If you derive something **FISHY**, something's wrong with your derivation.

Proofs: 13/18

1: Assume $\sqrt{2}$ is rational.

- 2: This means $\sqrt{2} = a_*/b_*$; b_* is the smallest denominator (well ordering).
- 3: That is, a_* and b_* cannot have 2 as a common factor.
- 4: We have: $2 = a_*^2/b_*^2 \rightarrow a_*^2 = 2b_*^2$, or a_*^2 is even. Hence, a_* is even, $a_* = 2k$.
- 5: Therefore, $4k^2 = 2b_*^2$ and so $b_*^2 = 2k^2$, or b_*^2 is even. Hence, b_* is even, $b_* = 2\ell$.
- 6: Hence, a_* and b_* are both divisible by 2. (FISHY)

What could possibly be wrong with this derivation? It must be step 1.

Integer x is divisible by 3 IF AND ONLY IF x^2 is divisible by 3.

x is divisible by 3 IF AND ONLY IF x^2 is divisible by 3.

Proof. The proof has two main steps (one for each implication):

O Prove $p \rightarrow q$: if x is divisible by 3, then x^2 is divisible by 3. We use a direct proof. Assume x is divisible by 3, so x = 3k for some $k \in \mathbb{Z}$. Then, $x^2 = 9k^2 = 3 \cdot (3k^2)$ is a multiple of 3, and so x^2 is divisible by 3.

 Prove q → p: if x² is divisible by 3, then x is divisible by 3.
 We use contraposition. Assume x is <u>not</u> divisible by 3. There are two cases for x, Case 1: x = 3k + 1 → x² = 3k(3k + 2) + 1 (1 more than a multiple of 3).
 Case 2: x = 3k + 2 → x² = 3(3k² + 4k + 1) + 1 (1 more than a multiple of 3). In all cases, x² is <u>not</u> divisible by 3, as was to be shown.

IF AND ONLY IF proof contains the proofs of *two* implications. Each implication may be proved differently.

Template: Proof by Contradiction that p is T

- You can use contradiction to prove *anything*. Start by assuming it's false.
- Powerful because the starting assumption gives you something to work with.

Proof.

- 1: To derive a contradiction, assume that p is F.
- 2: Restate your assumption in mathematical terms.
- 3: Derive a **FISHY** statement a contradiction that must be false.
- 4: Therefore, the assumption in step 1 is false, and p is T.

DANGER! Be especially careful in contradiction proofs. Any small mistake can easily lead to a contradiction and a false sense that you proved your claim.

Exercise. Let a, b be integers. Prove that $a^2 - 4b \neq 2$.

Proofs about Sets

Situation you are faced with	Suggested proof method
1. Clear how result follows from assumption	Direct proof
2. Clear that if result is false, the assumption is false	Contraposition
3. Prove something exists	Show an example
4. Prove something does not exist	Contradiction
5. Prove something is unique	Contradiction
6. Prove something is <i>not true</i> for <i>all</i> objects	Show a counter-examp
7 Show something is <i>true</i> for <i>all</i> objects	Show for general object

Proofs: 18 / 18

Practice. Exercise 4.8.

Creator: Malik