1 Non-deterministic Turing Machine

A **nondeterministic Turing machine** is a generalization of the standard TM for which every configuration may yield none, or one or more than one next configurations.

In contrast to the deterministic Turing machines, for which a computation is a sequence of configurations, a computation of a nondeterministic TM is a tree of configurations that can be reached from the start configuration.

In this tree, the children-nodes of a node are its next configurations. Thus, the configuration, whose state is either q_a, or q_r has no children-nodes.
A **nondeterministic Turing machine**, written NTM, is a 7-tuple

$$M = (Q, \Sigma, \Gamma, \Delta, q_0, q_a, q_r),$$

where all ingredients except for Δ are defined as before for the deterministic TM.

$$\Delta : (Q \times \Gamma) \longrightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\}).$$

The transition function of an NTM may correspond, for a given pair (q, σ), a set of triples $\{(p, \sigma', D)\}$; this set can be empty.

The transition function is sometimes presented as a set Δ of pairs:

$$((q, \sigma)(p, \sigma', D)).$$

While for a deterministic TM, there can be just one pair with a given first term (q, σ), for a non-deterministic TM, Δ may have more than one, or none, pair with a given first term.

Thus, for each combination of a state and a tape-symbol, there can be more than one appropriate steps, or none at all. A configuration of an NTM may yield several, but a finite configurations in one step.
An input to an NTM is said to be **accepted** if there exists at least one node of the computation tree which is an accept-configuration.

The path from the root to the accept-configuration is said to be selected **non-deterministically**.

A non-deterministic Turing Machine is called a **decider** if all branches halt on all inputs.

If, for some input, all branches are rejected, then the input is rejected.

NDTM computation tree: schematic representation
Example. A high-level description of an NTM which accepts composite numbers L in the unary representation.

$$L = \{I I \cdots I : m \text{ is a composite integer.}\}.$$

Given an input $I I \cdots I \equiv I^m$, if m is not a prime, i.e.

$m = p \times q$ for some integers $p, q < m$, the machine performs the following instructions:

1. Non-deterministically choose two integers p and q ($p, q \neq m$);

2. transform the input configuration $(\epsilon \ q_{\text{start}} \ I^m)$ into

 $$(I^m \ # \ I^p \ # \ I^q \ # \ d \ \epsilon)$$

 /* here # serves as a separator; d is a state of the control; */

3. Multiply p and q, that is, transform $(I^m \ # \ I^p \ # \ I^q \ # \ d \ \epsilon)$

 into $(I^m \ # \ I^{pq} \ # \ f \ \epsilon)$;

4. Compare the length of m with $p \times q$: accept if they are the same, otherwise reject.
How to interpret the instruction “Non-deterministically choose two numbers p and q”?

To **non-deterministically** select p and q:

- starting from a given square, repeat p times: write I, move to the right.
- write #, move to the right.
- repeat q times: write I, move to the right.

```
I I ... I # I ... I # I ... I #
```

1. Non-deterministically write in $I^p I^q$ ($p > 1$, $q > 1$)
2. Deterministically generate in $I^{p \times q}$
3. Deterministically compare I^m with $I^{p \times q}$
Definition 1 Two TM’s M_1 and M_2 are said to be computationally equivalent, if $L(M_1) = L(M_2)$.

Theorem 1

Every non-deterministic Turing machine has an equivalent deterministic Turing machine. If L is decided by an NDTM N in time $f(n)$, then there is a deterministic TM which decides L in time $O(c^{f(n)})$, for some $c > 1$.

Proof. Let $N = (Q, \Sigma, \Gamma, \Delta, q_0, q_a, q_r)$ and let d be the smallest integer such that for each (q, σ) there is at most d choices for N.

A deterministic TM D traverses all nodes of the computational tree of N. Although the traversal can be exponentially longer than a path from the start configuration to the accepting configuration, it is finite, since every node of the tree has a finite and bounded number of children-nodes. The latter is determined by the cardinality of $|\delta(Q \times \Gamma)|$, which is a finite number since $\delta(Q \times \Gamma) \subseteq Q \times \Gamma \times \{L, R\}$.
\(D\) has three tapes (we already saw that such multi-tape TM is equivalent to a single tape TM):

input tape: contains the input \(w\) (never changes);

simulation tape: maintains a copy of \(N\)’s tape on a branch of its nondeterministic computation;

address tape: keeps track of the current location of \(D\) in the \(N\)’s computational tree; in particular, enumerates tree-paths in the lexicographical order.
D works as follows:

1. Insert the input w to tape 1; empty tapes 2 and 3.
2. Copy tape 1 to tape 2.
3. Simulate one branch of nondeterministic computation. Before each step of N, consult the next symbol on tape 3 to determine which choice to make among those allowed by N’s transition function.
 - if no more symbols remain on tape 3 or if this nondeterministic choice is invalid, abort this branch by going to stage 4.
 - if a rejection configuration is encountered, go to stage 4.
 - if an accepting configuration is encountered, accept the input.
4. Replace the string on tape 3 with the lexicographically next string. Simulate the next branch of N’s computation by going to stage 2.

Corollary. A language is Turing-recognizable (acceptable) iff some nondeterministic Turing machine recognizes (accepts) it.
2 Examples of non-deterministic Turing Machines

Example 1

Given a set $S = \{a_1, \ldots, a_n\}$ of integers, determine if there is a subset $T \subseteq S$ such that

$$\sum_{a_i \in T} a_i = \sum_{a_i \in S - T} a_i.$$

The task is to construct an NDTM which accepts a language L corresponding to the problem.

Language:

$L = \{a_1 \# a_2 \# \ldots a_m \#: \exists T \subseteq S, \text{ such that } \sum_{a_i \in T} a_i = \sum_{a_i \in S - T} a_i\}.$

Assume that there are two auxiliary TM (deterministic):

- C, a copy machine: copies a specified string on the tape to a specified location;
- Sum, a summation machine: sums up specified numbers.
NDTM which accepts L;

1. Place S onto the tape;
2. sum up the numbers in the input; let the result be A_1
3. append the string with $\$);
4. while moving from the left to $\$

 nondeterministically copy all $a_i \in T$
 to the right from the rightmost $\#$
 append with $\#$
5. sum up the numbers that were copied; let the result be A_2
6. accept if $A_1 = 2A_2$
Example 2
Given a graph $G = (V, E)$ and an integer $k > 0$, determine if there is a subset $C \subseteq V$ such that

- $|C| \geq k$;
- any two vertices in C are adjacent (C is a clique).

Present the problem as one of accepting a language L; describe an NDTM to accept L.

Solution. Define language L as follows:

$$ L = \{ \langle G, k \rangle : G \text{ has a clique of size } \geq k. \} $$

/* we assume that there is some standard way of presenting G as a string in a finite alphabet */

Assume there is a TM which, given two vertices of G, answers if these vertices are adjacent.
NDTM which accepts L;

1. Place $\langle G, k \rangle$ onto the tape;
2. append the string with $\$$;
3. while moving from the left to $\$$;
 - nondeterministically select some vertices $v_i \in V(G)$
 /*assumption: there is a “finite-choice” computational path which does the selection, e.g.
 it can be just having a vector of length n with components 0 or 1 that define the selection */
4. check if the number of selected vertices $\geq k$;
5. for every two selected vertices check if they are adjacent;
6. accept if all pairs are adjacent
Example 3

Given a graph $G = (V, E)$ and an integer $k > 0$, determine if there is a path P in G such that

- the length of $P \geq k$;
- no two vertices in G are traced twice by P.

Present the problem as one of accepting a language L; describe an NDTM to accept L.

Solution. Define language L as follows:

$$L = \{ \langle G, k \rangle : G \text{ there is a path of length } \geq k \}$$

Assume there is a TM which, given two vertices of G, answers if these vertices are adjacent.
NDTM which accepts L;

1. Place $\langle G, k \rangle$ onto the tape;
2. append the string with $\$$;
3. while moving from the left to $\$$;

 nondeterministically select some vertices $v_i \in V(G)$

 /* we assume here without going into details that there is a “finite-choice” computational path which does the selection; for example, it can be just having a vector of length n with components 0 or 1 that define the selection */

4. check if the number of selected vertices $\geq k$;
5. for every two consequently selected vertices check if they are adjacent;
6. accept if all checked pairs of vertices are adjacent.