1 Non-deterministic Turing Machine

A **nondeterministic Turing machine** is a generalization of the standard TM for which every configuration may yield none, or one or **more than one** next configurations.

In contrast to the deterministic Turing machines, for which a computation is a sequence of configurations, a computation of a nondeterministic TM is a tree of configurations that can be reached from the start configuration.

In this tree, the children-nodes of a node are its next configurations. Thus, the configuration, whose state is either q_a, or q_r has no children-nodes.
A nondeterministic Turing machine, written $NDTM$, is a 7-tuple $M = (Q, \Sigma, \Gamma, \Delta, q_0, q_a, q_r)$, where all ingredients except for Δ are defined as before for the deterministic TM.

The transition function Δ is defined by

$$\Delta : (Q \times \Gamma) \rightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\}).$$

Given a pair (q, σ), the transition function of an NDTM may yield a set of triples $\{(p, \sigma', D)\}$; this set can be empty.

The mapping Δ is convenient to present as a set of 5-tuples:

$$\{(q, \sigma, p, \sigma', D)\}$$

A configuration of an NDTM may yield several (or none) configurations in one step.
An input to an NDTM is said to be **accepted** if there exists at least one node of the computation tree which is an accept-configuration. The path from the root to the accept-configuration is said to be **non-deterministically selected**.

A non-deterministic Turing Machine is called **a decider** if all branches halt on all inputs.

If, for some input, all branches are rejected, then the input is rejected.

Proposition 1 A language is Turing-recognizable (acceptable) iff some nondeterministic Turing machine recognizes (accepts) it.
2 Examples of non-deterministic TMs

Example 1

Given a set \(S = \{a_1, \ldots, a_n\} \) of integers, determine if there is a subset \(T \subseteq S \) such that

\[
\sum_{a_i \in T} a_i = \sum_{a_i \in S - T} a_i.
\]

The language \(L \) corresponding to the problem.

Language:

\[
L = \{a_1a_2\ldots a_n : \exists T \subseteq S, \text{ s.t. } \sum_{a_i \in T} a_i = \sum_{a_i \in S - T} a_i.\}
\]

ND Turing Machine:

- Non-deterministically select \(T \subseteq S \);
- Compute \(P_1 = \sum_{a_i \in T} a_i \) and \(P_2 = \sum_{a_i \in S - T} a_i \)
- if \(P_1 = P_2 \), accept.
Example 2

Given a graph $G = (V, E)$ and an integer $k > 0$, determine if there is a subset $C \subseteq V$ such that

- $|C| \geq k$;
- every two vertices in C are adjacent (C is a clique).

Language L:

$$L = \{ \langle G, k \rangle : G \text{ has a clique of size } \geq k \}$$

ND Turing Machine:

- Non-deterministically select $C \subseteq V$;
- Check if $|C| \geq k$;
- Check if $\forall x, y \in C, xy \in E$;
- if all checks up, accept.
Example 3

Given a graph $G = (V, E)$ and an integer $k > 0$, determine if there is a path P in G such that

- the length of $P \geq k$;
- no two vertices in G are traced twice by P.

Language L

\[L = \{ \langle G, k \rangle : G \text{ there is a path of length } \geq k. \} \]

ND Turing Machine:

- non-deterministically select a path of length $\geq k$;
- accept.
3 Computational Classes

Definition 1 \mathcal{P} is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine:

$$\mathcal{P} = \bigcup_{k} TIME(n^k).$$
Examples of languages in \mathcal{P}

1. $PATH = \{ \langle G, s, t \rangle : G$ is a directed graph that has a path from s to $t \}$; Use Dijkstra’s algorithm. $PATH \in TIME(n^2)$

2. $GCD = \{ \langle a, b \rangle : a$ and b are relatively prime integers.$\}$

procedure Euclid $(a, b);$ /*recursive version */
 if $\ (b === 0)$
 return a;
 else
 return Euclid $(b, a \mod b)$;

$TM \ D: \ if \ (Euclid(a,b) === 1)$
 ACCEPT;
else REJECT
Lemma 1
/*F_0 = 0; F_1 = 1; F_2 = 1; \ldots, F_{k+2} = F_{k+1} + F_k.*/
If a > b \geq 0, and Euclid performs k recursive calls, then a \geq F_{k+1} and b \geq F_k.

Proof. By induction on k.

Base. If k = 0, then b \geq 0 = F_0. Since a > b, a \geq 1 = F_1.

Inductive Step.
Let the lemma be true for k−1 recursive calls of Euclid.
Since k > 0, we have b > 0, and Euclid(b, a \mod b) is recursively called.
Euclid(b, a \mod b) makes k−1 calls, so b \geq F_{k−1+1} (the role of a is played by b). Furthermore,
\[b + (a \mod b) = b + (a - \left\lfloor \frac{a}{b} \right\rfloor \times b) \leq a. \]
Since a \geq b + (a \mod b) \geq F_k + F_{k−1} = F_{k+1}.

Corollary. GCD \in TIME(n^3).
Proof. Follows from the formula
\[F_k = \frac{(1+\sqrt{5})^k - (1-\sqrt{5})^k}{\sqrt{5}}. \]
4 Verifiable problems.

There are many solvable problems for which no polynomial decider was found. Many of such problems are **polynomially verifiable**.

Example 4

Set Partition: the problem of deciding if a given set $S = \{a_i\}$ of numbers can be partitioned into two subsets R and T so that $\sum_{a_i \in R} a_i = \sum_{a_i \in T} a_i$.

Set Partition: $\{\langle S = \{a_i\} \rangle : \exists R, T \ (R \cup T = S) \text{ such that } \sum_{a_i \in R} a_i = \sum_{a_i \in T} a_i\}$.
Example 5 Hampath: the problem of deciding if a given graph has a Hamiltonian path connecting two given vertices of the graph.

Hampath: \{\langle G, s, t \rangle : G \text{ is a directed graph with a Hamiltonian path from } s \text{ to } t \}.
Example 6 Composites: the problem of deciding if a given positive integer is composite:

\[\text{Composites} = \{ x : x = pq \text{ for integers } p > 1 \text{ and } q > 1. \} \]
Definition 2 A verifier for a language A is an algorithm V, where

$$A = \{w : V \text{ accepts } \langle w, c \rangle \text{ for some string } c.\}$$

A language is **polynomially verifiable** if it has a verifier which runs in time polynomial in $|w|$.

Definition 3 \mathcal{NP} is the class of languages that have polynomial verifiers.

Proposition 2 Every problem in \mathcal{P} belongs to \mathcal{NP} ($\mathcal{P} \subseteq \mathcal{NP}$.)
Proposition 3 \mathcal{NP} is the class of languages that are accepted by a non-deterministic TM in a polynomial time.

Proof.

\Rightarrow Let $A \in \mathcal{NP}$ and let V be a polynomial verifier for A (exists by the definition of \mathcal{NP}). If V runs in $O(|w|^k)$ time for some $k > 0$, then polynomial time NTM N is constructed by

On input w

- non-deterministically select a string c of length $O(n^k)$
- run V on $\langle w, c \rangle$;
- if V accepts, ACCEPT; else REJECT

\Leftarrow If A is decided by a poly-time NTM N, we construct a verifier V by

On input $\langle w, c \rangle$, where w and c are strings

- simulate N on w using c as a description of the proper branch of the computation tree;
- if this branch of N’s computation accepts, ACCEPT; else REJECT.
Theorem 1 (Cook (1971) and Levin (1973))

Class \mathcal{NP} has a problem U such that $\mathcal{P} = \mathcal{NP}$ iff $U \in \mathcal{P}$.
Definition 4 A graph $G(V, E)$ is called connected, if for any two distinct vertices u and v, there is a path connecting u with v.

A connected component of a graph G is a maximal connected subgraph of G.

For a given graph $G(V, E)$,

a clique is a subset $C \subseteq V$ such that any two vertices in C are adjacent;

an independent set is a subset $I \subseteq V$ such that no two vertices in I are adjacent;

a vertex cover is a subset $C \subseteq V$ such that for any edge $(u, v) \in E$, at least one of the endpoints is in I;

a dominating set is a subset $D \subseteq V$ such that $\forall v \in V$, either $v \in D$, or v is adjacent to a vertex in D.
Problem 1 Prove that the following languages belong to \(\mathcal{NP} \).

Satisfiability: given a set of boolean variables \(\{x_1, \ldots, x_n\} \), a set of clauses (a clause is a set of variables or their negations), is there an assignment to \(\{x_i\} \) which makes all clauses true?

\[
F = (\overline{x}_1 \lor \overline{x}_2) \land (\overline{x}_1 \lor x_2) \land (x_1 \lor \overline{x}_2) \land (x_1 \lor x_2)
\]
Clique Problem: Given a graph $G(V, E)$ and an integer $k > 0$, does G have a clique of size $\geq k$?
IndSet Problem: Given a graph $G(V, E)$ and an integer $k > 0$, does G have an independent set of size $\geq k$.

Vertex Cover: Given a graph $G(V, E)$ and an integer $k > 0$, does G have a vertex cover of size $\leq k$.

Dominating Set: Given a connected graph $G(V, E)$ and an integer $k > 0$, does G have a dominating set of size $\leq k$.

Vertex Coloring: Given a graph $G(V, E)$ and an integer $k > 0$, is G k-colorable?

LCS: Given k sequences $\{S_i\}_{i=1}^{k}$ and an integer t, is there a sequence C of length t which is a subsequence for every S_i.
5 NP-completeness

Definition 5 Language A is polynomially mapping reducible or polynomially time reducible, to language B, if a polynomial time computable function $f : \Sigma^* \to \Sigma^*$ such that

$$w \in A \text{ iff } f(w) \in B.$$

If A is polynomially time reducible to B, then we write

$$A \leq_P B.$$

Definition 6 A language U is NP-complete, if

1. $U \in NP$; and
2. $\forall A \in NP, A \leq_P U$

Theorem 2 If $C \in NP$, U is NP-complete and $U \leq_P C$, then C is NP-complete.
Theorem 3 (Cook (1971) and Levin (1973))
There are NP-complete problems.

SAT is NP-complete (Cook (1971))