1 Matchings in Graphs
Definition 1

Two edges are called **independent** if they are not adjacent in the graph. A set of mutually independent edges is called a matching.

A matching is called

- **maximal** if no other matching contains it.
- **maximum** if its cardinality is maximal among all matchings
- **perfect** if every vertex of the graph is incident to an edge of the matching.

maximal vs maximum

![Diagram showing maximal and maximum matchings](image)

How to construct a maximal matching?
Given a matching M in G,
a path is called M-alternating if its edges are alternatively in M
and not in M.
a vertex x is called weak if no edge of M is incident to x.

Using alternating path connecting weak vertices
The symmetric difference of two sets X and Y is the set of all elements that belong to one but not the other of the sets.

$$X \otimes Y = (X \cup Y) - (X \cap Y)$$

Theorem 1 A matching M is maximum iff there exists no alternating path between any two distinct weak vertices of G.

Proof. For a proof, we will try to answer the following questions:

- If a graph M is a matching, what is the maximum degree of a vertex in such a graph?

- If the edge set E of a graph F is the symmetric difference of two matchings M_1 and M_2, then what is the maximal vertex degree of F?

- Consider a component C of F above. Can C be a path, a cycle, anything else?

- If C is a cycle of F, can it have an odd length; an even length?

Conclusion: Let M be a matching which is not maximum and let M^* be maximum. Then at least one connected component of $M \otimes M^*$ is an alternating path containing more edges from M^*.

That component is an augmenting path for M. \qed
Definition 2
An edge cover of graph G is a set L of edges such that every vertex is an endpoint of an edge in L.

$\beta'(G)$ is the smallest size of an edge cover.

$\alpha'(G)$ is the largest size of a matching in G.

Theorem 2
For every graph G without isolated vertices,

$$\alpha'(G) + \beta'(G) = n(G).$$

Proof.
$\beta'(G) \leq n(G) - \alpha'(G)$. Starting with a matching, add one edge for every unsaturated vertex. The total is $\alpha'(G) + n - 2\alpha'(G) = n - \alpha'(G)$, a cover size.

\[
\begin{array}{cccccc}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\end{array}
\]

maximum matching unsaturated vertices

$\alpha'(G) \geq n(G) - \beta'(G)$. Consider the minimal edge cover L and the subgraph $H = (V, L)$.

H doesn’t have paths of length > 2, since otherwise an edge inside could be removed yielding a smaller edge cover. Thus, every connected component of H is a star.

If k is the number of these stars, $|L| = n(G) - k$. Form a matching by picking one edge from each star.
2 Matchings in Bipartite Graphs

Definition 3

A graph $G(V, E)$ is called \textbf{bipartite} if V can be partitioned into two subsets V_1 and V_2 so that $E \subseteq V_1 \times V_2$.

Proposition 1 A graph G is bipartite if and only if it has no cycles of odd length.

Proof. If G is bipartite and C is a cycle of G then the vertices of C can be labeled by 0 and 1 depending to which part the vertex belongs to. This implies that the length of the cycle is even.

Let now G be a graph without cycles of odd length. We want to prove that G is bipartite. Obviously, we may assume that G is connected. Then, consider an arbitrary vertex $v \in V(G)$ and define V_{even} (resp. V_{odd}) to be the set of all vertices whose distance from v is even (resp. odd). If there were an edge connecting two vertices from A_{even} (resp. two vertices from A_{odd}), then G would have an odd cycle. Thus, G is bipartite and $(V_{\text{even}}, V_{\text{odd}})$ is the partition. \hfill \Box

Definition 4

Given a matching M of a bipartite graph $G = (V_1, V_2; E)$, $V_1(M)$ (resp. $V_2(M)$) denotes the set of vertices in V_1 (resp. V_2) incident to the edges in M.

6
Definition 5

A matching M is said to **saturate** a vertex v, if there is an edge $(v, w) \in M$.

Theorem 3 A bipartite graph $G = (V_1, V_2, E)$ contains a matching with $|V_1|$ edges (a matching saturating all V_1) iff

$$\forall X \subseteq V_1, \ |X| \leq |E(X)|.$$ \hfill (\ast)

Proof. First, we prove that the existence of a matching saturating all V_1 implies $|X| \leq |E(X)|$.

Indeed, since M is a matching, the sets $V_1(M)$ and $V_2(M)$ have the same cardinality. For every $x \in X$ there is a distinct vertex $y \in E(X)$ for which (x, y) is in M.

Now we prove that condition

$$\forall X \subseteq V_1, \ |X| \leq |E(X)|$$ \hfill (\ast)

implies the existence of a matching which saturates all V_1.

Applying (\ast) to $X = V_1$, we get $|V_1| \leq |V_2|$. Our goal is to prove that there is a matching which saturates all vertices in V_1.

Suppose M_0 is a maximum matching and it doesn’t saturates all V_1. We will show that this supposition leads to a contradiction to the condition (\ast). The idea is illustrated in the next figure.
Let $S = V_1 - V_1(M_0)$ and $T = V_2 - V_2(M_0)$. If there were an edge $(x, y) \in E$ such that $x \in S$ and $y \in T$, the new matching is $M_0 \cup \{(x, y)\}$ contrary to the maximality of M_0.

So, we assume that no vertex in S is adjacent to any vertex in T.

Because of (*), for every vertex $v \in S$, there are edges incident to v. Consider any path in G satisfying the following conditions:

1. the first vertex of the path is in S;

2. the edges of the path alternate between edges not in M_0 and edges in M_0.

Claim. No path satisfying (1) and (2) contains a vertex in T.

Indeed, if such a path had a vertex in T, it would be its last vertex, and the path itself would be an M_0-alternating path with two end-vertices that are not saturated by M_0. Thus, the path would have been augmenting, yielding a matching M_1 which is larger than M_0 contrary to the maximality of M_0.

\[
\begin{array}{ccc}
\text{\textbf{D}} & \text{\textbf{T}} \\
\begin{array}{cccc}
\text{\textbullet} & \text{\textbullet} & \text{\textbullet} & \text{\textbullet} \\
\text{\textbullet} & \text{\textbullet} & \text{\textbullet} \\
\text{\textbullet} & \text{\textbullet} & \text{\textbullet} \\
\end{array} & \\
\text{\textbullet} & \text{\textbullet} & \text{\textbullet} & \text{\textbullet} & \text{\textbullet} \\
\text{\textbullet} & \text{\textbullet} & \text{\textbullet} & \text{\textbullet} \\
\text{\textbullet} & \text{\textbullet} & \text{\textbullet} \\
\text{\textbullet} \\
\end{array}
\]

\[
\begin{array}{c}
S \\
\end{array}
\]
Let \(v \in S \) and \(D \) be the set of all vertices reachable from \(v \) by \(M_0 \)-alternating paths.

Because of the Claim, \(D \cap T = \emptyset \). Furthermore,

\[
|V_1(M_0) \cap D| = |V_2(M_0) \cap D|.
\]

Thus, for \(X = |V_1(M_0) \cap D| \cup \{v\} \),

\[
|E(X)| = |V_2(M_0) \cap D|,
\]

which implies that

\[
|E(X)| = |X| - 1.
\]

This contradicts the condition on \(G \) and thus proves that \(S = \emptyset \). \(\blacksquare \)
Definition 6

Given a graph $G(V, E)$, a subset $C \subseteq V$ is called \textbf{vertex cover}, if every edge in E is incident to at least one vertex in C.

\textbf{Question:} if C is a vertex cover for G, what kind of graph will be obtained if C is removed from G?

\textbf{Theorem 4} (Egervári (1931); König (1931)) A maximum cardinality of a matching in a bipartite graph $G = (V_1, V_2, E)$ is equal to the minimum cardinality of a vertex cover.

\textbf{Proof.}

⇒ Let c be the smallest size of a vertex cover and m be the largest size of a matching in G. Then $c \geq m$, since in any cover, every edge in a matching must be “covered” by its own vertex.

⇐ Given a minimum vertex cover C, construct a matching of size $|C|$, which proves that $m \geq c$.
Split the graph into two subgraphs using the minimum vertex cover

The left subgraph (resp. right) satisfies the condition

$$|X| \leq |E(X)|$$

The left subgraph (resp. right) must have a matching which saturates partition $C^\wedge V_1$ (resp. $C^\wedge V_2$)