1 Plane and Planar Graphs

Definition 1

A graph $G(V, E)$ is called plane if

- V is a set of points in the plane;
- E is a set of curves in the plane such that

1. every curve contains at most two vertices and these vertices are the ends of the curve;
2. the intersection of every two curves is either empty, or one, or two vertices of the graph.

Definition 2

A graph is called planar, if it is isomorphic to a plane graph. The plane graph which is isomorphic to a given planar graph G is said to be embedded in the plane. A plane graph isomorphic to G is called its drawing.

G is a planar graph
H is a plane graph isomorphic to G

The adjacency list of graph F. Is it planar?

1	4	5	6	8	9	11
2	9	7	6	10	3	
3	7	11	8	2		
4	1	5	9	12		
5	1	12	4			
6	1	2	8	10	12	
7	2	3	9	11		
8	1	11	3	6	10	
9	7	4	12	1	2	
10	2	6	8			
11	1	3	8	7		
12	9	5	4	6		

What happens if we add edge $(1,12)$? Or edge $(7,4)$?

Definition 3

A set U in a plane is called open, if for every $x \in U$, all points within some distance r from x belong to U.

A region is an open set U which contains polygonal u, v-curve for every two points $u, v \in U$.

Definition 4

Given a plane graph $G(V, E)$, a face of G is a maximal region of the plane if the vertices and the edges of G are removed.

An unbounded (infinite) face of G is called exterior, or outer face.
The vertices and the edges of G that are incident with a face F form the boundary of F.

Proposition 1

In a plane graph, every cycle is the symmetric difference of the boundaries of some faces.

Proposition 2

For every face of a given plane graph G, there is a drawing of G for which the face is exterior.

Dual Plane Graphs

Definition 5

Let G be a plane graph. The dual graph G^{*} of G is a new plane graph having a vertex for each face in G and the edges that correspond to the edges of G in the following manner:
if e is an edge of G which separates two faces X and Y, then the corresponding dual edge $e^{*} \in E\left(G^{*}\right)$ is an edge joining the vertices x and y that correspond to X and Y respectively.

Remark. Different plane drawings (embeddings) of the same planar graph may have non-isomorphic duals.

Construct duals to these drawings.

Definition 6

The length of a face F in a plane graph G is the total number of edges in the closed walks in G that bound the face.

Proposition 3

If $l\left(F_{i}\right)$ denotes the length (the number of edges in its boundary), of face F_{i} in a plane graph G, then

$$
2 e(G)=\sum l\left(F_{i}\right) .
$$

Definition 7

A bond of a graph G is a minimal non-empty edge cut.

Proposition 4

Edges of a plane graph G form a cycle iff the corresponding edges in G^{*} form a bond.

Theorem 1 (Euler):
If G is a connected plane (p, q)-graph with r faces, then

$$
p-q+r=2 .
$$

Proof. We prove it by induction on q.
Base. If $q=0$, then $p=1$; obviously, $r=1$, and the result follows.
Inductive Step. Assume that the Euler Theorem holds true for all connected graphs with fewer than $q(q \geq 1)$ edges, and let G be a connected plane graph with q edges.

If G is a tree, then $p=q+1$ and $r=1$ (the only face is exterior) implying the result.

If G is not a tree, then it has an enclosed face. The edges of the face form a cycle. Take any edge e on the cycle and consider graph

$$
H=G-e .
$$

Since $q(H)=q-1$, by induction, $p(H)-q(H)+r(H)=2$. But $p(H)=p$ and $r(H)=r-1$. The result follows. II

Theorem 2

If G is a planar graph (no parallel edges) with p vertices and q edges, $(q \geq 3)$, then $q \leq 3 p-6$. If, in addition, G is bipartite, then $q \leq 2 p-4$.

Proof. Let r be the number of faces of G and let m_{i} be the number of edges in the boundary of the $i^{\text {th }}$ face $(i=1, \ldots, r)$.

Since every face contains at least three edges,

$$
3 r \leq \sum_{i=1}^{r} m_{i} .
$$

On the other hand, since every edge can be in the boundary of at most two faces,

$$
\sum_{i=1}^{r} m_{i} \leq 2 q .
$$

Thus, $3 r \leq 2 q$ and by Euler's Theorem, $p-q+2 q / 3 \geq 2$, implying $q \leq 3 p-6$.

If G is bipartite, the shortest cycle is of length at least 4 . Thus,

$$
4 r \leq \sum_{i=1}^{r} m_{i} .
$$

Together with $\sum_{i=1}^{r} m_{i} \leq 2 q$ and $p-q+r=2$, we get the second part of the Theorem.

Corollary 1 Every planar graph G contains a vertex of degree at most 5 .

Proof. (HINT: assuming that all degrees are ≥ 6, estimate the number of edges in the graph, and compare your estimate with that by Theorem 2 .)

Corollary 2 Graphs $K_{3,3}$ and K_{5} are not planar.
Proof. For $K_{5}, p=5$ and $q=10$. Thus, $q>3 p-6=9$ and by Theorem 2, K_{5} is not planar.
If $K_{3,3}$ were planar, then the second part of Theorem 2 would apply, leading to a contradiction, since for this graph $p=6, q=9$, and $q>2 p-4$.

Definition $8 A$ subdivision of an edge ab in a graph G is an operation which replaces ab with two edges $a z$ and $z b$ where z is a new vertex different from other vertices of G. The result of the subdivision is also called a subdivision of G.
A Kuratowski graph is a graph obtained by several subdivisions from either K_{5} or $K_{3,3}$.

Corollary 3 No Kuratowski graph is planar.

2 Coloring Planar Graphs

Theorem 3 Every planar graph G is 5 -colorable.

Proof. By induction on the number $n(G)$ of vertices.

Base. For all planar graphs with $n(G) \leq 5$, the statement is correct.

Inductive step. Let G have more than 5 vertices. Select a vertex v of degree ≤ 5. It always exists, since else, the number of edges in the graph would exceed the upper bound of $3 p-6$. By induction, graph $G-v$ is 5 -colorable.

Consider a 5 -coloring of $G-v$. If any color, $12,3,4,5$ is not used for vertices adjacent to v, use it for v. Thus, we need to assume
that v has 5 neighbors that are colored using all 5 colors. Let us call those neighbors according to their colors: $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ (see Figure below).

Consider a bipartite graph H induced by all vertices of $G-v$ whose colors are 1 or 3 , and let C be the connected component of H which contains vertex v_{1}. If C does not contain vertex v_{3}, then we re-color C : every vertex of C whose color is 1 (resp. 3) gets color 3 (resp. 1). This recoloring frees color 1 for v, yielding a 5 -coloring of G.

Finally, assume that C contains vertex v_{3}. Thus, there is a 2 -colored path connecting vertices 1 and 3 . This path together with vertex v forms a cycle which makes it impossible the existence of a path colored 2 and 4 connecting vertices v_{2} and v_{4}. Thus, recoloring the 2 -colored connected component containing vertex v_{2} makes color 2 available for coloring v. II

From colorings faces of a map to coloring its edges.

The coloring of the faces of an arbitrary map is reduced to that of a map for which every vertex has three incident edges. See the Figure below.

An edge coloring of a graph G is an assignment of colors to edges such that any two edges incident to the same vertex have different colors.

Theorem. (Tait, 1878). A 3-regular planar graph without bridges is 4 -face colorable iff it is 3 -edge-colorable.

Proof. Suppose G satisfies the conditions of the theorem and it is 4-face-colorable. Let the colors be $c_{0}=00, c_{1}=01, c_{2}=10, c_{3}=11$. Because G is bridge-less, every edge bounds two distinct faces. Given an edge between faces colored c_{i} and c_{j}, assign this edge the color obtained by adding c_{i} and c_{j} coordinate-wise modulo 2 . For example: $c_{0}+c_{1}=c_{1} ; \quad c_{1}+c_{3}=c_{2} ; \quad c_{2}+c_{3}=c_{1}$.

The reverse. Suppose now that G has a proper 3-edge-coloring, and let the colors be 1,2 , and 3 . Since G is 3 -regular, every color appears at every vertex. Let E_{1}, E_{2}, and E_{3} be the edge-sets colored 1,2 , and 3 , respectively. The union of any two of them is the union of disjoint cycles. Let $H_{1}=E_{1} \cup E_{2}$ and $H_{2}=E_{1} \cup E_{3}$.

The faces of graph H_{1} can be 2 -colored with two colors α and β.
The faces of graph H_{2} can be 2-colored with two colors γ and δ.
Then each face of G is a subset of a face in H_{1} and a subset of a face in H_{2}. Assign to each face in G a pair of colors (x, y) where $x \in\{\alpha, \beta\}$ and $y \in\{\gamma, \delta\}$.

It is easy to prove that any two adjacent faces of G get pairs off colors
that are differ in at least one coordinate. Thus the assignment is a 4 -coloring of the faces of G.

Tutte's conjecture: every bridge-less 3-regular graph G which is not three-edge colorable has the Petersen graph as its minor, that is the Petersen graph can be obtained from G by contracting and removing edges.

Problem 1 Use the fact that every cycle of the Petersen graph is of length 5 or more to prove that it is non-planar.

Problem 2 Show that the Heawood graph below is non-planar.

Heawood graph

Problem 3 Prove that a plane graph G is bipartite iff its dual G^{*} is Eulerian.

Definition 9

A subdivision of an edge $e=(x y)$ is an operation which removes e from the graph, adds a new vertex z along with two new edges: $(x z)$ and $(z y)$. A subdivision of a graph G is a graph that can be obtained from G by a sequence of edge subdivisions.

Definition 10

Two graphs G and H are called homeomorphic if either $G \approx H$, or there is a graph F such that both G and H can be obtained from F by two separate subdivisions of F.

Definition 11 The operation of contraction of an edge $e=x y$ of a graph G removes from the graph e, x, and y, and adds a new vertex z, which is adjacent to any old vertex u iff u is adjacent to at least one of x or y. The resulting graph is denoted $G /(x, y)$.

Problem 4 If G is non-planar, then every subdivision of G is non-planar.

Problem 5 If G is planar, then every contraction of G is planar.

Problem 6 If the contraction $G /(x, y)$ has a subgraph homeomorphic to K_{5} or $K_{3,3}$, then G has a subgraph homeomorphic to either K_{5} or $K_{3,3}$.

Definition 12 A maximal planar graph is a simple planar graph which is not a spanning subgraph of another planar graph. A triangulation is a simple plane graph where every face is a 3-cycle.

Problem 7 For a simple plane graph G with n vertices, the following are equivalent

1. G has $3 n-6$ edges;
2. G is a triangulation; and
3. G is a maximal planar graph.

Problem 8 Give two examples of planar graphs with no vertex of degree less than five.

Problem 9 Show that every planar graph of order ≥ 4 has at least four vertices of degree less than or equal to 5 .

Problem 10 Show that $K_{5}-e$ is planar for any edge $e \in E\left(K_{5}\right)$. Show that $K_{3,3}-e$ is planar for any edge $e \in E\left(K_{3,3}\right)$.

Problem 11 A graph is called outerplanar, if it can be embedded into a plane so that every vertex of the graph lies on the boundary of then exterior face. Show that a planar G is outerplanar if and only if $G+K_{1}$ is planar.

