1 Plane and Planar Graphs

Definition 1
A graph $G(V, E)$ is called *plane* if

- V is a set of points in the plane;
- E is a set of curves in the plane such that
 1. every curve contains at most two vertices and these vertices are the ends of the curve;
 2. the intersection of every two curves is either empty, or one, or two vertices of the graph.

Definition 2
A graph is called *planar*, if it is isomorphic to a plane graph. The plane graph which is isomorphic to a given planar graph G is said to be *embedded* in the plane. A plane graph isomorphic to G is called its *drawing*.

G is a planar graph H is a plane graph isomorphic to G
The adjacency list of graph F. Is it planar?

<table>
<thead>
<tr>
<th></th>
<th>4 5 6 8 9 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9 7 6 10 3</td>
</tr>
<tr>
<td>3</td>
<td>7 11 8 2</td>
</tr>
<tr>
<td>4</td>
<td>1 5 9 12</td>
</tr>
<tr>
<td>5</td>
<td>1 12 4</td>
</tr>
<tr>
<td>6</td>
<td>1 2 8 10 12</td>
</tr>
<tr>
<td>7</td>
<td>2 3 9 11</td>
</tr>
<tr>
<td>8</td>
<td>1 11 3 6 10</td>
</tr>
<tr>
<td>9</td>
<td>7 4 12 1 2</td>
</tr>
<tr>
<td>10</td>
<td>2 6 8</td>
</tr>
<tr>
<td>11</td>
<td>1 3 8 7</td>
</tr>
<tr>
<td>12</td>
<td>9 5 4 6</td>
</tr>
</tbody>
</table>

What happens if we add edge (1,12)? Or edge (7,4)?
Definition 3

A set U in a plane is called **open**, if for every $x \in U$, all points within some distance r from x belong to U.

A **region** is an open set U which contains polygonal u, v-curve for every two points $u, v \in U$.

![area without the boundary](image)

Definition 4

Given a plane graph $G(V, E)$, a **face** of G is a maximal region of the plane if the vertices and the edges of G are removed.

An unbounded (infinite) face of G is called **exterior**, or outer face.

The vertices and the edges of G that are incident with a face F form the **boundary** of F.

Proposition 1

In a plane graph, every cycle is the symmetric difference of the boundaries of some faces.
Proposition 2

For every face of a given plane graph G, there is a drawing of G for which the face is exterior.
Dual Plane Graphs

Definition 5

Let G be a plane graph. The dual graph G^* of G is a new plane graph having a vertex for each face in G and the edges that correspond to the edges of G in the following manner:

- if e is an edge of G which separates two faces X and Y, then the corresponding dual edge $e^* \in E(G^*)$ is an edge joining the vertices x and y that correspond to X and Y respectively.

Remark. Different plane drawings (embeddings) of the same planar graph may have non-isomorphic duals.

Construct duals to these drawings.
Definition 6

The **length** of a face \(F \) in a plane graph \(G \) is the total number of edges in the closed walks in \(G \) that bound the face.

Proposition 3

If \(l(F_i) \) denotes the length *(the number of edges in its boundary)*, of face \(F_i \) in a plane graph \(G \), then

\[
2e(G) = \sum l(F_i).
\]

Definition 7

A bond of a graph \(G \) is a **minimal non-empty edge cut**.

Proposition 4

Edges of a plane graph \(G \) form a cycle iff the corresponding edges in \(G^* \) form a bond.
Theorem 1 (Euler):

If G is a connected plane (p, q)-graph with r faces, then

$$p - q + r = 2.$$

Proof. We prove it by induction on q.

Base. If $q = 0$, then $p = 1$; obviously, $r = 1$, and the result follows.

Inductive Step. Assume that the Euler Theorem holds true for all connected graphs with fewer than q ($q \geq 1$) edges, and let G be a connected plane graph with q edges.

If G is a tree, then $p = q + 1$ and $r = 1$ (the only face is exterior) implying the result.

If G is not a tree, then it has an enclosed face. The edges of the face form a cycle. Take any edge e on the cycle and consider graph

$$H = G - e.$$

Since $q(H) = q - 1$, by induction, $p(H) - q(H) + r(H) = 2$. But $p(H) = p$ and $r(H) = r - 1$. The result follows.

Theorem 2

If G is a planar graph (no parallel edges) with p vertices and q edges, $(q \geq 3)$, then $q \leq 3p - 6$. If, in addition, G is bipartite, then $q \leq 2p - 4$.

Proof. Let r be the number of faces of G and let m_i be the number of edges in the boundary of the i^{th} face ($i = 1, \ldots, r$).

Since every face contains at least three edges,

$$3r \leq \sum_{i=1}^{r} m_i.$$

On the other hand, since every edge can be in the boundary of at most two faces,

$$\sum_{i=1}^{r} m_i \leq 2q.$$

Thus, $3r \leq 2q$ and by Euler’s Theorem, $p - q + 2q/3 \geq 2$, implying $q \leq 3p - 6$.

If G is bipartite, the shortest cycle is of length at least 4. Thus,

$$4r \leq \sum_{i=1}^{r} m_i.$$

Together with $\sum_{i=1}^{r} m_i \leq 2q$ and $p - q + r = 2$, we get the second part of the Theorem.
Corollary 1 Every planar graph G contains a vertex of degree at most 5.

Proof. (HINT: assuming that all degrees are ≥ 6, estimate the number of edges in the graph, and compare your estimate with that by Theorem 2.)

Corollary 2 Graphs $K_{3,3}$ and K_5 are not planar.

Proof. For K_5, $p = 5$ and $q = 10$. Thus, $q > 3p - 6 = 9$ and by Theorem 2, K_5 is not planar.
If $K_{3,3}$ were planar, then the second part of Theorem 2 would apply, leading to a contradiction, since for this graph $p = 6$, $q = 9$, and $q > 2p - 4$.

Definition 8 A subdivision of an edge ab in a graph G is an operation which replaces ab with two edges az and zb where z is a new vertex different from other vertices of G. The result of the subdivision is also called a subdivision of G.

A Kuratowski graph is a graph obtained by several subdivisions from either K_5 or $K_{3,3}$.

Corollary 3 No Kuratowski graph is planar.
2 Coloring Planar Graphs

\textbf{Theorem 3} Every planar graph G is 5-colorable.

\textbf{Proof.} By induction on the number $n(G)$ of vertices.

\textbf{Base.} For all planar graphs with $n(G) \leq 5$, the statement is correct.

\textbf{Inductive step.} Let G have more than 5 vertices. Select a vertex v of degree ≤ 5. It always exists, since else, the number of edges in the graph would exceed the upper bound of $3p - 6$. By induction, graph $G - v$ is 5-colorable.

Consider a 5-coloring of $G - v$. If any color, 1 2, 3, 4, 5 is not used for vertices adjacent to v, use it for v. Thus, we need to assume
that \(v \) has 5 neighbors that are colored using all 5 colors. Let us call those neighbors according to their colors: \(v_1, v_2, v_3, v_4, v_5 \) (see Figure below).

Consider a bipartite graph \(H \) induced by all vertices of \(G - v \) whose colors are 1 or 3, and let \(C \) be the connected component of \(H \) which contains vertex \(v_1 \). If \(C \) does not contain vertex \(v_3 \), then we re-color \(C \): every vertex of \(C \) whose color is 1 (resp. 3) gets color 3 (resp. 1). This recoloring frees color 1 for \(v \), yielding a 5-coloring of \(G \).

Finally, assume that \(C \) contains vertex \(v_3 \). Thus, there is a 2-colored path connecting vertices 1 and 3. This path together with vertex \(v \) forms a cycle which makes it impossible the existence of a path colored 2 and 4 connecting vertices \(v_2 \) and \(v_4 \). Thus, recoloring the 2-colored connected component containing vertex \(v_2 \) makes color 2 available for coloring \(v \).
From colorings faces of a map to coloring its edges.

The coloring of the faces of an arbitrary map is reduced to that of a map for which every vertex has three incident edges. See the Figure below.

An edge coloring of a graph G is an assignment of colors to edges such that any two edges incident to the same vertex have different colors.
Theorem. (Tait, 1878). A 3-regular planar graph without bridges is 4-face colorable iff it is 3-edge-colorable.

Proof. Suppose G satisfies the conditions of the theorem and it is 4-face-colorable. Let the colors be $c_0 = 00$, $c_1 = 01$, $c_2 = 10$, $c_3 = 11$. Because G is bridge-less, every edge bounds two distinct faces. Given an edge between faces colored c_i and c_j, assign this edge the color obtained by adding c_i and c_j coordinate-wise modulo 2. For example: $c_0 + c_1 = c_1; \ c_1 + c_3 = c_2; \ c_2 + c_3 = c_1$.

The reverse. Suppose now that G has a proper 3-edge-coloring, and let the colors be 1, 2, and 3. Since G is 3-regular, every color appears at every vertex. Let $E_1, E_2,$ and E_3 be the edge-sets colored 1, 2, and 3, respectively. The union of any two of them is the union of disjoint cycles. Let $H_1 = E_1 \cup E_2$ and $H_2 = E_1 \cup E_3$.

The faces of graph H_1 can be 2-colored with two colors α and β.

The faces of graph H_2 can be 2-colored with two colors γ and δ.

Then each face of G is a subset of a face in H_1 and a subset of a face in H_2. Assign to each face in G a pair of colors (x, y) where $x \in \{\alpha, \beta\}$ and $y \in \{\gamma, \delta\}$.

It is easy to prove that any two adjacent faces of G get pairs off colors
that are differ in at least one coordinate. Thus the assignment is a 4-coloring of the faces of G.

Tutte’s conjecture: every bridge-less 3-regular graph G which is not three-edge colorable has the Petersen graph as its minor, that is the Petersen graph can be obtained from G by contracting and removing edges.
Problem 1 Use the fact that every cycle of the Petersen graph is of length 5 or more to prove that it is non-planar.

Problem 2 Show that the Heawood graph below is non-planar.

Problem 3 Prove that a plane graph G is bipartite iff its dual G^* is Eulerian.

Definition 9

A subdivision of an edge $e = (xy)$ is an operation which removes e from the graph, adds a new vertex z along with two new edges: (xz) and (zy). A subdivision of a graph G is a graph that can be obtained from G by a sequence of edge subdivisions.
Definition 10

Two graphs G and H are called *homeomorphic* if either $G \approx H$, or there is a graph F such that both G and H can be obtained from F by two separate subdivisions of F.

![Diagram of homeomorphic graphs](image)

Definition 11 The operation of **contraction** of an edge $e = xy$ of a graph G removes from the graph e, x, and y, and adds a new vertex z, which is adjacent to any old vertex u iff u is adjacent to at least one of x or y. The resulting graph is denoted $G/(x,y)$.

![Diagram of contraction operation](image)
Problem 4 If G is non-planar, then every subdivision of G is non-planar.

Problem 5 If G is planar, then every contraction of G is planar.

Problem 6 If the contraction $G/(x,y)$ has a subgraph homeomorphic to K_5 or $K_{3,3}$, then G has a subgraph homeomorphic to either K_5 or $K_{3,3}$.

Definition 12 A maximal planar graph is a simple planar graph which is not a spanning subgraph of another planar graph. A triangulation is a simple plane graph where every face is a 3-cycle.

Problem 7 For a simple plane graph G with n vertices, the following are equivalent

1. G has $3n - 6$ edges;
2. G is a triangulation; and
3. G is a maximal planar graph.

Problem 8 Give two examples of planar graphs with no vertex of degree less than five.

Problem 9 Show that every planar graph of order ≥ 4 has at least four vertices of degree less than or equal to 5.
Problem 10 Show that $K_5 - e$ is planar for any edge $e \in E(K_5)$. Show that $K_{3,3} - e$ is planar for any edge $e \in E(K_{3,3})$.

Problem 11 A graph is called outerplanar, if it can be embedded into a plane so that every vertex of the graph lies on the boundary of then exterior face. Show that a planar G is outerplanar if and only if $G + K_1$ is planar.