
1 Plane and Planar Graphs

Definition 1

A graph G(V,E) is called plane if

• V is a set of points in the plane;

• E is a set of curves in the plane such that

1. every curve contains at most two vertices and these vertices

are the ends of the curve;

2. the intersection of every two curves is either empty, or one,

or two vertices of the graph.

Definition 2

A graph is called planar, if it is isomorphic to a plane graph. The

plane graph which is isomorphic to a given planar graph G is said

to be embedded in the plane. A plane graph isomorphic to G is

called its drawing.
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G  is a planar    graph H   is a plane graph  isomorphic to G

1



The adjacency list of graph F . Is it planar?

1 4 5 6 8 9 11

2 9 7 6 10 3

3 7 11 8 2

4 1 5 9 12

5 1 12 4

6 1 2 8 10 12

7 2 3 9 11

8 1 11 3 6 10

9 7 4 12 1 2

10 2 6 8

11 1 3 8 7

12 9 5 4 6

What happens if we add edge (1,12)? Or edge (7,4)?
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Definition 3

A set U in a plane is called open, if for every x ∈ U , all points

within some distance r from x belong to U .

A region is an open set U which contains polygonal u, v-curve for

every two points u, v ∈ U .

area without the boundary

Definition 4

Given a plane graph G(V,E), a face of G is a maximal region of

the plane if the vertices and the edges of G are removed.

An unbounded (infinite) face of G is called exterior, or outer face.

The vertices and the edges of G that are incident with a face F form

the boundary of F .

Proposition 1

In a plane graph, every cycle is the symmetric difference of the bound-

aries of some faces.
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Proposition 2

For every face of a given plane graph G, there is a drawing of G for

which the face is exterior.
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Dual Plane Graphs

Definition 5

Let G be a plane graph. The dual graph G∗ of G is a new plane

graph having a vertex for each face in G and the edges that corre-

spond to the edges of G in the following manner:

if e is an edge of G which separates two faces X and Y ,

then the corresponding dual edge e∗ ∈ E(G∗) is an edge

joining the vertices x and y that correspond to X and Y

respectively.

Remark. Different plane drawings (embeddings) of the same planar

graph may have non-isomorphic duals.

Construct duals to these drawings.
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Definition 6

The length of a face F in a plane graph G is the total number of

edges in the closed walks in G that bound the face.

Proposition 3

If l(Fi) denotes the length (the number of edges in its boundary),

of face Fi in a plane graph G, then

2e(G) =
∑

l(Fi).

Definition 7

A bond of a graph G is a minimal non-empty edge cut.

Proposition 4

Edges of a plane graph G form a cycle iff the corresponding edges in

G∗ form a bond.
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Theorem 1 (Euler):

If G is a connected plane (p, q)-graph with r faces, then

p− q + r = 2.

Proof. We prove it by induction on q.

Base. If q = 0, then p = 1; obviously, r = 1, and the result follows.

Inductive Step. Assume that the Euler Theorem holds true for

all connected graphs with fewer than q (q ≥ 1) edges, and let G be

a connected plane graph with q edges.

If G is a tree, then p = q + 1 and r = 1 (the only face is exterior)

implying the result.

If G is not a tree, then it has an enclosed face. The edges of the face

form a cycle. Take any edge e on the cycle and consider graph

H = G− e.

Since q(H) = q − 1, by induction, p(H) − q(H) + r(H) = 2. But

p(H) = p and r(H) = r − 1. The result follows.
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Theorem 2

If G is a planar graph (no parallel edges) with p vertices and q edges,

(q ≥ 3), then q ≤ 3p − 6. If, in addition, G is bipartite, then

q ≤ 2p− 4.

Proof. Let r be the number of faces of G and let mi be the number

of edges in the boundary of the ith face (i = 1, ..., r).

Since every face contains at least three edges,

3r ≤
r∑

i=1

mi.

On the other hand, since every edge can be in the boundary of at

most two faces,
r∑

i=1

mi ≤ 2q.

Thus, 3r ≤ 2q and by Euler’s Theorem, p− q + 2q/3 ≥ 2, implying

q ≤ 3p− 6.

If G is bipartite, the shortest cycle is of length at least 4. Thus,

4r ≤
r∑

i=1

mi.

Together with
∑r
i=1

mi ≤ 2q and p − q + r = 2, we get the second

part of the Theorem.
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Corollary 1 Every planar graph G contains a vertex of degree

at most 5.

Proof. (HINT: assuming that all degrees are ≥ 6, estimate the

number of edges in the graph, and compare your estimate with that

by Theorem 2 .)

Corollary 2 Graphs K3,3 and K5 are not planar.

Proof. For K5, p = 5 and q = 10. Thus, q > 3p − 6 = 9 and by

Theorem 2, K5 is not planar.

If K3,3 were planar, then the second part of Theorem 2 would apply,

leading to a contradiction, since for this graph p = 6, q = 9, and

q > 2p− 4.

Definition 8 A subdivision of an edge ab in a graph G is an

operation which replaces ab with two edges az and zb where z is

a new vertex different from other vertices of G. The result of

the subdivision is also called a subdivision of G.

A Kuratowski graph is a graph obtained by several subdivisions

from either K5 or K3,3.

Corollary 3 No Kuratowski graph is planar.
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2 Coloring Planar Graphs

Theorem 3 Every planar graph G is 5-colorable.

Proof. By induction on the number n(G) of vertices.

Base. For all planar graphs with n(G) ≤ 5, the statement is correct.

Inductive step. Let G have more than 5 vertices. Select a vertex

v of degree ≤ 5. It always exists, since else, the number of edges in

the graph would exceed the upper bound of 3p − 6. By induction,

graph G− v is 5-colorable.

Consider a 5-coloring of G− v. If any color, 1 2, 3, 4, 5 is not used

for vertices adjacent to v, use it for v. Thus, we need to assume
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that v has 5 neighbors that are colored using all 5 colors. Let us call

those neighbors according to their colors: v1, v2, v3, v4, v5 (see Figure

below).

Consider a bipartite graph H induced by all vertices of G− v whose

colors are 1 or 3, and let C be the connected component of H which

contains vertex v1. If C does not contain vertex v3, then we re-color

C: every vertex of C whose color is 1 (resp. 3) gets color 3 (resp. 1).

This recoloring frees color 1 for v, yielding a 5-coloring of G.
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Finally, assume that C contains vertex v3. Thus, there is a 2-colored

path connecting vertices 1 and 3. This path together with vertex

v forms a cycle which makes it impossible the existence of a path

colored 2 and 4 connecting vertices v2 and v4. Thus, recoloring the

2-colored connected component containing vertex v2 makes color 2

available for coloring v.
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From colorings faces of a map to coloring its edges.

The coloring of the faces of an arbitrary map is reduced to that of a

map for which every vertex has three incident edges. See the Figure

below.

An edge coloring of a graph G is an assignment of colors to edges

such that any two edges incident to the same vertex have different

colors.
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Theorem. (Tait, 1878). A 3-regular planar graph without bridges

is 4-face colorable iff it is 3-edge-colorable.

Proof. Suppose G satisfies the conditions of the theorem and it is 4-

face-colorable. Let the colors be c0 = 00, c1 = 01, c2 = 10, c3 = 11.

BecauseG is bridge-less, every edge bounds two distinct faces. Given

an edge between faces colored ci and cj, assign this edge the color

obtained by adding ci and cj coordinate-wise modulo 2. For example:

c0 + c1 = c1; c1 + c3 = c2; c2 + c3 = c1.
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The reverse. Suppose now that G has a proper 3-edge-coloring,

and let the colors be 1, 2, and 3. Since G is 3-regular, every color

appears at every vertex. Let E1, E2, and E3 be the edge-sets colored

1, 2, and 3, respectively. The union of any two of them is the union

of disjoint cycles. Let H1 = E1 ∪ E2 and H2 = E1 ∪ E3.

The faces of graph H1 can be 2-colored with two colors α and β.

The faces of graph H2 can be 2-colored with two colors γ and δ.

Then each face of G is a subset of a face in H1 and a subset of a

face in H2. Assign to each face in G a pair of colors (x, y) where

x ∈ {α, β} and y ∈ {γ, δ}.

It is easy to prove that any two adjacent faces of G get pairs off colors
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that are differ in at least one coordinate. Thus the assignment is a

4-coloring of the faces of G.
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Tutte’s conjecture: every bridge-less 3-regular graph G which is

not three-edge colorable has the Petersen graph as its minor, that

is the Petersen graph can be obtained from G by contracting and

removing edges.
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Problem 1 Use the fact that every cycle of the Petersen graph

is of length 5 or more to prove that it is non-planar.

Problem 2 Show that the Heawood graph below is non-planar.

Heawood    graph
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Problem 3 Prove that a plane graph G is bipartite iff its dual

G∗ is Eulerian.

Definition 9

A subdivision of an edge e = (xy) is an operation which removes

e from the graph, adds a new vertex z along with two new edges:

(xz) and (zy). A subdivision of a graph G is a graph that can be

obtained from G by a sequence of edge subdivisions.
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Definition 10

Two graphs G and H are called homeomorphic if either G ≈ H , or

there is a graph F such that both G and H can be obtained from F

by two separate subdivisions of F .
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Definition 11 The operation of contraction of an edge e = xy

of a graph G removes from the graph e, x, and y, and adds a new

vertex z, which is adjacent to any old vertex u iff u is adjacent to

at least one of x or y. The resulting graph is denoted G/(x, y).
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Problem 4 If G is non-planar, then every subdivision of G is

non-planar.

Problem 5 If G is planar, then every contraction of G is pla-

nar.

Problem 6 If the contraction G/(x, y) has a subgraph homeo-

morphic to K5 or K3,3, then G has a subgraph homeomorphic to

either K5 or K3,3.

Definition 12 A maximal planar graph is a simple planar graph

which is not a spanning subgraph of another planar graph. A

triangulation is a simple plane graph where every face is a

3-cycle.

Problem 7 For a simple plane graph G with n vertices, the fol-

lowing are equivalent

1. G has 3n− 6 edges;

2. G is a triangulation; and

3. G is a maximal planar graph.

Problem 8 Give two examples of planar graphs with no vertex

of degree less than five.

Problem 9 Show that every planar graph of order ≥ 4 has at

least four vertices of degree less than or equal to 5.
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Problem 10 Show that K5−e is planar for any edge e ∈ E(K5).

Show that K3,3 − e is planar for any edge e ∈ E(K3,3).

Problem 11 A graph is called outerplanar, if it can be embed-

ded into a plane so that every vertex of the graph lies on the

boundary of then exterior face. Show that a planar G is outer-

planar if and only if G +K1 is planar.
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