1 Matchings in Graphs
Definition 1

Two edges are called **independent** if they are not adjacent in the graph. A set of mutually independent edges is called a **matching**.

A matching is called

- **maximal** if no other matching contains it.
- **maximum** if its cardinality is maximal among all matchings
- **perfect** if every vertex of the graph is incident to an edge of the matching.

maximal vs maximum

![Diagram of maximal vs maximum matchings](image)

How to construct a maximal matching?
Given a matching M in G,

a path is called M-alternating if its edges are alternatively in M and not in M.

a vertex x is called weak if no edge of M is incident to x.

Using alternating path connecting weak vertices
The symmetric difference of two sets \(X \) and \(Y \) is the set of all elements that belong to one but not the other of the sets.

\[
X \otimes Y = (X \cup Y) - (X \cap Y)
\]

Theorem 1 A matching \(M \) is maximum iff there exists no alternating path between any two distinct weak vertices of \(G \).

Proof. For a proof, we will try to answer the following questions:

- If a graph \(M \) is a matching, what is the maximum degree of a vertex in such a graph?

- If the edge set \(E \) of a graph \(F \) is the symmetric difference of two matchings \(M_1 \) and \(M_2 \), then what is the maximal vertex degree of \(F \)?

- Consider a component \(C \) of \(F \) above. Can \(C \) be a path, a cycle, anything else?

- If \(C \) is a cycle of \(F \), can it have an odd length; an even length?

Conclusion: Let \(M \) be a matching which is not maximum and let \(M^* \) be maximum. Then at least one connected component of \(M \otimes M^* \) is an alternating path containing more edges from \(M^* \).

That component is an augmenting path for \(M \). \(\blacksquare \)
Definition 2

An edge cover of graph G is a set L of edges such that every vertex is an endpoint of an edge in L.

$\beta'(G)$ is the smallest size of an edge cover.

$\alpha'(G)$ is the largest size of a matching in G.

Theorem 2

For every graph G without isolated vertices,

$$\alpha'(G) + \beta'(G) = n(G).$$

Proof.

$\beta'(G) \leq n(G) - \alpha'(G)$. Starting with a matching, add one edge for every unsaturated vertex. The total is $\alpha'(G) + n - 2\alpha'(G) = n - \alpha'(G)$, a cover size.

\[
\begin{align*}
\text{maximum matching} & \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \\
\text{unsaturated vertices} &
\end{align*}
\]

$\alpha'(G) \geq n(G) - \beta'(G)$. Consider the minimal edge cover L and the subgraph $H = (V, L)$.

H doesn’t have paths of length > 2, since otherwise an edge inside could be removed yielding a smaller edge cover. Thus, every connected component of H is a star.

If k is the number of these stars, $|L| = n(G) - k$. Form a matching by picking one edge from each star.
2 Matchings in Bipartite Graphs

Definition 3
A graph $G(V,E)$ is called **bipartite** if V can be partitioned into two subsets V_1 and V_2 so that $E \subseteq V_1 \times V_2$.

Proposition 1 A graph G is bipartite if and only if it has no cycles of odd length.

Proof. If G is bipartite and C is a cycle of G then the vertices of C can be labeled by 0 and 1 depending to which part the vertex belongs to. This implies that the length of the cycle is even.

Let now G be a graph without cycles of odd length. We want to prove that G is bipartite. Obviously, we may assume that G is connected. Then, consider an arbitrary vertex $v \in V(G)$ and define V_{even} (resp. V_{odd}) to be the set of all vertices whose distance from v is even (resp. odd). If there were an edge connecting two vertices from A_{even} (resp. two vertices from A_{odd}), then G would have an odd cycle. Thus, G is bipartite and (V_{even}, V_{odd}) is the partition.

Definition 4
Given a matching M of a bipartite graph $G = (V_1, V_2; E)$, $V_1(M)$ (resp. $V_2(M)$) denotes the set of vertices in V_1 (resp. V_2) incident to the edges in M.

Definition 5

A matching \(M \) is said to **saturate** a vertex \(v \), if there is an edge \((v, w) \in M\).

Theorem 3 A bipartite graph \(G = (V_1, V_2, E) \) contains a matching with \(|V_1|\) edges (a matching saturating all \(V_1 \)) iff

\[
\forall X \subseteq V_1, \ |X| \leq |E(X)|. \tag{*}
\]

Proof. First, we prove that the existence of a matching saturating all \(V_1 \) implies \(|X| \leq |E(X)|\).

Indeed, since \(M \) is a matching, the sets \(V_1(M) \) and \(V_2(M) \) have the same cardinality. For every \(x \in X \) there is a distinct vertex \(y \in E(X) \) for which \((x, y)\) is in \(M \).

Now we prove that condition

\[
\forall X \subseteq V_1, \ |X| \leq |E(X)| \tag{*}
\]

implies the existence of a matching which saturates all \(V_1 \).

Applying (*) to \(X = V_1 \), we get \(|V_1| \leq |V_2|\). Our goal is to prove that there is a matching which saturates all vertices in \(V_1 \).

Suppose \(M_0 \) is a maximum matching and it doesn’t saturates all \(V_1 \). We will show that this supposition leads to a contradiction to the condition (*). The idea is illustrated in the next figure.
Let $S = V_1 - V_1(M_0)$ and $T = V_2 - V_2(M_0)$. If there were an edge $(x, y) \in E$ such that $x \in S$ and $y \in T$, the new matching is $M_0 \cup \{(x, y)\}$ contrary to the maximality of M_0.

So, we assume that no vertex in S is adjacent to any vertex in T.

Because of (*), for every vertex $v \in S$, there are edges incident to v. Consider any path in G satisfying the following conditions:

1. the first vertex of the path is in S;
2. the edges of the path alternate between edges not in M_0 and edges in M_0.

Claim. No path satisfying (1) and (2) contains a vertex in T.

Indeed, if such a path had a vertex in T, it would be its last vertex, and the path itself would be an M_0-alternating path with two end-vertices that are not saturated by M_0. Thus, the path would have been augmenting, yielding a matching M_1 which is larger than M_0 contrary to the maximality of M_0.

Let $v \in S$ and D be the set of all vertices reachable from v by M_0-alternating paths.

Because of the Claim, $D \cap T = \emptyset$. Furthermore,

$$|V_1(M_0) \cap D| = |V_2(M_0) \cap D|.$$

Thus, for $X = |V_1(M_0) \cap D| \cup \{v\}$,

$$|E(X)| = |V_2(M_0) \cap D|,$$

which implies that

$$|E(X)| = |X| - 1.$$

This contradicts the condition on G and thus proves that $S = \emptyset$. \hfill \Box
Definition 6

Given a graph $G(V, E)$, a subset $C \subseteq V$ is called vertex cover, if every edge in E is incident to at least one vertex in C.

Question: if C is a vertex cover for G, what kind of graph will be obtained if C is removed from G?

Theorem 4 (Egervári (1931); König (1931)) A maximum cardinality of a matching in a bipartite graph $G = (V_1, V_2, E)$ is equal to the minimum cardinality of a vertex cover.

Proof.

\Rightarrow Let c be the smallest size of a vertex cover and m be the largest size of a matching in G. Then $c \geq m$, since in any cover, every edge in a matching must be “covered” by its own vertex.

\Leftarrow Given a minimum vertex cover C, construct a matching of size $|C|$, which proves that $m \geq c$.

Split the graph into two subgraphs using the minimum vertex cover

The left subgraph (resp. right) satisfies the condition
\[|X| \leq |E(X)| \]

The left subgraph (resp. right) must have a matching which saturates partition \(C \cup V_1 \) (resp. \(C \cup V_2 \))
Constructing maximum matchings in bipartite graphs

The algorithms is the iteration of a procedure, **AUGMENT** which starts with a matching (can be empty) of a bipartite graph. **AUGMENT** either outputs a bigger matching, or a vertex cover of the size of the matching, which proves that the current matching is maximum in the graph. The last iteration ends with the construction of the cover set.

Procedure AUGMENT

Input: graph $G(V_1, V_2; E)$ and a matching M.

let $M(V_1)$ (resp. $M(V_2)$) denote the vertices in V_1 (resp. V_2) that are saturated by M.

if $M(V_1) = V_1$,
then halt with M as a maximum matching.
and V_1 as a minimum vertex cover.

else
let $U = V_1 - M(V_1)$;
construct an alternating tree $\mathcal{T}(U)$;
if $\mathcal{T}(U)$ contains vertices in $V_2 - M(V_2)$,
extract an augmenting path $P(v_1, v_2)$
($v_1 \in V_1 - M(V_1)$; $v_2 \in V_2 - M(V_2)$);
augment M;
else
let S be the set of all vertices in V_1 that are reached by \mathcal{T};
let T be the set of all vertices in V_2 that are reached by \mathcal{T};
halt with maximum matching M and minimum vertex cover $(V_1 - S) \cup T$.
Illustration of the algorithm for constructing a maximum matching in a bipartite graph.