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Abstract
Diffusion occurs in various contexts and generally involves a
network of entities and interactions between entities. Through
these interactions, some property, e.g. information, ideas, etc.,
is spread through the network. The network may become dy-
namic as entities in the network interact and information,
ideas, etc. flow through the network. This paper presents a
general model of diffusion in dynamic networks. We use the
model to examine how network structure, seeding strategy,
and population inhomogeneity as defined with trust, affects
the diffusion process. We simulate an evacuation scenario
where the network structure represents a network of house-
holds. There are multiple sources that initiate the broadcasts
of evacuation warnings and the goals are for the households
to propagate the message and perform evacuation. The net-
work dynamics observed are the result of the diffusion, where
households may leave the network some time after receiving
the warning. The results provide interesting observations on
the effects of trust asymmetry and trust differentials. When
we introduce population inhomogeneity using trust, the diffu-
sion was more effective. The network structure and the seed-
ing strategy used in delivering the initial broadcast also affect
the effectiveness of the diffusion.

1. INTRODUCTION
Diffusion occurs in various contexts and generally involves

a network of entities and interactions between entities. These
networks can consist of entities like individuals or organiza-
tions. The interactions could be physical contact, collabora-
tion, innovation adoption, or some form of verbal or writ-
ten communication depending on the circumstances. Through
these interactions, some property, e.g. information, idea, in-
novation, disease, etc., is spread through the network. The
flow of these information, ideas, etc. may in turn have an ef-
fect on the entities in the network as well as the network it-
self. For example, through the diffusion of a product review,
individuals may become curious and browse for addition re-
views on the product, or they might become convinced and
adopt/purchase the product. In additional, individuals may
join/form user groups to discuss the product and through
these groups, form new relationships and change their social
networks.

In this paper∗, we present a general model of diffusion in
dynamic networks, where the network may change as a re-
sult of the diffusion that occurs. We apply our model to the
context of evacuation warnings. The network in this case is
a social network of households nodes and the property be-
ing diffused is an evacuation warning. As warning messages
propagate through the network, households may seek addi-
tional information, spread the information, or take action, i.e.
perform evacuation. This context demonstrates one form of
network dynamics where nodes may leave the network and
remove their edges. Observing this form of dynamics may
reveal disruptions in the spread of information, and identify
areas in the network that assist in the spread of the warn-
ing as well as identify areas that fail to evacuate. We use the
model to explore how the network structure, population in-
homogeneity, and the seeding strategies affects the diffusion
process. We introduce population inhomogeneity by assign-
ing household nodes to social groups and quantifying the re-
lations between household nodes using trust. The population
inhomogeneity is the product of varying trust levels between
specified groups.

2. BACKGROUND AND RELATED WORK
Social networks play a significant role in the spread of in-

formation, ideas, emotions, diseases, innovations, etc. As a
result, the flow of this information, these ideas, etc. affect the
way people think, act, and bind together in a society. Mod-
eling information flow through various social networks is an
active research area, with work on diffusion of innovation and
technology [5, 8, 17, 34, 37, 40], viral marketing [25, 26], the
spread of computer viruses [3, 10], and the spread of diseases
[27, 29].

2.1. Epidemiology models
The spread of infectious diseases and the spread of infec-

tious ideas have common characteristics in terms of their dif-
fusion process. For this reason, many diffusion models for
studying the spread of ideas were developed based on models
from epidemiology [7]. Many of the epidemiology models are
derived from the Susceptible/Infected/Removed (SIR) model,

∗This paper expands on the work from ”Micro-Simulation of Diffusion of
Warnings” in proceedings of ISCRAM 2008 and ”The Impact of Changes in
Network Structure on the Diffusion of Warnings” presented at the Workshop
on Analysis of Dynamic Networks at SDM 2009.



which was formulated by Lowell Reed and Wade Hampton
Frost in the 1920s [32]. The SIR model divides the popula-
tion into three possible categories (susceptible, infected, and
removed) that reflect the status of the individuals. Susceptible
are individuals who are not infected but may become infected
when they gain contact with an infected individual. Infected
are individuals who are carrying the disease and have the po-
tential to spread it. Removed are individuals who have either
recovered from the disease or died, and cannot spread the dis-
ease. The model assigns a disease transmission probability
based on a given average rate of contact, and assumes that
all individuals are equally likely to become infected. Mathe-
matical models can then be used to infer population average
parameters such as contact rates and duration of infectious
periods.

Many variations of the SIR model have been proposed to
incorporate more realistic factors, for example implementing
a social structure for contact based spread, [4, 13, 23, 28, 33],
or varying disease transmission probability [32]. In general,
these models depict the disease spreading process by track-
ing the average number of infected individuals and identify-
ing individuals who are prone to become infected with the
disease. These models can also identify the specific charac-
teristics, at the population level, that play a significant role
in the transmission process. Such characteristics include age,
variable infection rates and variable infection periods. These
characteristics introduce a heterogeneous population, which
also leads to more complex models.

2.2. Diffusion of innovation models
Diffusion models are used to study the adoption of prod-

ucts and spread of innovation influence by viewing them as
a process of social interactions. The diffusion of innovation
theory, introduced by Everett Rogers in 1962, defines stages
of product adoption process (knowledge, persuasion, deci-
sion, implementation, and confirmation). The product adop-
tion curve classifies adopters into five categories: innovators,
early adopters, early majority, late majority, and laggards. The
theory suggests that the adoption curve follows an S-curve, in
which a small proportion of individuals initially adopt the in-
novation, followed by relatively quick adoption by the early
and late majority, and then levels off as the laggards finally
adopt. This theory introduces the concept that for most in-
dividuals in the social network, the decision to adopt the in-
novation is dependent upon the other individuals in the net-
work. Early adopters have a profound effect on the adoption
decisions of the later adopters. Recent research utilized the
categories of adopters as introduced in Roger’s theory to an-
alyze how the adoption process affects the information flow
of product recommendation [35]. The Bass model for diffu-
sion of innovation is a mathematical model for estimating
the adoption of new products. This model introduces fac-

tors such as product market potential and interaction rate be-
tween consumers and prospective consumers into the model.
Early models for innovation diffusion ignore the consumer
decision-making activity that occurs in each individual. The
characteristics of consumers are an important factor for prod-
uct adoption. A consumer’s decision is highly affected by so-
cial influences and interactions that occur over time. The con-
cept of ”word of mouth” is commonly used in marketing. It
builds on the observation that a consumer’s decision to accept
a new product depends on what they hear from others[15].

2.3. Threshold and cascade models
In general, the existing diffusion models in the literature fo-

cus on two types of approaches, cascade models and threshold
models. The most basic models are the Independent Cascade
Model and the Linear Threshold Model. The cascade models
are similar to the models of the spread of epidemic diseases
[21, 26, 28, 32]. In the Independent Cascade Model, each
node gets a chance to influence each of its inactive neigh-
bors with a given probability of success. If the transmission
is successful, the neighbor will become active at the next time
step. In general, this process continues until there are no more
possible transmissions. In the Linear Threshold Model, an in-
dividual is infected based how many of their neighbors are
already infected. There is a weight on the edge between two
nodes, which defines a measure of influence. Each node has
a threshold value, which is drawn randomly from some spec-
ified probability distribution. This threshold determines how
many neighboring nodes have to be activated before the node
itself becomes active. If the sum of the weights of all active
neighbors exceeds the threshold, then the node will become
active [16, 40]. The cascade and threshold approaches form
the basis for many diffusion models and extensions to these
models have been made to study different diffusion processes
[12, 15, 21, 25], as well as identifying variables that affect the
diffusion process in cascade models [9] and observing infor-
mation cascade in viral marketing [25, 26].

2.4. Network structures
The structure of the social communication network is a

very important factor in the diffusion process. At the two
ends of the spectrum of graphs are regular graphs and random
graphs. In regular graphs, all nodes have the same degree, i.e.
every node is connected to the same number of nodes. Ran-
dom graphs are generated based on some random process and
are often used for proving the existence of certain graph prop-
erties. However, these graphs often do not represent how ac-
tual social networks are structured.

Scale-free networks and small-world networks are com-
monly used in studying social network structures. They ap-
pear to be more realistic and reflect the characteristics of bi-
ological and technological systems. In scale-free networks,



most nodes have a low degree while a small subset have high
degree. This addresses the phenomenon of the existence of
highly connected individuals in a network. The degree distri-
bution follows a power-law relationship in which the struc-
tural dynamics are independent of the number of nodes in the
network. In small-world networks, nodes are highly clustered
with small path lengths between nodes. This phenomenon
is commonly found in biological, social, and synthetic sys-
tems [30, 38] and also appears when analyzing patterns of
scientific collaboration [31] and actor collaboration in films
[2, 36, 39]. Small-world networks have been used in studying
algorithmic routing of messages in communication networks
[22]. The speed in which information spreads changes with
the degree of randomness in the network and has found to
increase in small-world networks [12].

Most previous research assumes the network to be static
and does not consider the changes that may occur over time.
Dynamic networks are becoming more popular in the recent
research literature [6, 11, 24] which study evolving commu-
nication graphs conditioned on a static social group structure.
In dynamic networks, nodes and edges may appear and dis-
appear with time. There are multiple aspects of dynamics to
consider. The local dynamics describe how nodes interact and
how the diffusion may spread. This includes changes at the
individual node level, e.g. changes in node thresholds or in-
fection probabilities. The group dynamics describe the social
group evolution that may occur over time. New nodes and
edges may appear as individuals make new friends or join so-
cial groups, and/or disappear as individuals relocate or leave
groups. When diffusion occurs over a social network, the dy-
namics of the social network determine who is interacting
at each time step (e.g. [14]), which in turn determines how
the diffusion may spread at that particular time step. In addi-
tion, the network may change due to the diffusion that occurs
through the network.

3. DIFFUSION MODEL
The model of diffusive processes in dynamic networks de-

scribed in this paper is motivated by the existing diffusion
models. The key concepts found in the SIR models used in
epidemiology and the standard threshold and cascade mod-
els are reflected in the axiomatic framework. The proposed
diffusion model is a general framework and these particular
models can be incorporated as special cases.

3.1. Parameters
The diffusion process occurs on a network whose nodes

represent individual entities and edges represent interactions
between nodes. This network may be a directed or undirected.
Through the interactions between nodes, some property is dif-
fused through the network. We refer to the property as mes-
sages. External sources introduce messages into the network.

Multiple sources may exist for a message, each with its cor-
responding perceived information value. The perceived value
of the message may be different for each source, i.e. trustwor-
thiness of source.

The weight on each edge represents a trust value between
two nodes. This value is used to quantify the social rela-
tions based on a notion of trust in information and informa-
tion sources [20]. Note that in other contexts the weight on
the edge may represent other concepts. For example, in the
spread of diseases, the weight on the edge can reflect on how
infectious of contagious the disease may be. Each node in the
network has configurable attributes. The properties of each
node are updated over time as interactions occur and mes-
sages are propagated.

3.2. Axioms
The model for diffusion on dynamic graphs is based on

four axioms: Information Loss Axiom, Source Union Axiom,
Information Fusion Axiom, and Threshold Utility Axiom.
These axioms define the diffusion process by specifying:
what happens to the message as it is propagated, how the
nodes handle information they receive, and nodes update
their properties based on their interactions and the informa-
tion they receive.

Information Loss Axiom. If (S,V) is a source-value pair at
node i which is propagated to node j then the source-value
pair at node j is (S,α(i, j)V ), where 0 ≤ α(i, j) < 1 is the
propagation loss from i to j. α(i, j) quantifies the trust rela-
tionship between nodes i and j.

When a message is passed from one node to another, the
information value of the message is non-increasing. The
information value of the message at the receiver node is a
function of the social relationship between the sender and
the receiver and not just a function of distance. The social
relationship may be asymmetric, i.e. the trust weights on
the edge may be different depending on the direction of the
information flow.

Source Union Axiom. If multiple nodes propagate a message
to a node j , then the source set at j after propagation is the
union of the source set which was already at j with the union
of the source set arriving from the multiple nodes.

Information Fusion Axiom. A. If a source Si appears in mul-
tiple incoming messages with values V 1

i ,V 2
i , ..., the informa-

tion from this particular source, V ∗i , is fused into the single
source-value pair (Si,V ∗i ), where maxk V k

i ≤V ∗i ≤∑k V k
i . The

value V k
i corresponds to the information value of source i at

node k. B. Suppose that node k has source set (Sk
1,S

k
2, . . .) with

information values (V k
1 ,V k

2 , . . .). The fused information value
at the node is at least the maxi V k

i and at most ∑i V k
i .



Each node stores a list of source-value pairs representing
the information they have received. At the end of each time
step, the node will merge the information they received
and update their properties. There are two components to
consider when merging the information, as described by
the Information Fusion Axiom. The first part A. is to fuse
information from the same source appearing in multiple
messages. When a source is found in multiple messages, the
combined information value for the source at the receiver
node is at least the maximum of the information values for
the source over all the messages and at most the sum of
all the information values of the source. The second part
B. outlines how to compute the information fused value
at a node. To specify how to combine the information
values from all the different sources, we can use a weighted
convex combination of the sum and maximum of the values
according to a parameter λ. The fused value at node k would
be λ ∗ ∑i V k

i + (1− λ) ∗maxi V k
i . When λ = 1, the fused

value is equal to the sum of the information values of all the
sources. When λ = 0, the fused value is equal to the max of
the information values. Exactly where V ∗ should sit in this
range will depend on the nature of the diffusion, for example
gossips (which spread fast) will have V ∗ closer to the sum.
The fused information value is at least the maximum of the
information values (having more information cannot hurt)
and at most the sum.

Threshold Utility Axiom. After computing the fused infor-
mation value, the node state is determined based on whether
the information value exceeds certain thresholds. Each node
has two defined threshold levels, a lower bound and an upper
bound, which determine the boundaries for when the node
will acknowledge the message and/or take an action. Table
1 summarizes the possible node states along with its corre-
sponding behaviors in the context of evacuation warnings.
The lower bound threshold lies between the disbelieved and
uninformed states, while the upper bound threshold lies be-
tween the undecided and believed states.

4. EXPERIMENTS
We illustrate the concepts of the model by simulating the
spread of evacuation warnings in a social network. The con-
text of the experiments are motivated by the evacuation warn-
ings scenario described in [18, 19]. In the case of evacuations,
warnings are broadcasted from information sources to the at-
risk population. We assume that the initial broadcasted mes-
sages will reach a certain proportion of individuals from the
population, referred to as seeds. These selected individuals
(seeds) will then attempt to propagate the evacuation warn-
ing to the rest of the population. Applying the model to the
diffusion of warnings captures network dynamics as a result
of the diffusion, i.e. receiving the evacuation warning may

Table 1. Node States for Evacuation Warnings
State Description
Uninformed Node has not received any messages. (No

action.)
Disbelieved Node has received a message but does not

believe the message. (No action.)
Undecided Node has received the message and is un-

certain of what to do. (Query neighbors in
the network.)

Believed Node has received the message and be-
lieves the value of the message. (Spread
the message to its neighbors and evacu-
ated after x time steps.)

Evacuated Node is no longer in the network.

cause individuals to leave the network and disrupt the flow
of information. In a structural sense, nodes are removed from
the network and incoming and outgoing edges from the nodes
are removed as well. We simulate the diffusion of evacua-
tion warnings in multiple network structures under various
model settings and observe the ultimate proportion of evacu-
ated nodes.

4.1. Network Structures
Random graph. The random graph is a Erdos-Renyi network
where nodes are linked randomly with an edge probability p.
Here, p = 0.00004.
Scale-free network. To generate scale-free networks, we
used the Barabasi-Albert model for generating random scale-
free networks using preferential attachment [1, 2]. The degree
distribution of the resulting graph follows a power law of the
form P(k)∼ k−3.
Random group model. Individuals are more likely to com-
municate with certain individuals and less frequently with
other individuals. In the random group model, nodes are more
likely to be connected to other nodes belonging to the same
group than to nodes of a different group. Nodes are assigned
to k groups of size m where the total number of nodes is
n = k∗m. The edge probability between nodes from the same
group is ps and the edge probability between nodes from dif-
ferent groups is pd . We assume that ps is much greater than
pd . Here, ps = 2∗ pd .
Grid network. The nodes are arranged in a two-dimensional
grid, where most nodes have 4 neighbors.
Regular graph. In the random regular graph, all nodes have
4 randomly selected neighbors.

4.2. Node Characteristics
Node thresholds. For evacuation warnings, the goal of the
diffusion process is to spread the warning message and have
the nodes take action and evacuate. There are high risks,



Table 2. Summary of Network Structures
Network Size Density
Grid 100,000 0.00003987
Regular (d=4) 100,000 0.00004000
Random (p=0.00004) 100,000 0.00004000
Scale-free (m=2, k=2) 100,000 0.00003900
Group (k=2, m=50000) 100,000 0.00003994

costs, and consequences to an individual or household associ-
ated with evacuation, i.e. being in Believed state. Therefore,
nodes that reach this state will have preformed information
seeking before deciding to evacuate. This is modeled by set-
ting a large difference between upper and lower thresholds
for the Undecided state. Further, it is assumed that when a
node enters Believed state, they will spread the warning to
its neighbors and will evacuate and leave the network after 5
time steps.

4.3. Seeding Strategies
We refer to the subset of nodes that receive messages di-
rectly from sources as the seed set. The messages are then
spread from the seed set to the rest of the network. Each
source is connected to an equal number of nodes in the net-
work. In these experiments, we define 5 trustworthy sources
(trust value = 0.90). Each source will broadcast evacua-
tion warnings represented as messages with high information
value of 0.95. We assume that the initial messages sent from
the sources will reach all its intended recipients. We look at
two ways of selecting the seed set of nodes to receive the ini-
tial broadcast: randomly selecting a set of nodes, or selecting
a set of nodes with the highest degree. We consider three val-
ues for the size of the initial seed set: 5%. 10%, 20% of the
node population. Since there are 5 sources, each source will
connect to |seed set|/5.

4.4. Trust Scenarios
The following scenarios were modeled to incorporate pop-

ulation heterogeneity, in terms of differences in trust between
nodes and the degree of trust differences. The trust values be-
tween nodes are assigned depending on the sender and re-
ceiver’s social group membership. We split the population
into two social groups A and B of equal size. There are four
types of links showing the direction of information between
any two neighboring nodes in the network: (A to A), (A to B),
(B to A) and (B to B). Each link represents the trust between
the two nodes when information is transfered from the sender
to the recipient. As a benchmark, we assign an average trust
value tavg. We define high trust links with value thigh = tavg +ε

and low trust links with value tlow = tavg− ε. We refer to ε as
the trust differential, which is the difference from the aver-

age trust. In these scenarios, the average trust of the entire
network will be approximately tavg since the two groups have
equal sizes.

Scenario A. Same trust between all nodes. This scenario
represents a homogeneous network where everyone has the
same trust in everyone else. There are essentially no social
groups and no differences in trust between nodes, i.e. ε = 0
and thigh = tlow.

Scenario B. Higher trust in nodes from the same group.
This scenario represents a population where people have
higher trust in others who are in the same group or similar
to them. This is such a case, for example, in the dissemina-
tion of hazard information in populations with ethnic groups.
Individuals who belong to the same group have thigh in each
other and have tlow in individuals of a different group.

Scenario C. Random trust between all nodes. There is no
structure in how trust is distributed in the network in this sce-
nario. The values thigh and tlow are randomly assigned onto
links throughout the network with probability 0.5. As a re-
sult, individuals have higher trust about 1/2 of the population.

4.5. Parameters
Information Fusion. A. When a source appears in multiple
messages with different information values, we use the max-
imum of all the information values. B. When computing the
information fused value at the node, we take a linear combi-
nation of the sum and maximum of the information values:
λ∗∑i V k

i +(1−λ)∗maxi V k
i using λ = 0.5, 0.75, 1.0.

Edge probability. When a node (that is not a source) tries
to query for information or spread a message, there is a 75%
chance that the message will be received or shared.

5. RESULTS AND DISCUSSION
Each simulation run lasts 50 time steps and is repeated 100

times. Based on these experiments we report the average pro-
portion of evacuated nodes at the end of the simulations.

5.1. Network Structures, Seeding Strategies,
and Information Fusion

Figure 1 shows the proportion of evacuated nodes for each
network structure under the homogeneous trust scenario, A.
As we increase the size of the seed set, the resulting pro-
portion of evacuated nodes also increases. The results also
show that the network structure and the seeding strategy used
both have an impact on the proportion of evacuated nodes.
Using the highest degree nodes as seeds was more beneficial
in spreading the evacuation message than when using a ran-
domly selected set of nodes. The effect of the seeding strategy
is also dependent on the network structure. In the grid net-
work and the regular network, there is little difference since



most nodes share the same degree. In scale free networks,
seeding using high degree nodes results in a drastic increase
in the proportion of evacuated nodes. Seeding using the high-
est degree nodes also showed improvement in the random net-
work and the random group network.
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Figure 1. Proportion of evacuated nodes as we increase the
size of the seed set, for information fusion parameters ε =
0.50, 0.75, 1.

When we perform information fusion with λ = 1, the fused
value is more likely to exceed the lower and/or upper thresh-
olds. As a result, the messages diffuses to a larger proportion
of nodes. As we decrease the value of λ the fused value gets
closer to the maximum of the individual bits of information.
Treating each source independently and adding their infor-
mation values results in the largest spread. The value for λ

would depend on whether the nature of the diffusion is fast
spreading or not.

5.2. Network Structures, Trust Scenarios, and
Trust Differentials

The results for information fusion λ = 1 using the two
seeding mechanisms are shown in Table 3 and 4. The sce-
narios with inhomogeneous trust, B and C, resulted in larger
proportions of evacuated nodes when compared to scenario
A, when there was same trust between all nodes. This sug-
gests that scenarios with differences in trust is better for evac-
uation diffusion than a homogeneous trust scenario. In partic-
ular, the higher trust differential ε = 0.15 resulted in larger
proportions of evacuated nodes than ε = 0.05. This suggests

that large asymmetries in trust have a positive effect. Under
these configurations, the results for scenarios B and C are
very similar for most of the networks. The similarities may
have been caused by the fact that there were equal number
of individual nodes in both groups and the node were ran-
domly assigned to groups A and B. Therefore, there may not
be observable differences between randomly assigning high
and low trust values and assigning trust values based on group
membership when group membership was also randomly as-
signed. The results suggest that having differences in values
of trust based on social groups is beneficial for the spread of
the evacuation warnings. For the random group network, the
nodes from group A are more likely to be connected to others
from group A and likewise, nodes from group B connected
to others from group B. In this case, having higher trust in
nodes from the same group is shown to be much better than
just randomly assigning high and low trust values. This sug-
gests that the distribution of the node groups in the network
have an effect on the diffusion process.

Table 3. Proportion of Evacuated Nodes (Random Seeds;
Information Fusion Lambda = 1)

Network A B C
ε = 0.05 0.15 ε = 0.05 0.15

Grid 0.457 0.481 0.548 0.488 0.570
Regular 0.640 0.659 0.731 0.658 0.729
Scale-free 0.768 0.798 0.848 0.797 0.848
Random 0.661 0.686 0.756 0.685 0.756
Group 0.659 0.741 0.836 0.685 0.756

Table 4. Proportion of Evacuated Nodes (Highest Degree
Seeds; Information Fusion Lambda = 1)

Network A B C
ε = 0.05 0.15 ε = 0.05 0.15

Grid 0.458 0.482 0.549 0.490 0.571
Regular 0.641 0.659 0.730 0.659 0.729
Scale-free 0.951 0.960 0.948 0.960 0.948
Random 0.787 0.801 0.814 0.801 0.813
Group 0.784 0.833 0.861 0.799 0.812

For most of the network structures, the nodes were ran-
domly assigned to one of two groups, A and B, throughout
the network. In a more realistic model, nodes from the same
social group are more likely to communicate with each other
and form clusters in the network. The random group network
captures this component in some sense, where nodes from
the same group are more likely to be connected to each other
than nodes from different groups. Figure 2, presents simula-
tion results for random node assignment and the group as-



signment on the random group network. Random Assign-
ment refers to randomly assigning nodes to groups and the
Group Assignment refers to the node assignment that resulted
when we were constructing the random group network. For a
small seed size of 5%, the group assignment appears to have
a greater effect on the diffusion process than with random
assignment. As the seed size increases, the effect is not as
drastic.
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Figure 2. Comparison of the proportion of evacuated nodes
for Random Assignment and Group Assignment, as we in-
crease the trust differential and vary the seed sizes.

6. CONCLUSION
In this paper, we presented a general model of diffusion in

dynamic networks. We used the model to simulate the dif-
fusion of evacuation warnings in various network structures.
Each node in the network, representing a household, is as-
signed into one of two groups. The network is dynamic as
a result of the diffusion, where households who believe the
warnings they receive will evacuate and leave the network.
We examined how network structure, seeding strategy, and
population inhomogeneity based on trust, impact the diffu-
sion process. Network structure and the seeding strategy used
in sending the initial broadcasts affects the effectiveness of
the diffusion. The results show that when nodes have higher
trust in nodes of their same group, the evacuation is greater
than when trust is the same between all nodes. Increasing
the trust differentials leads to larger proportions of evacuated
nodes.

The diffusion model presented in this paper can be tuned
to represent various diffusion scenarios by specifying the pa-
rameters to fit the particular context. Future work includes
calibrating the model parameters using data from specific ap-
plications. Further experimentation include investigating con-
cepts, such as network density and connectivity, and trust
variants in sources. We will investigate the interactions be-
tween parameters such as the node thresholds, information
fusion, and seed size. We will also perform experiments to
look at the broadcast of warnings over time, as opposed to
the one-time broadcast simulated in these experiments.

ACKNOWLEDGEMENTS
This material is based upon work partially supported by the
U.S. National Science Foundation (NSF) under Grant No.
IIS-0621303, IIS-0522672,IIS-0324947, CNS-0323324, NSF
IIS-0634875 and by the U.S. Office of Naval Research (ONR)
Contract N00014-06-1-0466 and by the U.S. Department of
Homeland Security (DHS) through the Command, Control,
and Interoperability Center for Advanced Data Analysis ad-
ministered through ONR grant number N00014-07-1-0150 to
Rutgers University. The content of this paper does not neces-
sarily reflect the position or policy of the U.S. Government,
no official endorsement should be inferred or implied.

REFERENCES
[1] Albert, R. and A. Barabasi, 1999, “Emergence of scaling

in random networks”. Science 286: 509–512.
[2] Albert, R. and A. Barabasi, 2002, “Statistical Me-

chanics of Complex Networks”. Reviews of Modern
Physics 74(1): 47–97.

[3] Albert, R., H. Jeong, and A. Barabasi, 2000, “Error and
attack tolerance of complex networks”. Nature 406(6794):
378–382.

[4] Barthélemy, M., A. Barrat, R. Pastor-Satorras, and
A. Vespignani, 2004, “Velocity and hierarchical spread of
epidemic outbreaks in scale-free networks”. Phys. Rev.
Lett. 92(17): 178701.

[5] Bass, F., 2004, “A new product growth for model con-
sumer durables”. Management Science 50(Supplement
12): 1825–1832.

[6] Berger-Wolf, T. Y. and J. Saia, 2006, “A framework for
analysis of dynamic social networks”. In Proc. of the
12th ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining, Philadelphia, Pennsylvania, pp. 523–
528. ACM Press.

[7] Bettencourt, L., A. Cintron-Arias, D. Kaiser, and
C. Chavez, 2006, “The power of a good idea: Quantita-
tive Modeling of the spread of ideas from Epidemiological
models”. Physica D 364: 513–536.

[8] Brown, J. and P. Reignen, 1987, “Social ties and word-of-



mouth referral behaviour”. J. Consumer Research 14(3):
350–362.

[9] Centola, D., V. M. Eguiluz, and M. W. Macy, 2007, “Cas-
cade dynamics of complex propagation”. Physica A 374:
449–456.

[10] Chen, L. and K. Carley, 2004, “The impact of coun-
termeasure propagation on the prevalence of computer
viruses”. IEEE Trans. on Systems, Man, and Cybernet-
ics 32(2): 823–833.

[11] Cortes, C., D. Pregibon, and C. Volinsky, 2003, “Com-
putational methods for dynamic graphs”. Technical report,
AT&T Shannon Labs, Florham Park, New Jersey.

[12] Delre, S., W. Jager, and M. Janssen, 2006, “Diffusion
Dynamics in Small-World Networks with Heterogeneous
Consumers”. Computational & Mathematical Organiza-
tional Theory 13(2): 185–202.

[13] Girvan, M. and M. Newman, 2002, “Community struc-
ture in social and biological networks”. Proc. Natl. Acad.
Sci. USA 99(12): 7821–7826.

[14] Goldberg, M., S. Kelley, M. Magdon-Ismail, K. Mertsa-
lov, and W. A. Wallace, 2008, “Communication Dynamics
of Blog Networks”. In Proc. SIGKDD Workshop on Social
Network Mining and Analysis, pp. ACM Digital Library.

[15] Goldenberg, J., B. Libai, and E. Muller, 2001, “Talk
of the network: a complex systems look at the underly-
ing process of word-of-mouth”. Marketing Letters 12(3):
211–223.

[16] Granovetter, M., 1978, “Threshold Models of Collective
Behavior”. Amer. J. Sociology 83(6): 1420–1443.

[17] Hill, S., F. Provost, and C. Volinsky, 2006, “Network-
Based Marketing: Identifying Likely Adopters via Con-
sumer Networks”. Statistical Science 21(2): 256–276.

[18] Hui, C., M. Goldberg, M. Magdon-Ismail, and W. A.
Wallace, 2008, “Micro-Simulation of Diffusion of Warn-
ings”. In F. Fiedrich and B. V. de Walle (Eds.), Proc. of
the 5th Int’l Conf. on Information Systems for Crisis Re-
sponse and Management ISCRAM2008, pp. 424–430.

[19] Hui, C., M. Magdon-Ismail, W. A. Wallace, and
M. Goldberg, 2009, “The Impact of Changes in Network
Structure on the Diffusion of Warnings”. In Proc. Work-
shop on Analysis of Dynamic Networks at the SIAM Int’l
Conf. on Data Mining, Sparks, NV.

[20] Kelton, K., K. R. Fleischmann, and W. A. Wallace,
2008, “Trust in digital information”. J. Amer. Society for
Information Science and Technology 59(3): 363–374.

[21] Kempe, D., J. Kleinberg, and É. Tardos, 2003, “Maxi-
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