?rou-a(mjs LEEY
rC 10089 (rears 7/12/83 Jutera. Cond, C-”~£
\I L SL

9 pages
Tlus .
HEURISTIC IMPROVEMENT TECHNIQUE
FOR BISECTION OF VLSI NETWORKS ” S

Research Report Desineg:

Clarkson College of Technology
Potsdam, New York

Michael BURSTEIN

IBM T. J. Watson Research Center
Yorktown Heights, New York

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if
accepted for publication. It has been issued as a Research Report for early dissemination of its
contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM
prior to publication should be limited to peer communications and specific requests. After outside
publication, requests should be filled only by reprints or legailly obtained copies of the article (e.g..
payment of royalties).

I

Research Division
San Jose « Yorktown - Zurich

i
L1
!

[t

Copies may be requested from:

18M Thomas J. Wataon Research Conter
Distribution Services 38-068

Post Office Box 218

Yorktown Heights, New York 10598

RC 10069 (#44765) 7/12/83
Computer Science 9 pages

HEURISTIC IMPROVEMENT TECHNIQUE
FOR BISECTION OF VLSI NETWORKS

Mark K. GOLDBERG

Clarkson College of Technology
Potsdam, New York

Michael BURSTEIN

IBM T. J. Watson Research Center
Yorktown Heights, New York

ABSTRACT

We address the mincut partitioning problem for VLSI networks and
experimentally evaluate the performance of several heuristic algorithms. For
example, we observed the the quality of final partition obtained by
Kernighan-Lin algorithm for graphs is heavily dependent on the ratio of the
number of edges to the number of vertices: namely, the algorithm performs
poorly when this ratio is less then 3 and produces nearly optimal solutions
when the ratio is higher 5. We also develop a hierarchical improvement
technique that can be applied to any mincut algorithm and results in an
improved algorithm. We use the Kernighan-Lin-Fiduccia-Mattheyses (KLFM)
technique as a base for the improvement. The resulting algorithm outperforms
the KLFM precisely in the "poor performance areas" for the latter.

INTRODUCTION

The problem of partition of the set of nodes of a network into subsets
arises at several stages of VLSI design and layout. The objective of such
partition is usually to reduce the number of external interconnections. The
importance of the problem is well recognized. We consider here a particular
instance of the problem where the nodes of a network have to be distributed
among two subsets in such a way that the number of dissected nets is minimal.
We address it as a bisection problem in order to distinguish it from general
partition. Bisection is a key feature of the several automatic gate array layout
systems ([3,7,8]). The problem can be formalized in the following way. Given
a network H = (V, E) , where V is a set of nodes and E is a set of subsets of
V (called nets) consisting of at least two nodes. The problem is to partition
the set V into two parts ¥V = AU B of equal size (| 4] = | B|) such that the
number of nets having nonempty intersection with both 4 and B is minimal.
For the sake of simplicity we assume that the total number of nodes is always
even. In practice it may not be so: the nodes may be of different weight, they
may not be interchangeable or free to be assigned to any subset, the desired
partition may not be one that dissects the set into exactly equal parts. But the
problem, as it is formulated above, is an important extraction of the practical
problem and preserves the key difficulties pertinent to general partitioning.

The first nontrivial heuristic algorithm for graph bisection problem was
developed by Kernighan and Lin [1]. This algorithm, when implemented

straightforward results in a O(n2'5) execution time routine. Recently Fiduccia
and Mattheyses developed a modification of Kernighan and Lin method [2]
but utilization of efficient data structures enabled them to come up with linear
time heuristic practically without any loss in quality of partitions and applica-
ble to general networks. This bisection technique, which further will be
referred to as KLFM, is superior to several local optimization algorithms [4].
However there was still no significant performance study of this technique.
As a result of numerous experiments we concluded that the KLFM perform-
ance is heavily dependent on certain network parameter, which we call network
ratio and define as follows: for a network H = (V,E), the ratio

E lel —1

ecE
| V]

It turns out that KLFM performs relatively poor when r(H)<3 but performs
nearly optimally when r(H)>5. Practical networks, however lie in the range
of 1.8<r(H)<2.5. '

We also develop a mechanism that can be applied to any bisection algor-
ithm and results in another bisection algorithm which we call a derivative. Our
main result is the experimentally derived conclusion: the derivative of KLFM
significantly outperforms KLFM in the r(H)<3 area.

r(H) =

TEST MODEL

Since an analytical technique for evaluating performance of bisection
algorithms does not exist, experimental methods must be employed. This is
explicitly pointed out in [6] ; moreover [6] suggests that the bisection algor-
ithms should be evaluated on specific networks for which the mincut value is
known, and describes the construction of such networks. However, we argue
that the suggested networks are still not very suitable for algorithm testing,
since the ratio of the generated networks is very high. In order to demonstrate
this denote 4 and B two sets with p elements, n = 2p and let k be an integer.
Let U; be a random (p + 1) element subset of AUB , (i =1, 2, ,..., k). Let
T; be an arbitrary tree connecting the vertices of U, such that only one edge
of it connects a node from 4 with a node from B. Let KM(n,k) (for Krishna-
murthy & Mellema) denote a graph which is the union of these 7; — s on the
node set AU B. It is easy to see that the mincut number of KM is exactly k.
However, r(KM) = k/2, which easily puts us into the ''good performance
area'’ of KLFM, as it will be demonstrated in the next section (since practical
values of k are larger then 10). The networks generated in [6] in our optinion
are not good test cases for bisection algorithms. They practically will never
occur in real logical networks. It has been observed that in practical networks
the total number of nets is approximately equal to the number of active nodes.
Moreover, the number of 2-terminal nets is about 45% of the total number of
nets, the number of 3-terminal nets is about 15% and so on. In general (71
the following ''net-size distribution" criteria is approximately satisfied. Denote
m; the number of nets connecting i nodes of the network, M (H) - the vector,
whose i -th component is m,-/m , where m = Zm,. Then

MH) = 00.450.150.120.11 0.8 0.6 0.3 .
We suggest that the test networks be generated according to this criteria. It
was pointed out in [4] that the parameters m; play an important role in
bisectioning. The average number of dissected nets over all possible bisections
(an upper bound for mincut) can be expressed in terms of these parameters.

In order to evaluate the bisection algorithm performance we need not
know the exact value of the mincut. It is enough to know a good upper bound.
So, we suggest the following construction. Denote G(n,m) a random network
on n nodes and m nets satisfying the above distribution formula. Let
B(n,m,k) be a network constructed as follows: take two copies of
G(n/2,(m — k)/2) (assuming that n and (m — k) are even) and add k
random nets connecting these two networks and also satisfying the size
distribution. Then obviously k will be an upper bound for the mincut of
B(n,m,k). We will be testing the bisection algorithms in these B(n,m,k) -s.
The quality of the algorithm will be evaluted by the difference between the
resulting number of dissected nets and k. The resulting number may easily be
less then k if k is large enough. In order to model practical networks the
values of n,m and k should be selected in such a way, that m~1.1n and
k~0(m).

KLFM

We have implemented a simplified version of Fiduccia-Mattheyses algor-
ithm [2] under the assumptions that all nodes are equivalent and free to move
between both buckets. The algorithm runs in linear time and our testing
experimentally confirmed that fact. Using the same data structures we also
implemented the original Kernighan-Lin algorithm, which theoretically may
have on the average O(n log n) running time, but practicly runs almost as fast
as Fiduccia-Mattheyses. It usually takes more time per pass, but requires
slightly less passes. The test results on Krishnamurthy-Mellema graphs
KM (n,k) are presented in the Table 1. We have performed 6 runs for each
setting of parameters n and £ : n = 500 1000 1500 and & = 10 20 30. The
optimal solution was found in each of these 6 experiments. Running times are
given per pass in seconds for PL/1 implementation on IBM 370/3081.

Table 1.
Kernighan-Lin Fiduccia- Mattheyses
n. passes | time per pass | n. passes | time per pass
KM(500,10) 3 0.8 3 0.7
KM(500, 20) 3 1.4 3 1.2
KM({500,30) 3 1.7 4 1.6
KM({1000,10) 4 0.9 5 0.8
KM{1000,20) 3 1.8 5 1.4
KM(1000,30) 3 2.1 3 1.9

We also tested the algorithms on several different K(2000,50) -s and the
optimal solution was obtained every time (with perhaps different numbers of
passes) by both of them.

The results of testing on B(n,m,k) -s are, however, more interesting.
Table 2 contains the results of typical runs with different n,m,k setting. We
have performed 5 runs with each parameter setting and the results are aver-
aged over these 5 runs. The deviation from these average figures was also
small. These results led us to the conclusion that the quality of KLFM per-
formance increases with the growth of ratio. Figure 1 contains an illustration
of this phenomenon, when on X axis we measure the ratio, and on Y the

c
L, where ¢, is the resulting number of dissected nets by KLFM and ¢, the

y
0
minimal number of them.

Table 2.

Kernighan-Lin Fiduccia-Mattheyses
avrg cut |total time| avrg cut |total time
B(500,500,50) 64 1.9 63 2.1
B{500,1000,150) 149 4.3 148 4
B(500, 1500, 200) 194 5.8 194 6.3
B(500, 2000, 250) 246 9.1 246 8.7
B(1000,1000,100)] 123 5.6 126 5.4
B(1000,1600,200) 200 6.7 200 6.4
B(1000,3200,300)f 298 10.1 297 9.3
B(1000,6400,400)] 381 16.3 382 16.2

C . .
We conclude that ?L -1 when ratio increases.
4}

t— X

Figure 1.

DERIVATIVE

In this section we describe a mechanism for generating bisection algor-
ithms: starting with an arbitrary algorithm we generate another one which we
call a derivative. The idea of this construction was suggested in [3]. We need
the following definitions. Let H = (V,E) be a network. Notation: if X<V,
then Hy denotes a subnetwork of H having X for a set of nodes and a set
fXNe|eeFE and| XNe| >2} for a set of nets.

A matching of the set V is the partition of it into |¥V/2]| disjoint 2-
element subsets. For a matching F, HF denotes a factor-network of H in
which F serves as a set of nodes and nets are the contracted nets of H (2-
element nets that contracted completely are deleted). '

Let Y be an abstract algorithm that can be applied to any network
H = (V,E) and the result of this application is the partition V' = AU B which
we denote Y(H). Let F be an arbitrary matching of V. Then the derivative of
Y (denoted by dY) is defined as follows.

Construct HF 3
Apply Y to H F ; let A°’U B’ be the resulting partition of H F H

Generate AU B - reconstructed partition of V ;

ol o

Construct H, and Hp and apply Y to each to those networks; let
A=AUA, and B = B,U B, denote the resulting partitions: Y(H ,) and
Y(HB) 5

5. Select arbitrary matchings Fl’ F2, F3, F4 of each of the sets
Ay, Ay, B, B,;let F, = UF, (matching of V');

1
Construct H'* and apply Y to it; let ¥ = A4"U B" be the resulting partition.

Announce V = A"U B" to be the resulting partition of the derivative algor-
ithm dY .

Remark: the definition of the derivative algorithm is dependent on the match-
ing selection.

The derivation mechanism may be very useful in case when the initial
algorithm Y is space consuming, since if the initial network has n nodes, the
original algorithm Y is applied to n/2 node networks only. The derivative of Y
is generally faster than Y in case when the computational complexity of Y is
more than O(nz). If Y is a linear algorithm, then dY is linear as well (with a
larger constant).

Our main purpose is to investigate the performance of the derivative of
KLFM. Since KLFM is an improvement routine for a given partition, we
specify two variations of it. KLFMI1 starts with a random bisection and
iteratively applies KLFM until no further improvement is made. dKLFM1
denotes a. derivative of KLFM1. This derivative also assumes a starting
bisection, so it may be iterated (applied to the result) as well. KLFM2 denotes

-7 -

only one pass of KLFM and dKLFM2 is the corresponding derivative. We
applied those derivatives in iterative mode until the iterations showed no
improvement. The test networks were the B(n,m,k) -s with net size distri-
butions described above. We have performed 10 runs with each of the three

parameter settings:

A: n =512, m =600, kK =100;

B: n =1024, m = 1200, £ = 200,

C: n = 2048, m = 2400, k = 400;

Table 3 contains the data on execution time averaged over the 10 runs (times
are given in seconds both total and per pass).

Table 3.

KLFM dKLFM1 dKLFM2
tl |{p.p.| ttl |p.p.| t {p. p.
A |35}107]|52]13|51]04
B 81119 10| 29 |123| 0.8
C |204] 42| 23 | 6.1 |245] 2.2

Table 4 presents the averaged results and averaged numbers of passes.

Table 4.

KLFM dKLFM1 dKLFM2
cut |n.p.| cut |n.p.| cut |n.p.
A 96 5 84 4 83 9
B 1205 4 [190] 3 | 196 12
C |418| 5 |360| 3 |361] 10

The deviations from these average results are not significant. In none of these
experiments KLFM resulted in better bisection then both derivatives. Note,
that the ratio of networks in these experiments belongs to the "poor perform-
ance area of KLFM. We believe that the derivatives will perform similar to
KLFM when the ratio is greater than 5.

We performed another five tests on B(512, 2500, 1000) -s (ratio is
12.3). Table 5 contains the averaged results for these tests (average cut and

number of passes).

Table 5. Tests on B(512,2500,1000).

KLFM dKLFM1 dKLFM2
cut n. p. cut n. p. cut n. p.
749 5 750 4 753 12

The following explanation for the improved performance of derivatives in the
ratio<3 area is suggested. At the derivation step 2 we apply KLFM to HF
The ratio of H" is approximately twice as higher than the ratio of H , because
its number of nodes is twice as less, and, at the same time, the numerators are
changed insignificantly. The numerator of the ratio for HF differs from the
numerator of r(H) by the number pairs of adjacent nodes of H that got
contracted (two nodes of a network are adjacent if they belong to the same
net). Let ¢ denote the total number of adjacent node-pairs of H. Since total
number of node-pairs is n(n — 1)/2 the expected number of contracted pairs
will be

| F|
g=—1—.
n(n—-1) n—1
2

It is easy to see, that in our case g = X m;(m; — 1)/2~6m, and since m~n, on
the l

average only 6 or 7 pairs will be contracted. This means that KLFM is
applied to HY in the "better performance area". However, HF is a different
network, and the mincut value of it may be significantly higher than the
original (we might have contracted the edges of the real mincut). But we
reconstruct H at step 3 and try to eleminate as many disection candidates as
we can in step 4. Finally, in the step 6, we apply KLFM for HF* which has
almost doubled ratio as well.

ACKNOWLEDGEMENT

We are grateful to Jerome Kurtzberg, Jonathan Turner and Jacob Pey-
sackh for helpful comments, suggestions and assistance.

REFERENCES

[1] B. W. Kernighan and S. Lin, "An Efficient Heuristic Procedure for Parti-
tioning Graphs', Bell System Technical Journal, Vol. 49, February 1970,
pp. 291-307.

[2] C. M. Fiduccia and R. M. Mattheyses, "A Linear-Time Heuristic for
Improving Network Partitions', Proc. 19th Design Automation Confer-
ence, Las Vegas, June 1982, pp. 175-181.

[3] M. K. Goldberg and R. Gardner, ""On the minimal cut problem", Proc. of
the Silver Jubilee Conf. on Combinatorics, 1983.

[4] M. Burstein, "Analysis of a Network Partitioning Technique', Proc.
ISCAS-82, Rome, May 1982, 477-480.

[S] M. A. Breuer, A. D. Friedman, A. Tosupovicz, ""A Survey of the State of
the Art of Design Automation", Computer, Vol. 14, No. 10, October
1981, pp. 58-75.

[6] B. Krishnamurthy and P. Mellema, "On the Evaluation of Mincut Parti-
tioning Algorithms for VLSI Networks", Proc. ISCAS-83, Newport Beach,
May 1983, pp. 12-15.

[7] M. Burstein, S. J. Hong, R. Pelavin, ""Hierarchical VLSI Layout: Simulta-
neous Placement and Wiring of Gate Arrays'', Proc. IFIP VLSI-83, Tron-
dheim, August 1983.

[8] A. E. Dunlop, Automatic Layout of Gate Arrays, Proc. ISCAS-83, New-
port Beach, May 1983, pp. 1245-1248.

